
1 / 12

Sangwook Shane Hahn, Sungjin Lee and Jihong Kim

Computer Architecture & Embedded Systems Laboratory

School of Computer Science and Engineering
Seoul National University

Massive Storage Systems and Technologies 2013 (MSST 2013)

May 9th, 2013

SOS : Software-based Out-of-Order Scheduling
for High-Performance NAND Flash-Based SSDs

2 / 12

Introduction
 NAND flash memory based devices

– Become more popular because of their performance

– Consist of multiple flash chips

• Each chip can perform only one flash operation at a time

 In order to increase the performance of NAND-based devices

– Exploiting multichip parallelism is a key

– Out-of-order execution model is ideal for multichip parallelism

Write

Erase

Write

Chip0

Chip0

Chip0

Read

Write

Write

Chip1

Chip1

Chip2

Write C0

Erase C0

Write C0

Read C1

Write C1

Write C2

Tin-order

Read

Write

Write

Chip1

Chip1

Chip2

Tout-of-order

Performance
Improvement

Write C0

Erase C0

Write C0

Read C1

Write C2

Write C1

Time

Head

Tail

MSST’13

3 / 12

Out-of-order Support in SSDs
 Hardware-based Out-of-Order Scheduling (HOS)

– Receive requests with only physical address information translated by a flash
translation layer (FTL)

– Execute requests in an out-of-order manner

NAND flash device

File System

FTL

Mapping table Flash
Memor

y

Chip0 Chip1 Chip2 Chip3

HOS

Data buffer

W (LBA0)

E (LBA1)

W(LBA2)

R (LBA4)

W (LBA5)

W (LBA0)

W (LBA0
-> PBA0)

W
(PBA0)

E
(PBA1)

W
(PBA2)

R
(PBA4)

W
(PBA5)

W
(PBA7)

Physical address information
Both Logical & Physical

address information

Logical address information

PBA LBA PBA

MSST’13

4 / 12 MSST’13

HOS Weakness #1 : Skewed Queue Problem

 Data locality & different operation latencies induce
the skewed queue problem

Benchmark Bonnie++ Postmark Financial1 Financial2 Websearch

29% 32% 18% 11% 9%

Modifying mapping table is hard to hardware-based
scheduler and easy to software-based one

 In order to reallocate requests,
mapping table update process is inevitable

Write

Erase

Chip0

Chip0

Write Chip0

Read

Write

Write

Chip1

Chip1

Chip2

THOS

Time

Write

T’

Performance
Improvement

When at least one of chips is
idle

Chip0 Chip1 Chip2 Chip3

HOS

Data buffer

W
(PBA0)

E
(PBA1)

R
(PBA4)

W
(PBA5)

W
(PBA7)

W
(PBA2)

W

PBA

Balance
skewed queues

How to balance
skewed queues?

5 / 12 MSST’13

Benchmarks Bonnie++ Postmark Financial1 Financial2 Websearch

11.7% 14.3% 17.6% 9.2% 7.1%

HOS Weakness #2 : Useless Write Problem

 Useless Writes means overwrites at the data buffer

 In order to cancel useless writes,
logical address information of requests is essential

Access logical address information of request is hard to hardware-based
scheduler and easy to software-based one

Write Chip0

Read

Write

Write

Chip1

Chip1

Chip2

THOS

Time

Erase Chip0

Write Chip0

Chip0 Chip1 Chip2 Chip3

HOS

Data buffer

W
(LBA0)

E
(LBA1)

W
(LBA2)

R
(LBA4)

W
(LBA5)

W
(LBA0)

Same LBA
= Overwrite

Erase Chip0

Write Chip0

T’

Performance
Improvement

PBA

 HOS can’t recognize useless writes without logical address

How to prohibit
useless w rites ?

6 / 12

Our Contributions
 Propose software-based out-of-order scheduling (SOS)

– SOS can overcome the skewed queue problem &
useless write problem without additional hardware resources and
high design cost

 SOS was implemented at a prototype SSD, BlueSSD

– SOS improves the average I/O
response time by up to 42%
over HOS

MSST’13

7 / 12

Overview of SOS

 SOS handles requests at the software queues
with logical & physical address information

– Queue size leveler : detect the skewed queues
 and then rearranges requests

– Write hit manager : eliminate useless writes
 by canceling unnecessary writes

Hardware Level

Software Level

Host
System

Low-level
Flash

Controller

Software-Based
Out-of-Order Scheduling

Queue
Size

Leveler

Write
Hit

Manager

Dynamic
Scheduler

Flash
Translation
Layer

Software
Queues

Write
Buffer
Cache Host

I/O
Request

Flash
Memory

MSST’13

8 / 12

Queue Size Leveler (QSL)
 Balance the size of multiple I/O queues

by reallocating write requests to idle chips

– Consider different latencies of each flash operations

– Triggered when one of chips become idle

Write Chip0

Erase Chip0

Write Chip0

Read

Write

Write

Chip1

Chip2

Chip1

THOS

Time

Write Chip2

TSOS

Performance
Improvement

Chip0 Chip1 Chip2 Chip3

SOS

Data buffer

W
(PBA0)

E
(PBA1)

R
(PBA4)

W
(PBA5)

W
(PBA7)

W
(PBA2)

FTL

Mapping table

Chip0 Chip1 Chip2 Chip3

SOS

Data buffer

E
(PBA1)

W
(PBA5) W

(PBA7)
W

(PBA0)

W
(PBA2)

W
(PBA2)

W
(PBA0)

Idle chip
triggers

QSL

LBA0 -> PBA0 LBA0 -> PBA0 -> PBA9
W

(PBA9)

Idle chip
triggers

QSL

LBA2 -> PBA2 LBA2 -> PBA2 -> PBA6

Write Chip3

Erase Chip0

Write Chip0

Write Chip0

Write Chip0
R

W
(PBA9)

PBA LBA PBA LBA

TPresent

MSST’13

9 / 12

Write Hit Manager (WHM)
 Detect overwrites and cancel them

to eliminate unnecessary writes and invalidations

– Additional flag at mapping table implemented for detection

• Detect useless writes without full search

Write Chip0

Read

Write

Write

Chip1

Chip1

Chip2

THOS

Time

Erase Chip0

Write Chip0

Chip0 Chip1 Chip2 Chip3

SOS

Data buffer

W
(PBA0)

E
(PBA1)

W
(PBA2)

R
(PBA4)

W
(PBA5)

W
(LBA0)

Overwrite occurs & it triggers WHM

Erase Chip0

Write Chip0

TSOS

Performance
Improvement

FTL

Mapping table

LBA0:PBA0(flag=0)

Flag 0 means “Previous write request
still exists at data buffer”

PBA LBA

PBA LBA

MSST’13

10 / 12

Experimental Settings

– We implemented the SOS in SSD prototype, BlueSSD

• BlueSSD supports 4 buses and 4 ways (Total 16 chips)

• PowerPC 405 processor (@100Mhz) on BlueSSD
runs Linux 2.6.25.3 kernel

– Realize HOS by rearranging the sequence of requests
according to the out-of-order scheduling algorithm

• The rearranged I/O traces
were replayed, using the
in-order scheduling algorithm

MSST’13

11 / 12

Experimental Results
 Characteristics of benchmarks

 SOS improves I/O response times by 15% to 42% over HOS

Benchmarks Bonnie++ Postmark Financial1 Financial2 Websearch

Read Ratio 52.1% 50.0% 32.8% 82.4% 91.1%

Write Ratio 47.9% 50.0% 67.2% 17.6% 8.9%

0

20

40

60

80

100

Bonnie++ Postmark Financial1 Financial2 Websearch

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

(%
)

IOS HOS SOS

42%
23% 40% 37%

15%

MSST’13

12 / 12

Conclusion & Future Work

 Software-based out-of-order scheduling

– Exploits the multichip parallelism more effectively
than hardware-based one

• Queue size leveler addresses skewed queue problem

• Write hit manager addresses useless write problem

– Improves I/O response times by up to 42% over HOS

 Future work

– More flexible request scheduling techniques

• Reflect user-priority of requests from upper layer, etc.

MSST’13

13 / 12

End of Presentation

Thank you

	SOS : Software-based Out-of-Order Scheduling �for High-Performance NAND Flash-Based SSDs
	Introduction
	Out-of-order Support in SSDs
	HOS Weakness #1 : Skewed Queue Problem
	HOS Weakness #2 : Useless Write Problem
	Our Contributions
	Overview of SOS
	Queue Size Leveler (QSL)
	Write Hit Manager (WHM)
	Experimental Settings
	Experimental Results
	Conclusion & Future Work
	End of Presentation

