

Data Storage

Achieving 1000-Year Data Persistence – "Engraved in Stone"

Dr. Douglas Hansen CTO Millenniata, Inc.

Density vs Persistence: THE RIGHT CHOICE?

Tradition: Data Density Wins

Problem: Bit Density Sacrifices Persistence

Data Explosion Drives COO Concerns

Is Bit Density Still the Way to Win?

Persistence Wins Over Density for Data Storage Beyond 5 years!

DISC

What Does Data Persistence Get Me?

Lower Cost of Ownership

Media and Hardware are Separate

Green Technology

Confidence in Data Recovery

Near-Zero Maintenance Costs & Worries If 30 years leads to a problem every 5 years, 1000 years means PROBLEM SOLVED !

If the bits aren't there, **NOTHING ELSE MATTERS!**

No special HVAC, packaging, EM field controls, or other requirements)

Flooding, humidity & temperature

Why Do Things Endure?

Storage Conditions?

No. Many of these examples survive storage in the open for centuries.

Advanced Technology?

No. Clay pots, rock walls, and stone engravings are ancient technology.

Materials?

Yes. The most successful examples of persistent data storage utilize inert or fully-oxidized (or otherwise fully reacted) materials.

Stone and Inert Metals

Digital Records in Stone: How?

The Challenges

- Change the media Change the materials
- Don't change the core technology
- Reasonable cost

Solid State

• New Materials in the semiconductor fab?

Magnetic

Required magnetic behavior limits choices

Optical

• LIGHT: a flexible way of interacting with materials

Digital Records in Stone: How?

Optical is the Only Choice for Fundamentally New Materials

- Well Developed, Non-Proprietary Hardware
- Extremely Wide Adoption
- Hardware is "Media Agnostic"
- Media Formats can be Adapted to New Materials

Technical Requirements

- Reflectivity & Light-driven Contrast Mechanism
- Ablation, melting, phase change, photo-chemistry, etc
- Nano-scale Dimensional Stability
- Laser Diode Power Levels in the low 10's of mWatts

The Physics of Persistent Data

Energy Barriers are Important Energy Stability \Rightarrow High Entry Barrier Persistence \Rightarrow Even Higher Exit Barrier **Make Entropy Your Friend** Irreversible Processes Can't Undo Get into a Low Energy State **And Stay There!** Melt & Move is Low Energy and Irreversible

The Physics of Persistent Data

Data Storage is Nano-scale Engineering

Solid State

Min. Dimensions: = 25 nm

Blu-ray

Track Pitch: $0.32 \,\mu\text{m}$ Min Mark Length: $0.15 \,\mu\text{m}$ Storage Density: 14.73 Gb/in²

blu-raydisc.com

Magnetic

Min Mark Length: 0.067 μm LTO-5 Storage Density: 1.2 Gb/in²

Quantum Data Sheet IEEE Bulletin 2010

Nanometers Matter!

The Chemistry of Persistent Data

Chemically Inert (or Rock-like) Materials

disc

 Eliminate all the issues except Residual Stress

Eliminate Stress Through Process Control

The Implementation of Persistent Data

The Importance of Ubiquitous Technology

The Advantages of Building on Existing Technology Foundations

Millions of copies in consumer's hands means:

- A lot of engineering has been done DATA REPONO PERTINAX
- Users are familiar with the technology and have access to it

Data and Media Formats that are Not Proprietary

- Today's Optical Disc Drives are compatible with media written over 30 years ago.
- Massive consumer markets will continue to drive this trend.

DATA REPONO PERTINAX

Introducing the M-Disc M-Disc — Both DVD and Blu-ray

Key Considerations

- Mechanical Stability
- Chemistry of Materials
- Polycarbonate
- Hard Coats & Adhesives
- UV Barrier
- Water/Humidity Barrier

Manufacturability & Costs

- The key difference is in the deposition of the data layer materials
- All other processes are compatible with industrystandard practices and equipment.

The Advantages of Moving Material Nanometers and Edges Matter

Dark Regions Indicate an Absence of Material

TEM Micrograph of Written M-Disc

M

How Do We Know M-Disc Persists?

The Challenges of Longevity Testing

- Good tests & multiple conditions take a LONG TIME
- Statistically Valid Samples \Rightarrow Lots of Data
- How well do the test results correlate with real life?

The Eyring Equation and what it means

- Applies ONLY to Chemical Reactions and Rates
 - Driven by Heat and Humidity
- Does not address other failure mechanisms
- Well suited to Archival Storage Conditions

What Eyring Doesn't Mean

- Longevity is **NOT** Durability
- Media can still be destroyed

How Do We Know M-Disc Persists?

Test cell Number	3Test stress condition (incubation)		Number of specimens	Incubation duration	Minimum Total Time	Intermediate RH	Minimum equilibration duration
	Temp	%RH		Hours	Hours	%RH	Hours
1a	85+	85	20	250	1000	30	7
2a	10%	70	20	250	1000	30	6
3a	10%	85	20	500	2000	35	9
4a+	24%	75	20	625	2500	33	11

ISO 10995 Life Time Test Requirements

M-Disc DVD & M-Disc BD Comparison

Key Points of Comparison

- Both Data Layers
 [≤] 100 nm thick
- Polycarbonate is NOT a Gas Barrier
- BD Cover Layer IS a Gas Barrier
- BD Data Layer Better Isolated Chemically than DVD

Structural Differences Between DVD and Blu-ray Should make BD Lifetime as Good as Or better than DVD

Data-to-Clock Jitter Decay (ISO 10995)

The M-Disc Data-to-Clock Jitter is Remarkably Stable Under Test

ISC

Data-to-Clock Distributions (ISO 10995)

Data recorded on the M-Disc is still readable under all 4 test conditions

Archive A

Test Condition: 65 C – 85% RH Time in Test: 2100 Hours Radius: 50 mm

M-Disc Reflectivity (ISO 10995)

The M-Disc ends the test still in spec under all 4 test conditions

M-Disc Modulation (ISO 10995)

The M-Disc ends the test still in spec under all 4 test conditions

M-Disc Asymmetry (ISO 10995)

The M-Disc ends the test still in spec under all 4 test conditions

PIE Sum 8 Error Rates (ISO 10995)

The Test Results Indicate an Average Lifetime Well Over 1,000 years

The M-Disc Age Acceleration Factor with Temperature is Significantly Better

Key Conclusions and Summary

Key Conclusions:

- Persistent Data Impacts
 - The Bottom Line
 - Data Security
- Excellent Materials
 Science Makes Persistent
 Data Possible!
- M-Disc DVD and BD Introduce a New Paradigm in Data Archiving

Summary:

- Optical Storage Offers A Unique Value Proposition
- The World-wide Data Explosion Will Drive New Solutions to Massive Data Archiving
- Persistent Optical Storage Hardware, Software & Media Can Handle Massive Data