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Outline

e \What is the problem?

 How to solve the problem?

— BP neural network
— Support Vector Machine (SVM)

* Experimental Results
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Code and Recovery




Faillure prediction
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How to solve the problem

e SMART alone

— Failure detection rate of 3-10% with 0.1% false
alarm rate (FAR)

e Our methods
— Back propagation (BP) neural network
— Improved Support Vector Machine (SVM)



B

Support Vector Machine




BP neural network
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Features
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Experimental Results

e Dataset
— Seagate ST31000524NS
— 433 failed drives
— 22962 good drives

e Experimental setup
— 70% In training set
— 30% In test set



SVM result
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Failure predication performance of SVM models
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The lead time
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Effectiveness of change rate
features
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The effectiveness of change rate features for SVM
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Results of BP neural network

Prediction results of BP neural network models
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Voting based failure detection

Algorithm 1 Voting-based failure detection algorithm

Input: The sample set S[1..t] of the drive, the BP prediction
model BP() which returns 0 if the input sample is classi-
fied as good and 1 otherwise, and the voter turnout N

Output: good or failed

I: Begin

2: C[1.N]=0

3: fori=1tot do

4: Cl((i—1) modN)+ 1] = BP(S[i])
5 if E;*:l C[j] > N/2 then

6 return failed

7 end if

8: end for

9: return good

10: End




AdaBoost-enhanced BP network
with voting-based detection
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Failure prediction performance of AdaBoost-enhanced BP
network models using voting-based detection method
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Conclusion

e Two methods to predict disk failures

— BP neural network
— Improved SVM

 Our prediction models achieve much higher
accuracy

— FAR (SVM 0.03%), detection rate (BP network:
95%)
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