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Efficient Use of Solid State Drives
• Modern SSDs 

• Multiple processors / flash controllers
• High internal bandwidth between 

Flash and DRAM
• IOPS: 1k~85k 4K requests
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• How can the system efficiently leverage the processing power and internal 
bandwidth of SSDs?
• Alternative storage stack for SSDs 
• Offloading I/O tasks to SSDs

• Assumptions on slow I/O devices are being challenged
• OS storage stack is optimized for slow I/O devices
• e.g. I/O schedulers, device queue management, I/O interrupts



Intelligent Storage Devices 
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Host-only Active Disks FPGA-aided HDDs Flash controller-based
in-storage processing

• Problems with HDD-based in-storage processing
• Limited processing capabilities
• Requires additional hardware components such as memory and FPGA 

(commodity hard drives could not be used)
• Reduces traffic between a host and a device but provides little I/O performance 

improvements

• Smart SSD
• Designed to use embedded processors and DRAM in SSDs to process I/O tasks
• Uses devices’ internal knowledge to optimize an execution plan
• Achieve low energy consumption by not using power-hungry host resources

Smart SSDs
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Smart SSDs

• In-Storage Processing Engine
• Uses existing hardware and SATA protocols
• Allows hosts and devices to work together on the same job

• Object-based Communication Layer
• Designed to provide an universal interface to applications and operating systems, 

independent to the underlying protocols such as SAS, SATA, and PCI-e

• Application Interface 
• Map/Reduce programming interface for user applications
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In-Storage Processing Engine
• An event-driven processing framework to execute tasklets

• Each tasklet implements the following event functions
• On_Create
• On_Execute
• On_DataAvailable
• On_Read

• Internal read requests:
• have a lower priority than normal read operations
• are divided into multiple smaller read requests based on the 

current load.
• On_DataAvailable is called whenever each read request is 

done, to generate partial results
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Host-Device Interface 
Object Interface on SATA
• Designed to provide an 

universal APIs regardless of 
the underlying protocols 

• Tasklets are executable objects

• 3 commands are provided
• create_object
• execute_object
• read_object

• Implementation issues
• No bi-directional communication
• Device-initiated connection
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Host Smart SSD

create_object (tasklet options)

returns an object id

read_object_id initialize
a tasklet

create_object (tasklet parameters)

read_object_id 

returns an object id

prepare output
object and read  

 tasklet parameters 

execute_object (tasklet obj id, output obj id))

start taskletread_object(output obj id) 

read_object(output obj id) 

... return data if 
there's any or 

return execution status 



Application Interface for Smart SSD

• Direct access
• Use the low-level protocol directly
• can be used by SSD-aware storage(file) systems

• MapReduce Model
• Simple programming interface to applications
• Hide the detailed communication from applications
• Generate independent sets of data that can be assigned 

to multiple Smart SSDs / tasklets concurrently
• Tasklets can be mappers, reducers or both
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Extended MapReduce Model for
In-storage Processing
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Evaluation 
Tasklet Execution Performance

• Internal read performance - 1.6x faster than the host-device bandwidth
• For each access, it reads one integer, and does one integer comparison 
• However, the performance degrades as the number of DRAM accesses and comparisons increase
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Internal DRAM 
access latency



Evaluation
Host-Device Communication Overhead

• create_function, create_output_object takes more time than other 
functions, because it consists of two separate commands

• read_object takes more time in JNI part, due to the memory copy between 
c and java and algorithms for determining the polling interval
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Evaluation 
Log-Analysis Example

• Trace 
• 1998 World Cup website access log
• 7,000,000 entries with different sizes ranging from 32 bytes to 256 

bytes

• Scenarios
• Number of accesses per region (requires 4 byte read per log entry and sum)
• Top 5 file types accessed per region (requires 8 byte read per log entry and sorting)

• Applications 
• host-normal: normal log-analyzer using MapReduce
• host-optimized: modified version of host-normal, not generating the 

intermediate results
• Smart SSD: in-storage processing
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Evaluation 
Log-Analysis Example

• Scenario 1. counting the number of accesses per region
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Evaluation 
Log-Analysis Example

• Scenario 2. top 5 file types accessed per region
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Evaluation 
Disk I/Os

• Smart SSDs do not transfer any raw data to the host
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Evaluation 
CPU Usage
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• With Smart SSDs, CPUs are mostly in the idle state waiting for the results
• In host-normal and host-optimized, CPUs wait for I/O requests (kernel time), 

and then process the data (user time)



Evaluation 
Energy Efficiency

• Host-normal and host-
optimized: 
• host system uses 35 ~ 

40 Watts

• Smart SSD:
• consumes 0.9 Watts to 

1.2 Watts

16

host-normal

host-optimized

Smart SSD

50% reduction in overall 
energy consumption 



Evaluation
Data Filtering

• Problem of long DRAM read latencies can be 
alleviated by using filtering instead of searching
• Stop processing after the first match

• Host systems can assign data filtering tasks to the 
device before entering long computations
• taking advantage of energy-efficient ISP

• Data filtering with 1GB data, 60% selectivity, 256 
accesses per page => 40% faster than searching 
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Suggestions for Future 
Smart SSD Architecture
• Reduce DRAM Access Latency

• High bandwidth between DRAM and CPU
• L1/L2 caches for embedded processors

• I/O Latency 
• Use application processors to enable background processing

• Tasklet Programming 
• Define a general set of APIs that expose the functionality of 

the firmware and hardware to tasklets
• Add support for a script language and Sandboxing

18



Summary

• Explored the potentials and limitations of the Smart SSD model on the 
current SSD architecture

• Based on a prototype on a real SSD hardware and firmware, we 
measured performance and energy consumption of a Smart SSD

• Smart SSDs can help achieve both high performance and energy 
efficiency at a low cost through in-storage data processing

• Problems with the current SSD architecture
• High DRAM access latency
• Lack of cpu caches 
• No dynamic memory allocations 
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Thank you
Questions? 
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Extended Hadoop Framework

• Object File System
• A Hadoop file system that supports Smart SSDs

• Provides open/read/write to a raw Smart SSD
• Directory support

• ISP Support
• Internally handles object-based communication with a device

• Block management 
• Manages logical block numbers (unlike pure Object-based file 

systems)

• MapReduce Framework
• ‘DeviceMapper’ and ‘DeviceJobClient’ are added
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