
Yangwook Kang, UC Santa Cruz
Yang-suk Kee, Samsung Semiconductor

Ethan L. Miller, UC Santa Cruz
Chanik Park, Samsung Electronics 

Enabling Cost-effective Data Processing 
with Smart SSD



Efficient Use of Solid State Drives
• Modern SSDs 

• Multiple processors / flash controllers
• High internal bandwidth between 

Flash and DRAM
• IOPS: 1k~85k 4K requests

2

• How can the system efficiently leverage the processing power and internal 
bandwidth of SSDs?
• Alternative storage stack for SSDs 
• Offloading I/O tasks to SSDs

• Assumptions on slow I/O devices are being challenged
• OS storage stack is optimized for slow I/O devices
• e.g. I/O schedulers, device queue management, I/O interrupts



Intelligent Storage Devices 

3

Host-only Active Disks FPGA-aided HDDs Flash controller-based
in-storage processing

• Problems with HDD-based in-storage processing
• Limited processing capabilities
• Requires additional hardware components such as memory and FPGA 

(commodity hard drives could not be used)
• Reduces traffic between a host and a device but provides little I/O performance 

improvements

• Smart SSD
• Designed to use embedded processors and DRAM in SSDs to process I/O tasks
• Uses devices’ internal knowledge to optimize an execution plan
• Achieve low energy consumption by not using power-hungry host resources

Smart SSDs



In-storage 
Processing Engine

FTL

Smart SSD

Communication Layer

SATA

Map / Reduce

Object-based FS

Tasklets

Hadoop Framework

Host

O
bj

ec
t-b

as
ed

 I/
O

 
Li

br
ar

y

O
bj

ec
t C

om
m

an
d 

Ha
nd

le
r

Smart SSDs

• In-Storage Processing Engine
• Uses existing hardware and SATA protocols
• Allows hosts and devices to work together on the same job

• Object-based Communication Layer
• Designed to provide an universal interface to applications and operating systems, 

independent to the underlying protocols such as SAS, SATA, and PCI-e

• Application Interface 
• Map/Reduce programming interface for user applications

4



In-Storage Processing Engine
• An event-driven processing framework to execute tasklets

• Each tasklet implements the following event functions
• On_Create
• On_Execute
• On_DataAvailable
• On_Read

• Internal read requests:
• have a lower priority than normal read operations
• are divided into multiple smaller read requests based on the 

current load.
• On_DataAvailable is called whenever each read request is 

done, to generate partial results
5



Host-Device Interface 
Object Interface on SATA
• Designed to provide an 

universal APIs regardless of 
the underlying protocols 

• Tasklets are executable objects

• 3 commands are provided
• create_object
• execute_object
• read_object

• Implementation issues
• No bi-directional communication
• Device-initiated connection

6

Host Smart SSD

create_object (tasklet options)

returns an object id

read_object_id initialize
a tasklet

create_object (tasklet parameters)

read_object_id 

returns an object id

prepare output
object and read  

 tasklet parameters 

execute_object (tasklet obj id, output obj id))

start taskletread_object(output obj id) 

read_object(output obj id) 

... return data if 
there's any or 

return execution status 



Application Interface for Smart SSD

• Direct access
• Use the low-level protocol directly
• can be used by SSD-aware storage(file) systems

• MapReduce Model
• Simple programming interface to applications
• Hide the detailed communication from applications
• Generate independent sets of data that can be assigned 

to multiple Smart SSDs / tasklets concurrently
• Tasklets can be mappers, reducers or both

7



Extended MapReduce Model for
In-storage Processing

8

Map Map Map

Shuffle Shuffle Shuffle

Reduce Reduce Reduce

Map 
&

Shuffle

Map
&

Shuffle

Map
& 

Shuffle

Reduce Reduce Reduce

Split Input Files Split Input Files 

Host Device

(a) Hadoop MapReduce Model (b) Extended MapReduce Model Using ISP

raw data

intermediate  
data

map output



Evaluation 
Tasklet Execution Performance

• Internal read performance - 1.6x faster than the host-device bandwidth
• For each access, it reads one integer, and does one integer comparison 
• However, the performance degrades as the number of DRAM accesses and comparisons increase

9

Internal DRAM 
access latency



Evaluation
Host-Device Communication Overhead

• create_function, create_output_object takes more time than other 
functions, because it consists of two separate commands

• read_object takes more time in JNI part, due to the memory copy between 
c and java and algorithms for determining the polling interval

10



Evaluation 
Log-Analysis Example

• Trace 
• 1998 World Cup website access log
• 7,000,000 entries with different sizes ranging from 32 bytes to 256 

bytes

• Scenarios
• Number of accesses per region (requires 4 byte read per log entry and sum)
• Top 5 file types accessed per region (requires 8 byte read per log entry and sorting)

• Applications 
• host-normal: normal log-analyzer using MapReduce
• host-optimized: modified version of host-normal, not generating the 

intermediate results
• Smart SSD: in-storage processing

11



Evaluation 
Log-Analysis Example

• Scenario 1. counting the number of accesses per region

12



Evaluation 
Log-Analysis Example

• Scenario 2. top 5 file types accessed per region

13



Evaluation 
Disk I/Os

• Smart SSDs do not transfer any raw data to the host

14



Evaluation 
CPU Usage

15

• With Smart SSDs, CPUs are mostly in the idle state waiting for the results
• In host-normal and host-optimized, CPUs wait for I/O requests (kernel time), 

and then process the data (user time)



Evaluation 
Energy Efficiency

• Host-normal and host-
optimized: 
• host system uses 35 ~ 

40 Watts

• Smart SSD:
• consumes 0.9 Watts to 

1.2 Watts

16

host-normal

host-optimized

Smart SSD

50% reduction in overall 
energy consumption 



Evaluation
Data Filtering

• Problem of long DRAM read latencies can be 
alleviated by using filtering instead of searching
• Stop processing after the first match

• Host systems can assign data filtering tasks to the 
device before entering long computations
• taking advantage of energy-efficient ISP

• Data filtering with 1GB data, 60% selectivity, 256 
accesses per page => 40% faster than searching 

17



Suggestions for Future 
Smart SSD Architecture
• Reduce DRAM Access Latency

• High bandwidth between DRAM and CPU
• L1/L2 caches for embedded processors

• I/O Latency 
• Use application processors to enable background processing

• Tasklet Programming 
• Define a general set of APIs that expose the functionality of 

the firmware and hardware to tasklets
• Add support for a script language and Sandboxing

18



Summary

• Explored the potentials and limitations of the Smart SSD model on the 
current SSD architecture

• Based on a prototype on a real SSD hardware and firmware, we 
measured performance and energy consumption of a Smart SSD

• Smart SSDs can help achieve both high performance and energy 
efficiency at a low cost through in-storage data processing

• Problems with the current SSD architecture
• High DRAM access latency
• Lack of cpu caches 
• No dynamic memory allocations 

19



Thank you
Questions? 

20



Extended Hadoop Framework

• Object File System
• A Hadoop file system that supports Smart SSDs

• Provides open/read/write to a raw Smart SSD
• Directory support

• ISP Support
• Internally handles object-based communication with a device

• Block management 
• Manages logical block numbers (unlike pure Object-based file 

systems)

• MapReduce Framework
• ‘DeviceMapper’ and ‘DeviceJobClient’ are added

21


