
OSSD: A Case for Object-based
Solid State Drives

Young-Sik Lee
Sang-Hoon Kim, Seungryoul Maeng, KAIST

Jaesoo Lee, Chanik Park, Samsung
Jin-Soo Kim, Sungkyunkwan Univ.

MSST 2013
2013/5/10

SSD

SSD
• High performance
• Better shock & vibration resistance
• Low power consumption
• Light weight

Laptop

Desktop

Server

2/18

Inside of SSDs

• NAND flash memory

• Flash Translation Layer (FTL)
– Space allocation
– Address mapping
– Garbage collection (GC)
– Wear-leveling

Page with data

Block

1 2 3 4 5 6 2 3

Garbage Collection (GC)

Erase
Valid page
copy

Free page

Invalidated page

New free block

Page

3/18

Block Interface

• Connects the host machine with SSDs
• Limitations

– Space management done in two different layers
• File system: <file, offset> file system blocks
• FTL: file system blocks flash pages

– Hard to know liveness information
• TRIM, but large overhead for highly fragmented files

– No file-level information
• Relationship among blocks (e.g., which block from which file)
• File size, file attributes, etc.

– Hard to manage per-block data properties
• e.g., hot vs. cold, metadata vs. data, etc.
• Additional operations & large memory space

4/18

Object-based Storage Device (OSD)

• Virtualizes physical storage as a pool of objects
– Object = Data + Attributes

• Provides general abstraction layer to manage objects
– Create object, delete object, read object, write object, etc.

• Enables storage management based on objects
– Offloads space management to storage devices

 Object interface

Data
Attri-
butes

Object

5/18

Related Work

• Nagle et al. [IBM Journal of Research and Development 2003]

– Showed the benefits of OSDs based on HDDs

• Rajimwale et al. [USENIX ATC 2009]

– Suggested the notion of OSD is well suited to SSDs

• Kang et al. [MSST 2011]

– Employed OSD for SCM (Storage Class Memory)

6/18

Object-based SSDs (OSSDs)

• OSD + SSD

OSSD

Object management +
Flash management

NAND flash

Object-based interface
(READ, WRITE, CREATE, DELETE)

Improve the
performance
& reliability

Object information

Knowledge about
NAND flash

7/18

Overall Architecture

Object-aware I/O scheduler (OAQ)

Object-based File System (OFS)

VFS

OSSD Firmware
Object Management Layer (OML)

Flash Management Layer (FML)

Flash Abstraction Layer (FAL)

RawSSD
READ/PROGRAM/ERASE SATA-2

Object interface iSCSI @ TCP 1Gbps I/O scheduler (e.g., CFQ)

File system (e.g., Ext4)

VFS

Flash Translation Layer (FTL)
Address mapping

Allocation, GC, Wear-leveling

Namespace, access control, …
Storage management

Flash controller
NAND flash memory

Block interface

Traditional SSD OSSD prototype
8/18

Host

• Object-based File System (OFS)
– Based on EXOFS
– One file one object

• Object-aware I/O Scheduler (OAQ)
– Replaces the page collector of EXOFS
– Merges requests and supports priority on an object basis

Writes to object #1 Writes to object #2 Writes to object #3

Not merged by the EXOFS page collector OAQ 9/18

Target

• Object Management Layer (OML)
– Uses μ-Tree [EMSOFT 2007] for object data and attributes

mapping

• Flash Management Layer (FML)
– Allocates space
– Considers data properties
– Handles prioritized objects

Allocation
Bitmap

FML

OML Attributes Data

μ-Tree

10/18

Benefits of OSSDs

• Object-aware data placement
• Hot/cold data separation
• QoS support for prioritized objects

11/18

Object-aware Data Placement

• Lower fragmentation of object data
• Improve GC performance

File #1 File #2 File #3 Invalidated page

Write

Delete File #1

Valid copy for GC No valid copy for GC

Traditional SSD OSSD

Flash layout

Write

Delete File #1 Block

12/18

Object-aware Data Placement

• Downloading 2, 4, or 8 files in Torrent

• OFS-ONE
 No object-aware

data placement
 Shares a single update

block for all data

• EXT4
 Page mapping FTL

on the same H/W

13/18

Hot/Cold Data Separation

• Improve GC performance
• Lower overhead for managing hot/cold information

Cold file Hot file Invalidated page

Write

Valid copy for GC Less valid copy for GC

Traditional SSD OSSD

Flash layout

14/18

Hot/Cold Data Separation

• 90% write to 10% files, 10% write to 90% files

15/18

• Provide a low latency service for prioritized objects

QoS Support for Prioritized Objects

R W R W R W E

Garbage Collection

Traditional SSD OSSD

… R W R W R W E

Garbage Collection

…

Request of
prioritized
object

Service
request

Service
request

Waiting…

Preemption

Valid page copies (RW) Erase op. (E) Valid page copies (RW) Erase op. (E)

16/18

QoS Support for Prioritized Objects

• Background: 4 threaded write benchmark
• Foreground (high priority): write 2MB files

• OFS (prioritized) is
finished in 164s

• EXT4 (prioritized) is
finished in 230s

17/18

Conclusion
• We present the design and prototype implementation

of the object-based SSDs.

• Benefits of OSSDs
– Object-aware data placement
– Hot/cold data separation
– QoS support for prioritized objects

• Future work

– Ensure metadata reliability (journaling)
– Find other scenarios to show the benefits of OSSDs

18/18

Thank you!

Q&A

BACKUP SLIDE

20

Inside of SSD

CPUs

DRAM

Host
I/F

Controller

SRAM

NAND Flash Memory
 3x 2x 1x nm
 SLC MLC TLC
 Endurance: 10K 3K 1K
 ONFI, Toggle NAND

Flash Controllers
 Interleaving (Channels, Ways)
 ECC (RS, BCH, LDPC)

DRAM
 SDRAM: DDR2 DDR3
 256MB 512MB 1GB
 Data buffer
 Mapping table

Embedded CPUs
 Multiple cores: 1 2 3
 Flash Translation Layer (FTL)

Host Interface
 SATA
 SAS
 PCIe

SSD
Controller

21/18

Benefits of Object-based SSDs (OSSDs)

• Simplified host file system
– Space management in OSSDs

• Utilizing liveness information
– No valid copies for deleted data

• Metadata management
– GC performance improvement by metadata separation

• Object-aware data placement
– Fragmentation reduction of object data

• Hot/cold data separation
– GC performance improvement

• QoS support for prioritized objects
– Special services for prioritized objects

22/18

Object-based Solid State Drives (OSSDs)

Object-based file system

Object-aware I/O scheduler

Object management

NAND flash management

NAND flash

VFS
Host

OSSD
OSSD firmware

Object-based interface

Application

23/18

Host

• Object-based File System (OFS)
– Based on EXOFS
– One file one object

• Object-aware I/O Scheduler (OAQ)
– Replaces page collector of EXOFS
– Merges requests and supports priority on a object basis

EXOFS

Page collector

File system user
component

OFS

File system user
component

Object-aware I/O scheduler

24/18

Implementation
• OFS

– Based on the EXOFS
• OAQ

– Merges requests by object basis
using hash function

– Supports priority using multiple
queues

• OML
– Uses μ-Tree [EMSOFT 2007] for

object data and attributes mapping
• FML

– Allocates space by data properties
– Services for prioritized objects by

garbage collection preemption

46

7

7

OID - Context
Hash

Q n

Q 1

Q 0

16 : 8

Priority Queue

oid = 7

oid = 46

I / O
Context

Object I / O instances

W

W

C OAQ

Allocation
Bitmap

FML

OML

Descriptor Buffer

Attributes Data

μ-Tree

Object Data Buffer

25/18

Legacy Support

I/O Scheduler (CFQ)

EXT4

VFS

iSCSI Initiator

Host

iSCSI Interface TCP 1Gbps

iSCSI Target Daemon

sFTL

FAL

Target

RawSSD

READ/WRITE/ERASE SATA-2

• Simple page mapping
• The same policies for GC

Journaling traffic to DRAM

26/18

Base Performance

• Sequential accesses

Update block bitmap

27/18

Object-aware Data Placement

• Micro benchmark
– Multi-threaded write

28/18

QoS Support for Prioritized Objects

• Background: 4 threaded write benchmark
• READ (high priority): Playing a music video

29/18

File System Benchmarks

• Postmark, Postmark w/o create, Filebench (4 threaded write
& delete)

• Aging: hot/cold benchmarks

Read-modify-write overhead
for directory updates
by create operations

30/18

	OSSD: A Case for Object-based Solid State Drives
	SSD
	Inside of SSDs
	Block Interface
	Object-based Storage Device (OSD)
	Related Work
	Object-based SSDs (OSSDs)
	Overall Architecture
	Host
	Target
	Benefits of OSSDs
	Object-aware Data Placement
	Object-aware Data Placement
	Hot/Cold Data Separation
	Hot/Cold Data Separation
	QoS Support for Prioritized Objects
	QoS Support for Prioritized Objects
	Conclusion
	Slide Number 19
	Backup Slide
	Inside of SSD
	Benefits of Object-based SSDs (OSSDs)
	Object-based Solid State Drives (OSSDs)
	Host
	Implementation
	Legacy Support
	Base Performance
	Object-aware Data Placement
	QoS Support for Prioritized Objects
	File System Benchmarks

