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Motivation 

 Large-scale distributed storage systems are 
widely used in enterprises (e.g., GFS, Azure)  

 Data is distributed in a number of storage nodes 

 Node failures are prevalent  data availability is 
critical 
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Erasure Codes 
 Solution: add redundancy via erasure codes 

 Example: (6, 3)-Reed-Solomon code 
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s0 Original data size: M 
Recovery bandwidth: M 

 How to recover lost data?  
• Recovery bandwidth: amount of data downloaded from surviving 

nodes for recovery 
• Conventional approach reconstructs all original data to obtain lost 

data  High recovery bandwidth 3 



Regenerating Codes 
 Minimize recovery bandwidth for a single node failure  

• Enc step: Every surviving node generates an encoded symbol 
• Rec step: The newcomer reconstructs the lost data with the 

encoded symbols 
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Original data size: M 
Recovery bandwidth: 5M/9 

[Dimakis, ToIT’10] 



Concurrent Node Failures 
Regenerating codes only designed for recovering 

a single node failure 

Correlated and co-occurring node failures are 
possible in practice:  
• In clustered storage systems [Schroeder, FAST’07; Ford, OSDI’10] 

• In dispersed storage systems [Chun NSDI’06; Shah NSDI’06] 

Can we generalize existing regenerating codes to 
minimize recovery bandwidth for both single and 
concurrent failures? 
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Related Work 

Cooperative recovery [Hu, JSAC’10; Kermarrec, NetCod’11] 

• Newcomers cooperate to reconstruct the lost data for 
multiple node failures 

• Implementation complexities unknown 

Minimizing recovery I/O [Khan, FAST’12; Huang, ATC’12] 

• Minimize the amount of disk read for single node 
failure recovery 

• Our work builds on regenerating codes that minimize 
recovery bandwidth 
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Our Work 

Build CORE, which augments existing 
optimized regenerating codes to support both 
single and concurrent failure recovery  
• Achieves minimum recovery bandwidth for 

concurrent failures in most cases 
• Retains existing optimal regenerating code 

constructions  

 Implement CORE and evaluate our prototype 
atop a HDFS cluster testbed with up to 20 
storage nodes  
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Main Idea 
Consider a system with n nodes 

Regenerating codes for single failure recovery: 
• Download one encoded symbol from each of n-1 

surviving nodes 

CORE’s idea for t-failure recovery (t > 1): 
• Treat t-1 failed nodes as logical surviving nodes 
• Reconstruct “virtual” symbols generated by the logical 

surviving nodes 
• Download real symbols from n-t surviving nodes 
• Reconstruct lost data of the remaining failed node 
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Example 

s0,0, s0,1, s0,2 = Rec0(e1,0, e2,0, e3,0, e4,0, e5,0) 
e0,1 = Enc0,1(s0,0, s0,1, s0,2) 
       = Enc0,1(Rec0(e1,0, e2,0, e3,0, e4,0, e5,0)) 

s1,0, s1,1, s1,2 = Rec1(e0,1, e2,1, e3,1, e4,1, e5,1) 
e1,0 = Enc1,0(s1,0, s1,1, s1,2) 
       = Enc1,0(Rec1(e0,1, e2,1, e3,1, e4,1, e5,1)) 
 

Relayer 
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Example 
We have two equations 
     e0,1 = Enc0,1(Rec0(e1,0, e2,0, e3,0, e4,0, e5,0))     

     e1,0 = Enc1,0(Rec1(e0,1, e2,1, e3,1, e4,1, e5,1)) 

 Trick: They form a linear system of equations 

 If the equations are linearly independent, we 
can calculate e0,1 and e1,0  

Then we obtain lost data by 
s0,0, s0,1, s0,2 = Rec0(e1,0, e2,0, e3,0, e4,0, e5,0) 
s1,0, s1,1, s1,2 = Rec1(e0,1, e2,1, e3,1, e4,1, e5,1) 
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Bad Failure Pattern 

A system of equations may not have a unique 
solution. We call this a bad failure pattern  

Bad failure patterns count for less than ~1% 

Our idea: reconstruct data by adding one 
more node to bypass the bad failure pattern 
• Suppose nodes 0,1 form a bad failure pattern and 

nodes 0,1,2 form a good failure pattern. 
Reconstruct lost data for nodes 0,1,2 

• Still achieve bandwidth saving over conventional  
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Bandwidth Saving 
 Bandwidth Ratio: Ratio of CORE to conventional in 

recovery bandwidth 
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 Bandwidth saving of CORE is significant 
• e.g., (20,10) 
• Single failure: ~80% 
• 2-4 concurrent failures: 36-64% 12 



Theorem 

Theorem: CORE, which builds on regenerating 
codes for single failure recovery, achieves the 
lower bound of recovery bandwidth if we recover 
a good failure pattern with t ≥ 1 failed nodes 
• Over ~99% of failure patterns are good 

Proof in technical report 
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Experiments 
 CORE built on HDFS 

 Testbed: 
• 1 namenode, and up to 20 datanodes 
• Quad core 3.1GHz CPU, 8GB RAM, 7200RPM SATA harddisk, 

1Gbps Ethernet 
 
 

 

 Coding schemes:  
• Reed-Solomon codes vs. CORE (interference alignment codes)  

 Metric: 
• Recovery throughput: lost data size / recovery time 
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Recovery Throughput 

CORE shows significantly higher throughput 
• e.g., in (20, 10), for single failure, the gain is 3.45x; 

for two failures, it’s 2.33x; for three failures, is 1.75x 
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Conclusions 
Build CORE to augment regenerating codes for 

concurrent failure recovery  
• Achieve minimum recovery bandwidth for most cases 

 Implement CORE and integrate with HDFS 

Show via testbed experiments that CORE 
achieves higher recovery throughput over 
conventional recovery 

Source code of CORE is available at: 
• http://ansrlab.cse.cuhk.edu.hk/software/core/ 
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