
1

CORE: Augmenting Regenerating-Coding-
Based Recovery for Single and Concurrent

Failures in Distributed Storage Systems

Runhui Li, Jian Lin, Patrick P. C. Lee

The Chinese University of Hong Kong

MSST’13

Motivation

 Large-scale distributed storage systems are
widely used in enterprises (e.g., GFS, Azure)

 Data is distributed in a number of storage nodes

 Node failures are prevalent  data availability is
critical

Data s0 Data s1 Data s2 Data s3 Data s4 Data s5

2

Erasure Codes
 Solution: add redundancy via erasure codes

 Example: (6, 3)-Reed-Solomon code

s0 s1 s2 s3 s4 s5

s1

s2

s3

s0 Original data size: M
Recovery bandwidth: M

 How to recover lost data?
• Recovery bandwidth: amount of data downloaded from surviving

nodes for recovery
• Conventional approach reconstructs all original data to obtain lost

data  High recovery bandwidth 3

Regenerating Codes
 Minimize recovery bandwidth for a single node failure

• Enc step: Every surviving node generates an encoded symbol
• Rec step: The newcomer reconstructs the lost data with the

encoded symbols

4

S0,0 S0,1 S0,2

S1,0 S1,1 S1,2

S2,0 S2,1 S2,2

S3,0 S3,1 S3,2

S4,0 S4,1 S4,2

S5,0 S5,1 S5,2

S0,0 S0,1 S0,2

e4,0

e3,0

e2,0

e1,0

e5,0

Enc1,0()

Enc2,0()
Enc3,0()
Enc4,0()

Enc5,0()

Rec0()

Enc Step Rec Step

Original data size: M
Recovery bandwidth: 5M/9

[Dimakis, ToIT’10]

Concurrent Node Failures
Regenerating codes only designed for recovering

a single node failure

Correlated and co-occurring node failures are
possible in practice:
• In clustered storage systems [Schroeder, FAST’07; Ford, OSDI’10]

• In dispersed storage systems [Chun NSDI’06; Shah NSDI’06]

Can we generalize existing regenerating codes to
minimize recovery bandwidth for both single and
concurrent failures?

5

Related Work

Cooperative recovery [Hu, JSAC’10; Kermarrec, NetCod’11]

• Newcomers cooperate to reconstruct the lost data for
multiple node failures

• Implementation complexities unknown

Minimizing recovery I/O [Khan, FAST’12; Huang, ATC’12]

• Minimize the amount of disk read for single node
failure recovery

• Our work builds on regenerating codes that minimize
recovery bandwidth

6

Our Work

Build CORE, which augments existing
optimized regenerating codes to support both
single and concurrent failure recovery
• Achieves minimum recovery bandwidth for

concurrent failures in most cases
• Retains existing optimal regenerating code

constructions

 Implement CORE and evaluate our prototype
atop a HDFS cluster testbed with up to 20
storage nodes

7

Main Idea
Consider a system with n nodes

Regenerating codes for single failure recovery:
• Download one encoded symbol from each of n-1

surviving nodes

CORE’s idea for t-failure recovery (t > 1):
• Treat t-1 failed nodes as logical surviving nodes
• Reconstruct “virtual” symbols generated by the logical

surviving nodes
• Download real symbols from n-t surviving nodes
• Reconstruct lost data of the remaining failed node

8

Example

s0,0, s0,1, s0,2 = Rec0(e1,0, e2,0, e3,0, e4,0, e5,0)
e0,1 = Enc0,1(s0,0, s0,1, s0,2)
 = Enc0,1(Rec0(e1,0, e2,0, e3,0, e4,0, e5,0))

s1,0, s1,1, s1,2 = Rec1(e0,1, e2,1, e3,1, e4,1, e5,1)
e1,0 = Enc1,0(s1,0, s1,1, s1,2)
 = Enc1,0(Rec1(e0,1, e2,1, e3,1, e4,1, e5,1))

Relayer

S0,0 S0,1 S0,2

S1,0 S1,1 S1,2

S2,0 S2,1 S2,2 S3,0 S3,1 S3,2 S4,0 S4,1 S4,2

S5,0 S5,1 S5,2

e0,1

e2,1
e3,1 e4,1

e5,1
e1,0

e2,0
e3,0 e4,0

e5,0

9

Example
We have two equations
 e0,1 = Enc0,1(Rec0(e1,0, e2,0, e3,0, e4,0, e5,0))

 e1,0 = Enc1,0(Rec1(e0,1, e2,1, e3,1, e4,1, e5,1))

 Trick: They form a linear system of equations

 If the equations are linearly independent, we
can calculate e0,1 and e1,0

Then we obtain lost data by
s0,0, s0,1, s0,2 = Rec0(e1,0, e2,0, e3,0, e4,0, e5,0)
s1,0, s1,1, s1,2 = Rec1(e0,1, e2,1, e3,1, e4,1, e5,1)

10

Bad Failure Pattern

A system of equations may not have a unique
solution. We call this a bad failure pattern

Bad failure patterns count for less than ~1%

Our idea: reconstruct data by adding one
more node to bypass the bad failure pattern
• Suppose nodes 0,1 form a bad failure pattern and

nodes 0,1,2 form a good failure pattern.
Reconstruct lost data for nodes 0,1,2

• Still achieve bandwidth saving over conventional

11

Bandwidth Saving
 Bandwidth Ratio: Ratio of CORE to conventional in

recovery bandwidth

0

0.5

1

1 2 3 4 5 6 7 8 9 10

B
an

dw
id

th
 R

at
io

Good Failure Pattern

(12,6) (16,8) (20,10)

0

0.5

1

2 3 4 5 6 7 8 9
B

an
dw

id
th

 R
at

io
 Bad Failure Pattern

(12,6) (16,8) (20,10)

 Bandwidth saving of CORE is significant
• e.g., (20,10)
• Single failure: ~80%
• 2-4 concurrent failures: 36-64% 12

Theorem

Theorem: CORE, which builds on regenerating
codes for single failure recovery, achieves the
lower bound of recovery bandwidth if we recover
a good failure pattern with t ≥ 1 failed nodes
• Over ~99% of failure patterns are good

Proof in technical report

13

Experiments
 CORE built on HDFS

 Testbed:
• 1 namenode, and up to 20 datanodes
• Quad core 3.1GHz CPU, 8GB RAM, 7200RPM SATA harddisk,

1Gbps Ethernet

 Coding schemes:
• Reed-Solomon codes vs. CORE (interference alignment codes)

 Metric:
• Recovery throughput: lost data size / recovery time

14

Namenode Datanode Datanode Datanode

Recovery Throughput

CORE shows significantly higher throughput
• e.g., in (20, 10), for single failure, the gain is 3.45x;

for two failures, it’s 2.33x; for three failures, is 1.75x

0

10

20

30

40

50

60

70

(12, 6) (16, 8) (20, 10)

R
ec

ov
er

y
th

pt
 (M

B
/s

)

CORE t=1
RS t=1
CORE t=2
RS t=2
CORE t=3
RS t=3

15

Conclusions
Build CORE to augment regenerating codes for

concurrent failure recovery
• Achieve minimum recovery bandwidth for most cases

 Implement CORE and integrate with HDFS

Show via testbed experiments that CORE
achieves higher recovery throughput over
conventional recovery

Source code of CORE is available at:
• http://ansrlab.cse.cuhk.edu.hk/software/core/

16

http://ansrlab.cse.cuhk.edu.hk/software/core/�

	CORE: Augmenting Regenerating-Coding-Based Recovery for Single and Concurrent Failures in Distributed Storage Systems
	Motivation
	Erasure Codes
	Regenerating Codes
	Concurrent Node Failures
	Related Work
	Our Work
	Main Idea
	Example
	Example
	Bad Failure Pattern
	Bandwidth Saving
	Theorem
	Experiments
	Recovery Throughput
	Conclusions

