Proteus: A Flexible
Simulation Tool for
Estimating Data Loss
Risks in Disk Arrays

Hsu-Wan Kao, U. of Houston

Jehan-François Pâris, U. of Houston

Thomas Schwarz, U. Católica del Uruguay

Darrell D. E. Long, U. of California, Santa Cruz

The problem

- Estimating risks of data loss for fault-tolerant disk arrays is not an easy task
- Two options
 - Analytical methods
 - Simulation approach

Analytical Methods

- Based on Markov models
- Requirements:
 - ☐ Failures to be Poisson processes
 - Reasonable but not necessarily true
 - ☐ Repairs to be Poisson processes
 - Not true

Simulation Approach

- Can simulate almost anything
- Only produces numerical results
 - Must repeat simulation for each parameter value (MMTF, MTTR, ...)
- Must write a different program for each disk array configuration
 - ☐ Takes time and effort

The Proteus Simulation Program

Proteus

■ Flexible

□ Program can model very different disk array configurations

Fast

□ Very simple model that runs fast

Portable

☐ Written in Python 3.x

The secret

- Proteus characterizes any disk array configuration using only five parameters
 - Express which fraction of
 - Single,
 - Double,
 - Triple,
 - **...**

disk failures will result in a data loss

The five parameters

- The number *n* of disks the array comprises
- The number n_f of failures it will **alway**s tolerate
- The fraction f_1 of failures of n_f + 1 disks it will tolerate
- The fraction f_2 of failures of n_f + 2 disks it will tolerate
- The fraction f_3 of failures of n_f + 3 disks it will tolerate

A very simple example

- RAID level 5 arrays tolerate
 - ☐ All single disk failures
 - No double failures
- Array parameters are

$$\square$$
 $n = 5$, $n_f = 1$, $f_1 = f_2 = f_3 = 0$

Another simple example

- RAID level 6 arrays tolerate
 - ☐ All single and double disk failures
 - No triple disk failures
- Array parameters are

$$\square$$
 $n = 5$, $n_f = 2$, $f_1 = f_2 = f_3 = 0$

M

Something more complicated: A two-dimensional RAID array

Tolerates all double disk failures

A triple failure causing a data loss

One data disk and its two parity disks

Fatal triple failures

Array has n^2 data disks and 2n parity disks

Only
$$n^2$$
 of all $\binom{n^2+2n}{4}$ possible quadruple

failures result in a data loss

We have $n_f = 2$ and $f_1 = 1 - \frac{n^2}{\binom{n^2 + 2n}{4}}$

Quadruple and quintuple failures

- Can redo same analysis to compute fraction of quadruple failure that do not result in a data loss
 - More complicated
 - \square Outcome is value of f_2
- Assumed $f_3 = 0$
 - Would not make a difference

Limitation

- Assumes we can neglect contributions of array states with more than $n_f + 3$ simultaneous disk failures to array reliability
- Good assumption for small to medium-size disk arrays
- Not always true for very large disk arrays

Experimental Results

Scope

- Simulated
 - □RAID level 5 array with 5 disks
 - □RAID level 6 array with 10 disks
 - □Two dimensional RAID array with 64 data disks and 16 parity disks
- Disk mean time to fail was set to 100,000 hours
- Disk mean time to repair varied between ½ day and ten days

Outcomes

- Measured probability each disk array would suffer no data loss over five years
- Observed
 - Perfect agreement with analytical results obtained using Markov chains
 - No difference between results obtained assuming
 - Exponential repair times
 - Deterministic repair times

Conclusions

Conclusions

- Proteus allows us to estimate reliability of many disk array organizations
 - Without having to write a new simulation program
 - □ Without having to assume that failures and repairs are Poisson processes
 - Can use Weibull distribution for failures
 - Can use deterministic repair times

Availability

- Proteus is free and can be downloaded from
 - □ www.cs.uh.edu/~paris/Proteus
 - □ http://www.ssrc.ucsc.edu/proteus.html

Thank you!

Any questions?