
THE 1000X RULE: 
SCALABILITY DESIGN AT INTERNET SCALE 

Justin Stottlemyer - Fellow, Storage 
Architecture Shutterfly  



Who am I 

• Fellow, Storage Architecture        –  Shutterfly  2010 
• Technical Advisory Board  –  MaxiScale  2008 
• Senior Manager Architecture  –  Rearden Commerce 
• Infrastructure Architect  –  eBay  
• Sr Operations Engineer  –  Facebook   2005 
• Principal Engineer    –  Paypal 
• Infrastructure Architect   –  eBay / Paypal 
• Principal Engineer    –  eBay  

 2000  
 
 
 



Why is designing for scale difficult ? 
• First one there 
• Lack of experience 
• Experience can lead you astray 
• Lack of Multi-Discipline Expertise  
• No Functional Cross Team Communication 
• Real world VS Lab Conditions 

1. Everything works in the Lab. 
2. Everything breaks in the real world. 
 



Obstacles to Scalable Design 
• Perception: It’s difficult to imagine scalable systems as a 

whole. 
• Reality:  
• Breaking systems down to their separate components allows you to 

see where each will break as you scale it. 
 

• Perception: Transitioning to a new technology is risky 
• Reality:  
• With the right architecture, you can minimize risks 
•  Doing nothing guaranties failure. 

 
 



Why not 10X or 100X 
• Typical 10X thinking can leave you with an existing design 

10 times larger than your current one with the same cost 
and architectural issues. 
 

• 100X May not expose enough issues or scale for long 
enough. 
 

•  It takes time, effort, money to design/build/implement a 
new architecture, so it should last you longer than it takes 
to implement. 
 
 



Why design for 1000x  ? 

0 

200 

400 

600 

800 

1000 

1200 

2004 2005 2006 2007 2008 2009 2010 2011 2012 

Users (Millions) 

Users (Millions) 



Why design for 1000x  ? 

0 

5000 

10000 

15000 

20000 

25000 

30000 

35000 
Data TB 

Data TB 



Storage is Central to Shutterfly‘s 
Business Model 
• The Shutterfly promise: Free UNLIMITED online photo 

storage – FOREVER 
• Shutterfly’s storage situation in 2009: 

• 19 petabytes and rapidly growing 
• Growing image sizes 

 



Keys to Successful Design  
• Typically people only look at one or two 
dimensions, then decide between a handful of 
well known vendors. 

• In other words $/IOP(S) and $/Gb are not the only 
two things to think about. 

• Storage (and Application) Architecture should be 
taken into consideration from an end to end 
approach. 

• Solve your problem(s)  
• Design for the system to run broken (Fail in 
Place). 



Why Move Away from RAID? 
• RAID stops scaling at the Multi-Petabyte level 

• Unsustainable rebuild/recovery times 
• As drive sizes become larger, time to get back to fully redundant system 

increases  
• With 2,3 and 4 TB drives, time to generate parity grew from days to weeks 

• Availability / Integrity issues 
• Bad user experience/site downtime = revenue loss 
• Does it scale?  For how long? Can you account for 5T Drives? 8T? 10T? 
• System Admins constantly firefighting 
• Poor internal perception of Storage team 

• Asked to drastically lower costs by 66% 
• Already managing 19 PB with 3 System Admins 
• Already had industry leading pricing with multiple vendors 

 



Data Resilience At Scale  
• Object Store && Distributed Erasure Coding 

 Cons: 
1.  Increased Latency (first byte)   
2.  Increased Metadata reliance. (In theory)  
3.  Conversion from Legacy Systems 
 Pros: Unparalleled  
1. Data reliability   ( bytes out = bytes in ) 
2. Data availability   ( Uptime )  
3. Data resiliency     ( Protection from Data Loss )  
• All done with less hardware 
  

• Checksums at every level 
• Application Level ; Scatter Gather Layer ; Local Storage Node ; 

Disk Layer  



Storage Design Considerations 
• How does the application use the storage? How does the user  use 

the application? 
• Large block?  Small block?  Random?  Sequential? Super 

Compute?  B2B? B2C?  Peaky traffic?  Weekly, Monthly, Seasonal 
patterns?  Transactional?  

• Data Integrity Model 
• Does it scale?  For how long? Can you account for 8T drives? 10T? 

• Reliability / Availability / Resiliency Model 
• Can you upgrade in place with 0 downtime?  
• How long before you lose data? (MTDDL) 
 

 



Architecture Design Considerations 
• Stability 
• Performance 
• Scalability 
• Modularity 
• Sharding Model ( Scale Up/Out ) 
• Failure Domain 
• Maintainability 
• Implementation  

 
 



Performance Considerations 
• Data locality (Application, Disk, Memory, Switch) 
• Caching ( Application, Disk, Directory, OS, Web)  
• Avoid Double buffering  
• Performance when degraded 
• Be Asynchronous 
• Be Atomic when needed 
• End to End Design 
• Measure Bottlenecks 
• Be efficient at every level 

 
 



Implementing Scalable Storage 
1. Implement new architecture to take advantage of 

storage technology innovations (including object 
storage) with long term scalability 

2. Update metadata system to support object store 
3. Guarantee metadata consistency  
4. Complete application integration and testing 



Old Architecture 

Normal Operation. 
 
Writes would occur  
in parallel writing to  
two Silos  

Write #1 Write #2 

X A failure writing to 
either silo results in an 
error to the user 



New Architecture 
Write to traditional  
Archive quality DB 

Metadata 

Temporary 
tertiary dataset  
to allow risk 
free testing. 
  

Write to K of N  
storage silos 

Retain previously 
detailed recovery  
mechanism 

Metadata 

Write to high  
speed in memory DB 



Object Storage Workflow 

Subscribers 

Upload Photos 

Web Servers 

Databases 

VAULT 1 

Manager 

Access Layer 

Load 
Balancer 

VAULT 2 

VAULT 3 

VAULT 4 

Metadata 

HTTP/REST 
Object ID 

Storage Node 

Storage Node 

Storage Node 

Storage Node 



EOL Old Gear  &  Data moves 
• How to EOL old equipment? 

• Relying  on Vendor Strategy 
• Drop in newer replacement gear or drives (let it heal) 
• Home Grown 

 
• How to move mass amounts of Data. 
• Mass parallelism 
• Consistency  Checkpoints 
• Sharding Strategy  

 
• Kodak Data migration in 82 days 
• 5.5 Billion images 
• 8.8 PB  

 



Results of Transition to Object Storage 
• Object storage system has been in full production for 

more than two years 
• Primary archive for more than 18 billion images– over 80PB and 

growing  
• No system downtime or data loss despite upgrading, 

extending and physically moving the system. 
• Storage costs reduced by more than 60% 
• Future-proof storage that can easily scale to exabytes 

 



Key Takeaways 
• Migrating architectures from traditional systems is doable. 

 
• Plan for scale, fail in place, and resilience.  

 
• Planning for Flexibility in the application architecture 

allows you to test and implement new technology with 
little to no risk. 
 

• Take big risks intelligently. 
 

• Designing a system for 1000X scalability doesn’t mean 
you need to buy it or build it all today. 
 
 


	The 1000x RULE: scalability Design at Internet Scale
	Who am I
	Why is designing for scale difficult ?
	Obstacles to Scalable Design
	Why not 10X or 100X
	Why design for 1000x  ?
	Why design for 1000x  ?
	Storage is Central to Shutterfly‘s Business Model
	Keys to Successful Design 
	Why Move Away from RAID?
	Data Resilience At Scale 
	Storage Design Considerations
	Architecture Design Considerations
	Performance Considerations
	Implementing Scalable Storage
	Old Architecture
	New Architecture
	Object Storage Workflow
	EOL Old Gear  &  Data moves
	Results of Transition to Object Storage
	Key Takeaways

