Go further, faster®

Paragone: What's next in block I/O trace modeling

Rukma Talwadker, Kaladhar Voruganti Advanced Technology Group, NetApp May 9th, 2013

Timestamp	I/O Size	Offset	Operation
128166465299039000	4096	239070	Read
128166465299119000	8192	182082715136	Write
128166465299134000	16384	3154148864	Read

- 1. In most cases no two I/O's are identical
- 2. Variability exercises performance/behavioral variations on the storage systems.
- 3. Traces are widely used to study system behaviors for better designs.
- 4. Traces are difficult to store/share and manipulate.
- 5. Building trace based statistical models is being increasing focused on in the storage research community.

Challenges

Model should be concise yet lossless

Why is trace modeling hard

- 1. I/O attributes vary per I/O. Averages are not good representatives.
- Trace model needs to be revived over time. Attributed to change in application phases, multi-tenancy levels etc.
- 3. I/O parameters are not independent but are correlated and coupled with each other.
- 4. Ordering of I/O's is crucial.
- 5. Many I/O attributes to model. Dimensionality reduction is necessary.

- 1. I/O sequential length preservation
 - Cannot model variable sequential lengths
 - Cannot model number of blocks to seek
- 2. I/O burst modeling
 - Interleaved high and low activity periods
 - Variable timing of requests during bursty and non-bursty intervals

- 3. Scaling workloads
 - Assumes workloads to be self similar
 - Scales by physically creating multiple datasets.

We combine known techniques in a novel way to build Paragone

W	orkload Type	duration	Trace size	Model size	% size reduction
1.	MSR Project Directory	2 Weeks	1.6 GB	21 MB	98%
2.	MSR Webserver	2 Weeks	276 MB	10 MB	96%
3.	UMASS - Financial	12 Hours	155 MB	8 MB	95%
4.	Oil workload	20 Hours	137 MB	6.3 MB	95%
5.	Oil workload	1 Week	256 MB	8.1 MB	97%
6.	Animation workload	20 Hours	201 MB	7.2 MB	96%
7.	Animation workload	1 Week	197 MB	5 MB	97%
8.	Hadoop workload	40 Hours	387 MB	9.7 MB	97%
9.	Support logs workload	1.3 Weeks	256 MB	7.9 MB	96%

CDF errors for UMASS Finance workload

Without Clustering+Epdf Paragone Over 95% accuracy 24 24 in the CDF figures 15 14 13 12 10 9 5 4 4 3 3 3 3 3 2 Seq. Total Read write Total Disk Read write Working latency Read-ahead writes latency reads latency I/O size Set size I/O size

© 2013 NetApp, Inc. All rights reserved. 29th IEEE Conference on Mass Storage Systems and Technologies (MSST)

