#### A Lightweight I/O Scheme to Facilitate Spatial and Temporal Queries of Scientific Data Analytics



**Presenter: Yuan Tian** 

tiany@ornl.gov



UNIVERSITY



**University of Tennessee/Auburn University** 

Zhuo Liu Bin Wang Weikuan Yu

**Auburn University** 

Tom Clune

NASA Goddard Space Flight Center

Shujia Zhou

Northrop Grumman Corporation



Scott Klasky Hasan Abbasi

**Oak Ridge National Laboratory** 

Jeremy Logan

**University of Tennessee** 



Managed by UT-Battelle for the Department of Energy

## Outline

- Motivation and background
- STAR Spatial and Temporal Aggregation I/O scheme
- Experimental results
- Conclusion







# Motivation and Background

- I/O performance of common scientific data access patterns is bottlenecked on HPC system
  - ~90% of execution time spent on I/O in extreme scale visualization<sup>[1]</sup>
- Small variables are difficult to optimize at scale
- Temporal and Spatial queries are commonly performed, yet poorly supported
- Challenges to be addressed:
  - How to reorganize scientific data storage to enable fast spatial and temporal queries?
  - How do we construct such an organization efficiently without degrading the write performance?



Rende



<sup>[1]</sup> H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. Weber, and E. Bethel. Extreme scaling of production visualization software on diverse architectures. Computer Graphics and Applications, IEEE, 30(3):22–31, may-june 2010.

#### Case Study of GEOS-5

- A system of models integrated using the Earth System Modeling Framework (ESMF) for earth system simulation from NASA
- History component output diagnosis data
- Two I/O methods: GrDAS and NetCDF/HDF5



## Legacy GEOS-5 I/O Structure

- Data characteristics: many variables, small sizes
  - Variable sizes range from 100KB to 300MB
- Each multidimensional variable is written out in 2D slice to maintain the logically contiguous data layout
  - 3D variable is written out in 2D hyperslabs
  - Loop through all the variables in turn

121314

5



**P3** 

1. Send to aggregato r process

2. Memory rearrangement at aggregator



## Issues with Legacy I/O Flow

- Requires significant n-m and m-1 communication
- Requires significant memory rearrangement
- Doesn't leverage parallel storage system
- Poor scalability
- Data organization is not optimized for common analysis patterns: spatial and temporal

Such issues are shared with many other applications







### **Research Targets**

- Deficiency of current aggregation techniques
  - Inter-node based: network overhead
  - Intra-node based: limited scope of aggregation
- Deficiency in supporting spatial data analytics
  - Common access patterns
  - Read in all of a single variable.
  - Read an arbitrary orthogonal subvolume
  - Read an arbitrary orthogonal full plane
- Deficiency in supporting temporal data analytics







# STAR - Spatial and Temporal AggRegation

- A lightweight I/O layer between application and storage system
- Dynamically construct data across both spatial and temporal dimensions into optimized chunks during output
  - Enable a fully parallelized and high performance I/O flow for scientific applications
  - Exploit the spatial and temporal relationships between variables to further consolidate data
  - Provide a data organization that facilitates the common access patterns of data post-processing
- It consists of two key algorithms:
  - Temporal Aggregation (TAR)
  - Spatial Aggregation (SAR)







#### Data Movement of STAR



See OA Ri Nation

# Temporal Aggregation (TAR)

- Temporal aggregation is to open up another horizon to further consolidate data
- Data of multiple time steps are buffered at each process
- Data is written out only at the last time step or reaches the boundary of memory capacity
- Benefits for writing:
  - Number of I/O requests decreases linearly with the degree of aggregation
  - No communication overhead incurred



#### **Temporal Aggregation for Reading**

- Number of read request is reduced linearly with the degree of aggregation
- Number of expensive seek operations is reduced for analytics on temporal dimension
- Less contention and interference at storage



## Spatial Aggregation (SAR)

- Chunking data layout leads to large number of small chunks for each variable at scale
  - Lots of seek and read requests are required
- Simply concatenating data chunks doesn't solve above issue
- Spatial Aggregation with hierarchical topology
  - Spatial locality of every data point is reserved
  - Writing: less writers, less contention at storage during output
  - Reading: improve read performance for common spatial access patterns



#### Implementation and Integration with GEOS-5

• STAR is implemented within Adaptable I/O System (ADIOS) I/O framework







## **Experiment Platform**

#### Jaguar Supercomputer at ORNL

- 18,688 compute nodes
- Each node contains one 16-core Opteron processor
- 32GB memory
- Lustre filesystem called Spider
- GEOS-5 employs 2-D domain decomposition
  - 7 bundles consists of 185 2-D variables and 80 3-D variables
  - Output resolution: 576\*361\*48 (half degree), and 1152\*761\*48 (quarter degree)
  - Total output size: 3.12GB (half), and 12.4GB (quarter) per time step
  - 30 time steps are generated

Data organization: NetCDF-4, Original ADIOS and STAR







## Planar Read for 1 Time Step



- Variables are generated with 4,096 processes
- 3 2-D slices are read out (k, j), (k, i) and (j, i)
- NC4 suffers from noncontiguous data on the slow dimensions
- Original ADIOS suffers from large amount of read requests



## Planar Read for 30 Time Steps



- 30 output files for NC4 and ADIOS, 1 file for STAR
- Variables (half-degree) are generated with 4,096 processes
- 3 2-D slices are read out from 30 time steps
- Both NC4 and ADIOS spends long open and close time
- Chunking-based data layout shows good performance in slow dimensions



# Planar Read for 30 Time Steps

- 2D planes
- 1 output file for all test cases, quarter degree simulation
- Only read time is shown
- NC4 suffers from noncontiguous data on the slow dimensions
- ADIOS suffers from small data chunks
- STAR achieves balanced and improved read performance



## Reading 1-D subset on 30 Time Steps

- A 1-D subset is read out across 30 time steps
- 1 output file for all data layouts
- 74x speedup to NC4 is achieved by STAR



#### Write Performance

- STAR improves both write performance and scalability
- 11x improvement to NC4 and 4x improvement to TAR









# Conclusion

- STAR is able to improve both write and read performance for GEOS-5 through is dynamic data organization strategies
- Temporal Aggregation opens up a new dimension to consolidate data
  - Larger data output is constructed for writing
  - Facilitates the data analytics on time dimension
- Spatial Aggregation further consolidates small data chunks
  - Number of I/O requests are reduced for both writing and reading
- Maximum of 11x speedup is achieved for writing, and 73x speedup is achieved for reading







# Sponsors of our research



























NETWORK DF EXPERTISE

# **Questions?**



