

inktank

Agenda

- •Introduction to Ceph and Inktank
- •Challenges of 21st Century Storage
- •Ceph Storage Clusters
- How Ceph Addresses these Challenges
- RBD and CephFS
- •Hands-on demo
- A&Q•

Hands-on Tutorial Prep

Download VM image

http://ceph.com/tutorial

tutorial.img.tar.gz (KVM/Qemu) tutorial.vdi.gz (Virtualbox, ...)

2GB RAM
Attach 4 additional disks (~8GB each)

inktank

- Distributed unified object, block and file storage platform
- Created by storage experts
- Open source
- •In the Linux Kernel
- Integrated into Cloud Platforms

- Company that provides professional services and support for Ceph
- Founded in 2011
- •Funded by DreamHost, Mark Shuttleworth, others
- •Employs core Ceph developers, including creator and maintainer

Ceph Unified Storage Platform

CEPH STORAGE CLUSTER

A reliable, easy to manage, next-generation distributed object store that provides storage of unstructured data for applications

The Challenges of 21st Century Storage

Performance: making it fast

- direct communication between clients and servers
- no proxies or redirectors
- stripe requests across multiple servers
- •large requests use the bandwidth of multiple servers
- •small requests use the IOPS of multiple servers
- good load distribution
- ensure that all servers are sharing the load
- •the key to this is intelligent capacity distribution
- don't make the clients pay for write replication
- •this cuts per client throughput in half (or worse)

Reliability: making it last

- data replication
- configurable, per-pool replication factors
- •automatic failure domain aware placement
- user-controlled persistence rules
- support for strong consistency models
- no Single Points of Failure
- configurable to withstand arbitrarily many failures
- robust "split-brain" protection
- rolling upgrades and live replacements
- prompt and automatic recovery from all failures
- recovery cannot wait for human intervention
- continued normal data access during recovery

Scalability: petabytes to exabytes

- Parallelism
- no single controlling or data-directing components
- •all work dynamically partitioned among parallel servers
- •effective work partitioning: no O(N) processes
- delegate much functionality to intelligent storage devices
- Independence
- each operations has a single well-known owner
- owner has complete responsibility for data integrity
- •client data updates do not require distributed services
- Self Managing
- easy expansion, upgrade and replacement
- automatic data re-replication after component failure
- •automatic data redistribution after component changes

The Ceph Storage Architecture

Ceph Object Storage Daemons

•Serve stored objects to clients

•OSD is primary for some objects
•Responsible for replication
•Responsible for coherency
•Responsible for re-balancing
•Responsible for recovery

- •OSD is secondary for some objects
- Under control of primary
- Capable of becoming primary
- Supports extended object classes
- Atomic transactions
- Synchronization and notifications
- Send computation to the data

CRUSH

Pseudo-random placement algorithm

- deterministic function of inputs
- clients can compute data location

Rule-based (per pool) configuration

- desired/required replica count
- affinity/distribution rules
- infrastructure topology
- •weighting for each device

Excellent data distribution

- declustered placement
- excellent data re-distribution
- migration proportional to change

M

- Distributed consensus (Paxos)
- arbiters of cluster state
- odd number required (quorum)
- Maintain/distribute cluster map
- map controls the CRUSH algorithm
- scalable gossip distribution protocol
- Authentication/key servers
- Monitors are not in the data path
- clients talk directly to OSDs

Ceph Storage Client Library

Ceph Software Layering

How Ceph Meets these Challenges

Striped Parallel Client Writes

Replication and Acknowledgement

Automatic Failure Detection

Distributed Recovery

Self Managing Storage

- Many common operations require data redistribution
- adding new storage nodes and volumes
- retiring old storage nodes and volumes
- changing replication and placement policies
- All are handled very similarly to the failure case
- new topology and rules are introduced through a monitor
- •a new cluster map announces the changes
- •OSDs use CRUSH to learn their new responsibilities
- primary OSDs drive the required data redistribution
- Any component can be replaced at any time
- •no single points of failure
- multiple failures can be handled (w/sufficient redundancy)
- •this (and protocol interoperability) enable rolling upgrades

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes

RADOS Gateway

REST-based object storage prox uses RADOS to store objects API supports buckets, accountin usage accounting for billing purposes compatible with S3, Swift APIs

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes

RADOS Block Device

storage of disk images in RADOS decouple VM from host images striped across entire cluster (pool) snapshots copy-on-write clones support in mainline Linux kernel (2.6.39+) Qemu/KVM, native Xen coming soon OpenStack, CloudStack, Nebula, ...

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes

three metadata servers

??

DYNAMIC SUBTREE PARTITIONING

Ceph: 21st Century Technology

- Performance
- direct, striped, parallel I/O
- •well distributed over a large cluster
- Reliability and Availability
- configurable replication and persistence policies
- •automatic failure-domain aware placement
- •no single points of failure
- prompt, fully automatic recovery from common failures
- Scalable
- no architectural bottle-necks
- maximum independence and parallelism
- efficient use of all available storage/processing
- •self-healing, self-balancing, self-managing

Hands-on tutorial

Hands-on Tutorial Prep

Download VM image

http://ceph.com/tutorial

tutorial.img.tar.gz (KVM/Qemu) tutorial.vdi.gz (Virtualbox, ...)

2GB RAM
Attach 4 additional disks (~8GB each)

Q&A

Thanks!

sage weil
sage@inktank.com
@liewegas

http://github.com/ceph

http://ceph.com/

