
Inktank
Ceph Distributed Object Storage

MSST Tutorial, May 6, 2013

Presenter
Presentation Notes
20121129

Agenda
Introduction to Ceph and Inktank

Challenges of 21st Century Storage

Ceph Storage Clusters

How Ceph Addresses these Challenges

RBD and CephFS

Hands-on demo

Q&A

Hands-on Tutorial Prep

Download VM image
http://ceph.com/tutorial

tutorial.img.tar.gz (KVM/Qemu)
tutorial.vdi.gz (Virtualbox, …)

2GB RAM
Attach 4 additional disks (~8GB each)

http://ceph.com/tutorial�

•Distributed unified object,
block and file storage
platform

•Created by storage experts

•Open source

•In the Linux Kernel

•Integrated into Cloud
Platforms

•Company that provides
professional services and support
for Ceph

•Founded in 2011

•Funded by DreamHost, Mark
Shuttleworth, others

•Employs core Ceph developers,
including creator and maintainer

OBJECTS VIRTUAL DISKS FILES & DIRECTORIES

CEPH
FILE SYSTEM

A distributed, scale-out
filesystem with POSIX

semantics that provides
storage for a legacy and

modern applications

Ceph Unified Storage Platform

CEPH
GATEWAY

A powerful S3- and Swift-
compatible gateway that
brings the power of the
Ceph Object Store to
modern applications

CEPH
BLOCK DEVICE

A distributed virtual block
device that delivers high-

performance, cost-effective
storage for virtual machines

and legacy applications

CEPH STORAGE CLUSTER

A reliable, easy to manage, next-generation distributed object
store that provides storage of unstructured data for applications

The Challenges of 21st Century
Storage

Performance: making it fast

• direct communication between clients and servers
•no proxies or redirectors

• stripe requests across multiple servers
•large requests – use the bandwidth of multiple servers
•small requests – use the IOPS of multiple servers

• good load distribution
•ensure that all servers are sharing the load
•the key to this is intelligent capacity distribution

• don’t make the clients pay for write replication
•this cuts per client throughput in half (or worse)

7

Reliability: making it last

• data replication
•configurable, per-pool replication factors
•automatic failure domain aware placement
•user-controlled persistence rules
•support for strong consistency models

• no Single Points of Failure
•configurable to withstand arbitrarily many failures
•robust “split-brain” protection
•rolling upgrades and live replacements

• prompt and automatic recovery from all failures
•recovery cannot wait for human intervention
•continued normal data access during recovery

 8

Scalability: petabytes to exabytes

• Parallelism
•no single controlling or data-directing components
•all work dynamically partitioned among parallel servers
•effective work partitioning: no O(N) processes
•delegate much functionality to intelligent storage devices

• Independence
•each operations has a single well-known owner
•owner has complete responsibility for data integrity
•client data updates do not require distributed services

• Self Managing
•easy expansion, upgrade and replacement
•automatic data re-replication after component failure
•automatic data redistribution after component changes

9

Presenter
Presentation Notes
example O(N): rebalancing time proportional to capacity
example O(N): topology update time proportional to number of nodes

The Ceph Storage Architecture

DISK

FS

DISK DISK

OSD

DISK DISK

OSD OSD OSD OSD

FS FS FS FS btrfs
xfs
ext4

M M M

Presenter
Presentation Notes
Let’s start with RADOS, Reliable Autonomic Distributed Object Storage.
In this example, you’ve got five disks in a computer. You have initialized each disk with a filesystem (btrfs is the right filesystem to use someday, but until it’s stable we recommend XFS). On each filesystem, you deploy a Ceph OSD (Object Storage Daemon). That computer, with its five disks and five object storage daemons, becomes a single node in a RADOS cluster. Alongside these nodes are monitor nodes, which keep track of the current state of the cluster and provide users with an entry point into the cluster (although they do not serve any data themselves).

Ceph Object Storage Daemons
Intelligent Storage Servers

•Serve stored objects to clients

•OSD is primary for some objects
•Responsible for replication
•Responsible for coherency
•Responsible for re-balancing
•Responsible for recovery

•OSD is secondary for some objects
•Under control of primary
•Capable of becoming primary

•Supports extended object classes
•Atomic transactions
•Synchronization and notifications
•Send computation to the data

13

Pseudo-random placement algorithm
•deterministic function of inputs
•clients can compute data location

Rule-based (per pool) configuration
•desired/required replica count
•affinity/distribution rules
•infrastructure topology
•weighting for each device

Excellent data distribution
•declustered placement
•excellent data re-distribution
•migration proportional to change

CRUSH

Presenter
Presentation Notes
CRUSH rules are defined per storage pool. We can define different pools based on reliability, performance, or price considerations.

But instead of assigning particular devices to particular types of data, CRUSH is configured with the physical topology of your storage network. You tell it how many buildings, rooms, shelves, racks, and nodes you have, and you tell it how you want data placed. For example, you could tell CRUSH that it’s okay to have two replicas in the same building, but not on the same power circuit. You can say that some types of data should be placed on fast devices, and some on slower devices. You can say that some data needs only one copy, while other data should have four copies and must (at all times) have no fewer than two.

CRUSH will then automatically determine placements for all objects in the system that exploit all currently available storage in ways that are consistent with those rules.

14

CLIENT

??

Presenter
Presentation Notes
When it comes time to store an object in the cluster (or retrieve one), the client calculates where it belongs.
The CRUSH algorithm takes as inputs:
 a placement group number (which we compute from the pool and object ID)
 a set of CRUSH rules (for the pool in question)
 a current topology map (of which OSDs are available)
and it returns a list of OSDs (primary, second copy, third copy …)

Note the declustered placement:
 the green and maroon boxes are both stored on the same node (at the top left)
 but their second copies are stored on different nodes (bottom center and bottom right)

This enables many-to-many recovery (discussed in another presentation) which
 can be more than 100x faster than traditional mirroring
 dramatically reduces our exposure to data loss due to secondary failures

15

 Stewards of the Cluster

•Distributed consensus (Paxos)
•arbiters of cluster state
•odd number required (quorum)

•Maintain/distribute cluster map
•map controls the CRUSH algorithm
•scalable gossip distribution protocol

•Authentication/key servers

•Monitors are not in the data path
•clients talk directly to OSDs

Ceph Monitors

M

Presenter
Presentation Notes
CRUSH requires as inputs, a set of placement rules, and a cluster map
there must be unanimous agreement about these … or different people will compute different locations for data.

Node status changes and cluster configuration changes are reported to a monitor node.
The monitors will use the PAXOS protocol to ensure consensus on all of these changes.
The new cluster maps are very quickly and efficiently distributed through a “proactive gossip protocol”
 … where the first thing any node ever says to another involves a map-epoch exchange
 This disseminates maps very quickly (in logN time) while imposing negligible load on the monitor nodes.

The monitor exchanges require a quorum (hence the requirement of an odd number of monitors) and
this provides absolute protection against split-brain.

16

M

M

M

Ceph Storage Client Library

LIBRADOS

client application

native access protocol

Presenter
Presentation Notes
Native Ceph Storage clients can directly exploit all of the capabilities of a Ceph Storage cluster through the libRADOS APIs,
(which are available in C, C++, Python, Java, and PHP).
This library provides functions for:
 establishing and maintaining the connection between a client and a Ceph Storage Cluster
 doing asynchronous parallel I/O to objects in the Ceph Storage Cluster
 exploiting the extended processing capabilities of the RADOS Object Storage Daemons
This library encapsulates all understanding of CRUSH and cluster maps, so that clients don’t have to deal with these.

Some Ceph users write their applications directly to the libRADOS interfaces for performance and power, but
Most access comes through one of more traditional client interfaces that we provide.

17

Ceph Software Layering

RESTful
client

RADOS
a reliable, autonomous, distributed object store

LIBRADOS

a client library
for direct access
of data in a
RADOS cluster

Ceph
Object Gateway

host/VM
client

POSIX fs
client

Ceph
Block Device

Ceph
File System

native
client

Presenter
Presentation Notes
The Ceph Object Gateway implements RESTful (S3 or Swift) APIs, implementing both bucket metadata and object data on top of RADOS objects.
Gateways can be used in parallel to get any desired aggregate throughput, and all will see causality ordering of requests, no matter what the front-end load balancers do.

The Ceph Block device client comes in two forms:
 a linux block device driver (in standard distros)
 a user-mode client, designed for easy hypervisor integration … but it has also been integrated with iSCSI
These clients implement thin-provisioned disk images with copy-on-write clones and snapshots, with the data and metadata striped across RADOS objects.

The Ceph File System also comes in two forms:
 a linux file system (in standard distros)
 a FUSE client
These clients talk to active/active distributed metadata servers that provide highly available and highly scalable metadata access, and do data access by talking directly to the storage nodes that store the data.

How Ceph Meets these Challenges

19

CLIENT

??

Striped Parallel Client Writes

Presenter
Presentation Notes
A client wants to do a large write, and because he wants high throughput, he stripes this write across multiple (native) RADOS objects.
He passes these (parallel) write requests to librados, which uses CRUSH to compute the primary OSD for each stripe-chunk.
LibRADOS passes the three chunk-writes, in parallel, directly, to each of the responsible primary OSDs.
Note that the client does only one write for each chunk. The primary OSD is responsible for correct replication.

20

CLIENT

Replication and Acknowledgement

Presenter
Presentation Notes
The primary OSD forwards the write to the other replicas, who acknowledge …
 (a) when they have received the request
 (b) when the request has been persisted to disk
The client can decide which of these acknowledgements he wants to wait for before proceeding.
Note that the primary does not send an acknowledgement back to the client until all active secondaries have acknowledged.
This ensures causality ordering, in that any operation initiated after the writer gets an ack is guaranteed to see the latest data.

Objects are organized into “placement groups”, and CRUSH is used to determine who (at any given time) the primary and secondaries are for each placement group.
The assigned primary has absolute authority over his placement groups, and can perform any update without having to obtain locks or consensus from other nodes.
Secondaries do what they are told to do.

Note that there are a great many placement groups (hundreds per OSD). If there are N OSD’s, each OSD is the primary for 1/Nth of the placement groups.
Because of how randomly CRUSH distributes placement groups, it is highly likely that each OSD will receive a similar share of read and write traffic.
In this way the work of managing objects is uniformly distributed across all of the nodes in the cluster.

Whenever new nodes are added, the work is re-divided, so adding new nodes does not merely add more storage, but also more storage management power.

21

M heartbeat
failure
report

heartbeat
failure
report

new cluster map

M M

Automatic Failure Detection

Presenter
Presentation Notes
If an OSD fails (and does not report the failure himself) other OSDs (with whom he was talking) will report him to a monitor.
When the monitors have received a credible number of reports over a reasonable period of time, they will agree that the OSD has failed and publish a new cluster map reflecting this fact.
The new map will be quickly disseminated (via proactive gossip) to all of the OSDs and clients in the cluster.

An OSD can be marked “down” (not currently available) or “out” (not expected to return).
If an OSD is “down”, placement groups stored on that OSD may have the option of continuing to function with fewer copies (if their pool replication rules allow this).
When an OSD is marked “out”, CRUSH selects new homes for all the PGs it stored and re-replication begins immediately.

If a “down” OSD does not return to service within a configured time period, the monitors will automatically mark it “out”.
Delaying the start of re-replication increases our exposure to data loss in case of secondary failures.

22

Distributed Recovery

Presenter
Presentation Notes
As soon as a new map designates the failed OSD to be down, the CRUSH algorithm will assign new OSDs to store each of the placement groups that had been on the failed OSD.
The assigned primaries for each of those placement groups will notice the change and immediately command the new OSDs to replicate the surviving copies.
Note also that the new copies are also de-clustered (not located on the same node). This enables many-to-many recovery.

Not only is the parallel recovery fast, but because it is spread over so many disks and nodes, it does not saturate any of them.
The result is that all of the affected OSDs can continue to service reads and writes (even for the affected placement groups) throughput the recovery process.

In this slide there are only two placement groups on each OSD. In reality there would be hundreds.
The recovery would involve hundreds of nodes, with almost every node in the cluster receiving small fraction of the data (and hence traffic) for the failed OSD.
The result is that after recovery has been completed, both capacity and traffic should still be very well distributed over the cluster.
There is no single agent that is responsible for orchestrating the recovery processes.
The responsibility and the work is spread among a hundred randomly (CRUSH) selected primaries.

Note also that the only data replicated was the data that had to have new copies made.
CRUSH and RADOS are very efficient about how much data gets moved in response to a reconfiguration or topology change.
The time to recover from a failure should not increase with the size (in nodes or capacity) of the cluster.

• Many common operations require data redistribution
•adding new storage nodes and volumes
•retiring old storage nodes and volumes
•changing replication and placement policies

• All are handled very similarly to the failure case
•new topology and rules are introduced through a monitor
•a new cluster map announces the changes
•OSDs use CRUSH to learn their new responsibilities
•primary OSDs drive the required data redistribution

• Any component can be replaced at any time
•no single points of failure
•multiple failures can be handled (w/sufficient redundancy)
•this (and protocol interoperability) enable rolling upgrades

Self Managing Storage

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing,
intelligent storage nodes

LIBRADOS

A library allowing
apps to directly
access RADOS,
with support for
C, C++, Java,
Python, Ruby,
and PHP

RBD

A reliable and fully-
distributed block
device, with a Linux
kernel client and a
QEMU/KVM driver

CEPH FS

A POSIX-compliant
distributed file
system, with a Linux
kernel client and
support for FUSE

RADOSGW

A bucket-based REST
gateway, compatible
with S3 and Swift

APP APP HOST/VM CLIENT

Presenter
Presentation Notes
The radosgw component is a REST-based interface to RADOS. It allows developers to build applications that work with Ceph through standard web services.

M

M

M

LIBRADOS

RADOSGW

APP

native

REST

LIBRADOS

RADOSGW

APP

Presenter
Presentation Notes
So, for example, an application can use a REST-based API to work with radosgw, and radosgw talks to RADOS using a native protocol. You can deploy as many gateways as you need, and you can use standard HTTP load balancers. User authentication and S3-style buckets are also supported, and applications written to work with Amazon S3 or OpenStack Swift will automatically work with radosgw by just changing their endpoint.

RADOS Gateway
REST-based object storage proxy
uses RADOS to store objects
API supports buckets, accountin
usage accounting for billing
purposes
compatible with S3, Swift APIs

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing,
intelligent storage nodes

LIBRADOS

A library allowing
apps to directly
access RADOS,
with support for
C, C++, Java,
Python, Ruby,
and PHP

CEPH FS

A POSIX-compliant
distributed file
system, with a Linux
kernel client and
support for FUSE

RADOSGW

A bucket-based REST
gateway, compatible
with S3 and Swift

APP APP HOST/VM CLIENT

RBD

A reliable and fully-
distributed block
device, with a Linux
kernel client and a
QEMU/KVM driver

Presenter
Presentation Notes
The RADOS Block Device (RBD) allows users to store virtual disks inside RADOS.

M

M

M

VM

LIBRADOS

LIBRBD

VIRTUALIZATION CONTAINER (KVM)

Presenter
Presentation Notes
For example, you can use a virtualization container like KVM or QEMU to boot virtual machines from images that have been stored in RADOS. Images are striped across the entire cluster, which allows for simultaneous read access from different cluster nodes.

LIBRADOS

M

M

M

LIBRBD

CONTAINER

LIBRADOS

LIBRBD

CONTAINER VM

Presenter
Presentation Notes
Separating a virtual computer from its storage also lets you do really neat things, like migrate a virtual machine from one server to another without rebooting it.

LIBRADOS

M

M

M

KRBD (KERNEL MODULE)

HOST

Presenter
Presentation Notes
As an alternative, machines (even those running on bare metal) can mount an RBD image using native Linux kernel drivers.

RADOS Block Device
storage of disk images in RADOS
decouple VM from host
images striped across entire
cluster (pool)
snapshots
copy-on-write clones
support in
mainline Linux kernel (2.6.39+)
Qemu/KVM, native Xen coming soon
OpenStack, CloudStack, Nebula, ...

RADOS

A reliable, autonomous, distributed object store comprised of self-healing, self-managing,
intelligent storage nodes

LIBRADOS

A library allowing
apps to directly
access RADOS,
with support for
C, C++, Java,
Python, Ruby,
and PHP

RBD

A reliable and fully-
distributed block
device, with a Linux
kernel client and a
QEMU/KVM driver

CEPH FS

A POSIX-compliant
distributed file
system, with a Linux
kernel client and
support for FUSE

RADOSGW

A bucket-based REST
gateway, compatible
with S3 and Swift

APP APP HOST/VM CLIENT

Presenter
Presentation Notes
Finally, let’s talk about Ceph FS. Ceph FS is a parallel filesystem that provides a massively scalable, single-hierarchy, shared disk. If you use a shared drive at work, this is the same thing except that the same drive could be shared by everyone you’ve ever met (and everyone they’ve ever met).

M

M

M

CLIENT

01
10

data
metadata

Presenter
Presentation Notes
Remember all that meta-data we talked about in the beginning? Feels so long ago. It has to be stored somewhere! Something has to keep track of who created files, when they were created, and who has the right to access them. And something has to remember where they live within a tree. Enter MDS, the Ceph Metadata Server. Clients accessing Ceph FS data first make a request to an MDS, which provides what they need to get files from the right OSDs.

M

M

M

Presenter
Presentation Notes
There are multiple MDSs!

one tree

three metadata servers

??

Presenter
Presentation Notes
So how do you have one tree and multiple servers?

Presenter
Presentation Notes
If there’s just one MDS (which is a terrible idea), it manages metadata for the entire tree.

Presenter
Presentation Notes
When the second one comes along, it will intelligently partition the work by taking a subtree.

Presenter
Presentation Notes
When the third MDS arrives, it will attempt to split the tree again.

Presenter
Presentation Notes
Same with the fourth.

DYNAMIC SUBTREE PARTITIONING

Presenter
Presentation Notes
A MDS can actually even just take a single directory or file, if the load is high enough. This all happens dynamically based on load and the structure of the data, and it’s called “dynamic subtree partitioning”.

•Performance
•direct, striped, parallel I/O
•well distributed over a large cluster

•Reliability and Availability
•configurable replication and persistence policies
•automatic failure-domain aware placement
•no single points of failure
•prompt, fully automatic recovery from common failures

•Scalable
•no architectural bottle-necks
•maximum independence and parallelism
•efficient use of all available storage/processing
•self-healing, self-balancing, self-managing

Ceph: 21st Century Technology

Hands-on tutorial

Hands-on Tutorial Prep

Download VM image
http://ceph.com/tutorial

tutorial.img.tar.gz (KVM/Qemu)
tutorial.vdi.gz (Virtualbox, …)

2GB RAM
Attach 4 additional disks (~8GB each)

http://ceph.com/tutorial�

Q&A

 Thanks!

sage weil
sage@inktank.com
@liewegas

http://github.com/ceph
http://ceph.com/

mailto:sage@inktank.com�
mailto:sage@inktank.com�
http://github.com/ceph�
http://github.com/ceph�
http://ceph.com/�
http://ceph.com/�

	Slide Number 1
	Agenda
	Hands-on Tutorial Prep
	Slide Number 4
	Ceph Unified Storage Platform
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Hands-on Tutorial Prep
	Slide Number 44
	 Thanks!

