Warped Mirrors for Flash

Yiying Zhang

Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

Flash-based SSDs in Storage Systems

- Using commercial SSDs in storage layer
 - Good performance
 - Easy to use
 - Relatively cheap
- Usage
 - MySpace, Facebook, Amazon, etc.
 - All-flash storage, e.g., Pure Storage

What about reliability?

Flash-based SSD Reliability

- Flash wears out with erases
 - More writes => more erases
 - FTL and wear leveling help

- One way to improve SSD reliability
- Redundancy or RAID

Assume failure independence

What About Flash-based Array?

WaM - Warped Mirrors for Flash

• Write more to one SSD to induce earlier failure

• Focus on mirrors (RAID1)

WaM Benefits

- Reliability achieved by failure separation
- Configurable
 - Approximated model + correcting method
- Low monetary cost
 - 1-2 cents per hour for mirrors using WaM
 47-94% of fixed-time replacement every one year
- Small performance overhead
 10% more resp time for 52hr-159day separation

Outline

Introduction

• WaM design and model

• Evaluation results

Basic Solution - Adding Dummy Writes

Failure Separation Interval

- FSI: window for detection and reconstruction
 - Set by administrator at initialization time
 - Can be adjusted
- Choosing FSI
 - Long enough for recovery
 - Short to avoid high performance cost

How many dummy writes to add given an FSI?

Challenges

- Subverting FTL
 - No knowledge of underlying FTL
- Achieving near-perfect FSI
 FSI cannot be shorter than target (reliability)
 Performance overhead should be minimized

WaM Model

- Model based on
 - Target FSI length
 - SSD properties
 - Workload properties
- Goal
 - Find dummy write percentage for a target FSI

WaM Model – Dummy Write Percentage

Ratio of erases between two mirrored SSDs

$$R_{erase} = \frac{N_{erases}^{early}}{N_{erases}^{late}} \xrightarrow{\text{Number of erases issued by SSD}_{early}}$$

Dummy write percentage P_{dummy}

$$R_{erase} = 1 + P_{dummy}$$
$$P_{dummy} = R_{erase} - 1$$

WaM Model – Num Erases Remaining

WaM Model – Num Erases during Time

WaM Model – Final Steps

$$N_{remaining}^{late} = N_{erase}^{perblock} (FSI)$$

 $P_{dummy} = R_{erase} - 1$

Assumptions and Limitations

- Device parameters
 - From device vendor or detect with tool
- Workload changes
 Adjust model as workloads change
- Imperfect or no wear leveling
- Incorrect SSD lifetime

Violations: FSI too short or too long

Achieving Target FSI N *T* late *remaining*_*target* R_{delay} • If FSI too short \mathcal{M}^{late} remaining _actual Delay writes to the surviving SSD **SSD**_{early} Write Write **SSD**_{late} Target FSI If FSI too long

- Performance cost
- Adjust in future WaM modeling

Recovery

- When the first SSD (SSD_{early}) fails
 - Replace with a new SSD
 - Reconstruct the data
- Replacing the second SSD (SSD_{late})
 - At the same time when first SSD fails (no reliability risk, slightly higher cost)
 - When it fails (higher reliability risk, slightly low cost)

Outline

Introduction

• WaM design and model

• Evaluation results

Evaluation Environment

- Simulation based on Disksim + SSD extension
- A mirror pair of two 80GB SSDs
- Workloads
 - Microbenchmark
 - Macrobenchmark
 - Trace
 - No idle time

Can Failures Be Separated with Dummy Writes? And How?

Failures can be separated with dummy writes More dummy writes -> longer separation Wear leveling homogenize workloads

What Is the Performance Overhead?

More dummy writes -> worse performance

Can the Correct FSI Be Achieved?

Sequential workload

Can the Correct FSI Be Achieved?

Random workload

WaM model can be inaccurate

Target FSI can be delivered with delaying

How about Real Workloads? - FSI

FSI and dummy write relationship as expected

Larger FSI with read-intensive workloads

Dummy Write Percentage (%)

How about Real Workloads? - Performance

Higher overhead with write-intensive workloads Performance overhead is small for typical FSI

What is the Monetary Cost?

- WaM: cost of SSD + sys-admin check each FSI interval
- Fixed replacement: replace SSD after one year

WaM costs lower than fixed-time replacement

Summary of Results

- Failures are separated with desired FSI
- Model is approximated
- Achieves desired FSI with delaying
- Small performance overhead
- Low monetary cost

Outline

Introduction

• WaM design and model

• Evaluation results

- Correlated failure of flash-based RAID
- Separate failures by carefully adding dummy writes and delaying writes
- Other techniques for failure separation
 - Wear our one SSD to some extent before using
 - Stagger SSDs with different ages in a RAID
 - Vendor control when SSDs in RAID fail

- Applying existing solutions directly to new devices may not work
- WaM is a simple solution to guarantee failure separation and pushes aggressive use of SSDs
- Other techniques may work well
- WaM model can be useful

Thank You Questions?

http://research.cs.wisc.edu/adsl