
Zettabyte Reliability with
Flexible End-to-end Data Integrity

Yupu Zhang, Daniel Myers,

Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

University of Wisconsin - Madison

5/9/2013 1

Data Corruption

• Imperfect hardware

– Disk, memory, controllers [Bairavasundaram07, Schroeder09, Anderson03]

• Buggy software

– Kernel, file system, firmware [Engler01, Yang04, Weinberg04]

• Techniques to maintain data integrity

– Detection: Checksums [Stein01, Bartlett04]

– Recovery: RAID [Patterson88, Corbett04]

5/9/2013 2

In Reality

• Corruption still occurs and goes undetected

– Existing checks are usually isolated

– High-level checks are limited (e.g, ZFS)

• Comprehensive protection is needed

5/9/2013 3

Disk
ECC

Memory
ECC

Isolated Protection Limited Protection

Previous State of the Art

• End-to-end Data Integrity

– Checksum for each data block is generated and verified
by application

– Same checksum protects data throughout entire stack

– A strong checksum is usually preferred

5/9/2013 4

Write Path Read Path

Two Drawbacks

• Performance
– Repeatedly accessing data from in-memory cache
– Strong checksum means high overhead

• Timeliness
– It is too late to recover from the corruption that occurs before a

block is written to disk

5/9/2013 5

Write Path Read Path
unbounded

time

Generate
Checksum

Verify
Checksum

FAIL

Flexible End-to-end Data Integrity

• Goal: balance performance and reliability
– Change checksum across components or over time

• Performance
– Fast but weaker checksum for in-memory data

– Slow but stronger checksum for on-disk data

• Timeliness
– Each component is aware of the checksum

– Verification can catch corruption in time

5/9/2013 6

Our contribution

• Modeling

– Framework to reason about reliability of storage systems

– Reliability goal: Zettabyte Reliability
• at most one undetected corruption per Zettabyte read

• Design and implementation

– Zettabyte-Reliable ZFS (Z2FS)

• ZFS with flexible end-to-end data integrity

5/9/2013 7

Results

• Reliability

– Z2FS is able to provide Zettabyte reliability
• ZFS: ~ Pettabyte at best

– Z2FS detects and recovers from corruption in time

• Performance

– Comparable to ZFS (less than 10% overhead)

– Overall faster than the straightforward end-to-end
approach (up to 17% in some cases)

5/9/2013 8

Outline

• Introduction

• Analytical Framework
– Overview

– Example

• From ZFS to Z2FS

• Implementation

• Evaluation

• Conclusion

5/9/2013 9

Overview of the Framework

• Goal
– Analytically evaluate and compare reliability of

storage systems

• Silent Data Corruption
– Corruption that is undetected by existing checks

• Metric: 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
– Probability of undetected data corruption when

reading a data block from system (per I/O)
– Reliability Score = −𝑙𝑜𝑔10(𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)

5/9/2013 10

Models for the Framework

• Hard disk
– Undetected Bit Error Rate (𝑈𝐵𝐸𝑅)

• Stable, not related to time

– Disk Reliability Index = −𝑙𝑜𝑔10(𝑈𝐵𝐸𝑅)

• Memory
– Failure in Time (FIT) / Mbit (𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒)

• Longer residency time, more likely corrupted

– Memory Reliability Index = −𝑙𝑜𝑔10 (𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒)

• Checksum
– Probability of undetected corruption on a device with

a checksum

5/9/2013 11

Calculating 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

• Focus on lifetime of block

– From it being generated to it being read

– Across multiple components

– Find all silent corruption scenarios

• 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 is sum of probabilities of each
silent corruption scenario during lifetime of
block in storage system

5/9/2013 12

Reliability Goal

• Ideally, 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 should be 0
– It’s impossible

• Goal: Zettabyte Reliability
– At most one SDC when reading one Zettabyte data

from a storage system

– 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑔𝑜𝑎𝑙 = 3.46 × 10−18

• Assuming a data block is 4KB

– Reliability Score is 17.5
• 100MB/s => 2.8 x 10-6 SDC/year

• ~ 17 nines

5/9/2013 13

Outline

• Introduction

• Analytical Framework
– Overview

– Example

• From ZFS to Z2FS

• Implementation

• Evaluation

• Conclusion

5/9/2013 14

Sample Systems

Name
Reliability Index

Description
Memory Disk

Worst 13.4 10 Worst memory & worst disk

Consumer 14.2 12 Non-ECC memory & regular disk

Server 18.8 12 ECC memory & regular disk

Best 18.8 20 ECC memory & best disk

5/9/2013 15

• Disk Reliability Index = 10~20
– Regular disk: 12

• Memory Reliability Index = 13.4~18.8
– non-ECC memory: 14.2

– ECC memory: 18.8

Example

5/9/2013 16

DISK

MEM

t0 t1 t2 t3

write() read()

• Assuming there is only one corruption in each scenario
• Each time period is a scenario
• 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = sum of probabilities of each time period

• Assuming 𝑡1 − 𝑡0 = 30 seconds (flushing interval)
• Residency Time: 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 𝑡3 − 𝑡2

Example (cont.)

Worst

Consumer
Server

Best

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)

5/9/2013 17

• Goal: Zettabyte Reliability

– score: 17.5

– none achieves the goal

• Server & Consumer

– disk corruption dominates

– need to protect disk data

Outline

• Introduction

• Analytical Framework

• From ZFS to Z2FS
– Original ZFS

– End-to-end ZFS

– Z2FS : ZFS with flexible end-to-end data integrity

• Implementation

• Evaluation

• Conclusion

5/9/2013 18

ZFS

5/9/2013 19

DISK

MEM

t0 t1 t2 t3

Fletcher

write() read()

Only on-disk blocks are protected

Generate Verify

ZFS (cont.)

Worst

Consumer

Best

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)

5/9/2013 20

• Goal: Zettabyte Reliability

– score: 17.5

– Best: only Petabyte

• Now memory corruption
dominates
– need end-to-end protectionServer

Outline

• Introduction

• Analytical Framework

• From ZFS to Z2FS
– Original ZFS

– End-to-end ZFS

– Z2FS : ZFS with flexible end-to-end data integrity

• Implementation

• Evaluation

• Conclusion

5/9/2013 21

End-to-end ZFS

5/9/2013 22

DISK

MEM

t0 t1 t2 t3

write() read()

Fletcher / xor

• Checksum is generated and verified only by application
• Only one type of checksum is used (Fletcher or xor)

Generate Verify

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)

End-to-end ZFS (cont.)

Worst

Consumer
Server

Best

Worst

Consumer
Server

Best

5/9/2013 23

Fletcher xor

provide best reliability just fall short of the goal

Performance Issue

• End-to-end ZFS (Fletcher) is 15% slower than ZFS

• End-to-end ZFS (xor) has only 3% overhead

– xor is optimized by the checksum-on-copy technique [Chu96]

System Throughput (MB/s) Normalized

Original ZFS 656.67 100%

End-to-end ZFS (Fletcher) 558.22 85%

End-to-end ZFS (xor) 639.89 97%

5/9/2013 24

Read 1GB Data from Page Cache

Outline

• Introduction

• Analytical Framework

• From ZFS to Z2FS
– Original ZFS

– End-to-end ZFS

– Z2FS : ZFS with flexible end-to-end data integrity

• Implementation

• Evaluation

• Conclusion

5/9/2013 25

Z2FS Overview

• Goal
– Reduce performance overhead
– Still achieve Zettabyte reliability

• Implementation of flexible end-to-end
– Static mode: change checksum across components

• xor as memory checksum and Fletcher as disk checksum

– Dynamic mode: change checksum overtime
• For memory checksum, switch from xor to Fletcher after a

certain period of time
• Longer residency time => data more likely being corrupt

5/9/2013 26

VerifyGenerate

Static Mode

5/9/2013 27

DISK

MEM

t0 t1 t2 t3

write() read()

Checksum
Chaining

Fletcher

xor

Generate Verify

Verify

Static Mode (cont.)

Worst

Consumer

Server

Best

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)

5/9/2013 28

• Worst

– use Fletcher all the way

• Server & Best

– xor is good enough as
memory checksum

• Consumer

– may drop below the goal
as 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 increases

Evolving to Dynamic Mode

• Reliability Score vs 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 for consumer

92 sec

5/9/2013 29

92 sec

Static Dynamic
switching the memory checksum
from xor to Fletcher after 92 sec

Verify

GenerateGenerate

Dynamic Mode

5/9/2013 30

DISK

MEM

t0 t1 t2 t3

write() read()

Fletcher

xor

t4

xor Fletcher

tswitch

Verify Verify Verify

Outline

• Introduction

• Analytical Framework

• From ZFS to Z2FS

• Implementation

• Evaluation

• Conclusion

5/9/2013 31

Implementation

• Attach checksum to all buffers
– User buffer, data page and disk block

• Checksum handling
– Checksum chaining & checksum switching

• Interfaces
– Checksum-aware system calls (for better protection)
– Checksum-oblivious APIs (for compatibility)

• LOC : ~6500

5/9/2013 32

Outline

• Introduction

• Analytical Framework

• From ZFS to Z2FS

• Evaluation

• Conclusion

5/9/2013 33

Evaluation

• Q1: How does Z2FS handle data corruption?

– Fault injection experiment

• Q2: What’s the overall performance of Z2FS?

– Micro and macro benchmarks

5/9/2013 34

Verify

GenerateGenerate

Fault Injection: Z2FS

5/9/2013 35

DISK

MEM

t0 t1

write()

Fletcher

xor

FAIL
Ask the application to rewrite

Overall Performance

0

0.2

0.4

0.6

0.8

1

SeqRead (cold) SeqRead (warm) webserver varmail

N
o

rm
al

iz
e

d
 T

h
ro

u
gh

p
u

t

Micro & Macro Benchmark
ZFS End-to-end ZFS (Fletcher) Z²FS (static) Z²FS (dynamic)

read a 1 GB file Warm Read-intensive

5/9/2013 36

• Better protection usually means higher overhead
• Z2FS helps to reduce the overhead, especially for warm reads

Dominately by
Random I/Os

Outline

• Introduction

• Analytical Framework

• From ZFS to Z2FS

• Evaluation

• Conclusion

5/9/2013 37

Summary

• Problem of straightforward end-to-end data integrity
– Slow performance
– Untimely detection and recovery

• Solution: Flexible end-to-end data integrity
– Change checksums across component or overtime

• Analytical Framework
– Provide insight about reliability of storage systems

• Implementation of Z2FS
– Reduce overhead while still achieve Zettabyte reliability
– Offer early detection and recovery

5/9/2013 38

Conclusion

• End-to-end data integrity provides
comprehensive data protection

• One “checksum” may not always fit all
– e.g. strong checksum => high overhead

• Flexibility balances reliability and performance
– Every device is different

– Choose the best checksum based on device reliability

5/9/2013 39

Thank you!

Questions?

Advanced Systems Lab (ADSL)

University of Wisconsin-Madison

http://www.cs.wisc.edu/adsl

Wisconsin Institute on Software-defined
Datacenters in Madison

http://wisdom.cs.wisc.edu/

5/9/2013 40

