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Data Corruption

• Imperfect hardware

– Disk, memory, controllers [Bairavasundaram07, Schroeder09, Anderson03]

• Buggy software

– Kernel, file system, firmware [Engler01, Yang04, Weinberg04]

• Techniques to maintain data integrity

– Detection: Checksums [Stein01, Bartlett04]

– Recovery: RAID [Patterson88, Corbett04]
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In Reality

• Corruption still occurs and goes undetected

– Existing checks are usually isolated

– High-level checks are limited (e.g, ZFS)

• Comprehensive protection is needed
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Previous State of the Art

• End-to-end Data Integrity

– Checksum for each data block is generated and verified    
by application

– Same checksum protects data throughout entire stack

– A strong checksum is usually preferred
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Two Drawbacks

• Performance
– Repeatedly accessing data from in-memory cache
– Strong checksum means high overhead

• Timeliness
– It is too late to recover from the corruption that occurs before a 

block is written to disk

5/9/2013 5

Write Path Read Path
unbounded

time

Generate
Checksum

Verify
Checksum

FAIL



Flexible End-to-end Data Integrity

• Goal: balance performance and reliability
– Change checksum across components or over time

• Performance
– Fast but weaker checksum for in-memory data

– Slow but stronger checksum for on-disk data

• Timeliness
– Each component is aware of the checksum

– Verification can catch corruption in time
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Our contribution

• Modeling

– Framework to reason about reliability of storage systems

– Reliability goal: Zettabyte Reliability
• at most one undetected corruption per Zettabyte read

• Design and implementation

– Zettabyte-Reliable ZFS (Z2FS)

• ZFS with flexible end-to-end data integrity
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Results

• Reliability

– Z2FS is able to provide Zettabyte reliability
• ZFS:  ~ Pettabyte at best

– Z2FS detects and recovers from corruption in time

• Performance

– Comparable to ZFS (less than 10% overhead)

– Overall faster than the straightforward end-to-end 
approach (up to 17% in some cases)
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Overview of the Framework

• Goal
– Analytically evaluate and compare reliability of 

storage systems

• Silent Data Corruption
– Corruption that is undetected by existing checks

• Metric:  𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
– Probability of undetected data corruption when 

reading a data block from system (per I/O)
– Reliability Score = −𝑙𝑜𝑔10(𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)
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Models for the Framework

• Hard disk
– Undetected Bit Error Rate (𝑈𝐵𝐸𝑅)

• Stable, not related to time

– Disk Reliability Index = −𝑙𝑜𝑔10(𝑈𝐵𝐸𝑅)

• Memory
– Failure in Time (FIT) / Mbit  (𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒)

• Longer residency time, more likely corrupted

– Memory Reliability Index = −𝑙𝑜𝑔10 (𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑅𝑎𝑡𝑒)

• Checksum
– Probability of undetected corruption on a device with 

a checksum
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Calculating 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

• Focus on lifetime of block

– From it being generated to it being read

– Across multiple components

– Find all silent corruption scenarios

• 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 is sum of probabilities of each 
silent corruption scenario during lifetime of 
block in storage system
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Reliability Goal

• Ideally, 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 should be 0
– It’s impossible

• Goal: Zettabyte Reliability
– At most one SDC when reading one Zettabyte data 

from a storage system

– 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = 𝑃𝑔𝑜𝑎𝑙 = 3.46 × 10−18

• Assuming a data block is 4KB

– Reliability Score is 17.5
• 100MB/s => 2.8 x 10-6 SDC/year

• ~ 17 nines

5/9/2013 13



Outline

• Introduction

• Analytical Framework
– Overview

– Example

• From ZFS to Z2FS

• Implementation

• Evaluation

• Conclusion

5/9/2013 14



Sample Systems

Name
Reliability Index

Description
Memory Disk

Worst 13.4 10 Worst memory & worst disk

Consumer 14.2 12 Non-ECC memory & regular disk

Server 18.8 12 ECC memory & regular disk

Best 18.8 20 ECC memory & best disk
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• Disk Reliability Index = 10~20
– Regular disk: 12

• Memory Reliability Index = 13.4~18.8
– non-ECC memory: 14.2

– ECC memory: 18.8



Example
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DISK

MEM

t0 t1 t2 t3

write() read()

• Assuming there is only one corruption in each scenario
• Each time period is a scenario
• 𝑃𝑢𝑛𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = sum of probabilities of each time period

• Assuming 𝑡1 − 𝑡0 = 30 seconds (flushing interval)
• Residency Time: 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 𝑡3 − 𝑡2



Example (cont.)

Worst

Consumer
Server

Best

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)

5/9/2013 17

• Goal: Zettabyte Reliability

– score: 17.5

– none achieves the goal

• Server & Consumer

– disk corruption dominates

– need to protect disk data
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ZFS
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DISK

MEM

t0 t1 t2 t3

Fletcher

write() read()

Only on-disk blocks are protected

Generate Verify



ZFS (cont.)

Worst

Consumer

Best

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)
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• Goal: Zettabyte Reliability

– score: 17.5

– Best: only Petabyte

• Now memory corruption 
dominates
– need end-to-end protectionServer
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End-to-end ZFS
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DISK

MEM

t0 t1 t2 t3

write() read()

Fletcher / xor

• Checksum is generated and verified only by application
• Only one type of checksum is used (Fletcher or xor)

Generate Verify



• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1) 

End-to-end ZFS (cont.)

Worst

Consumer
Server

Best

Worst

Consumer
Server

Best
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Fletcher xor

provide best reliability just fall short of the goal



Performance Issue

• End-to-end ZFS (Fletcher) is 15% slower than ZFS

• End-to-end ZFS (xor) has only 3% overhead

– xor is optimized by the checksum-on-copy technique [Chu96]

System Throughput (MB/s) Normalized

Original ZFS 656.67 100%

End-to-end ZFS (Fletcher) 558.22 85%

End-to-end ZFS (xor) 639.89 97%
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Read 1GB Data from Page Cache
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Z2FS Overview

• Goal 
– Reduce performance overhead
– Still achieve Zettabyte reliability

• Implementation of flexible end-to-end
– Static mode: change checksum across components

• xor as memory checksum and Fletcher as disk checksum

– Dynamic mode: change checksum overtime
• For memory checksum, switch from xor to Fletcher after a 

certain period of time
• Longer residency time => data more likely being corrupt
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VerifyGenerate

Static Mode
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DISK

MEM

t0 t1 t2 t3

write() read()

Checksum 
Chaining

Fletcher

xor

Generate Verify

Verify



Static Mode (cont.)

Worst

Consumer

Server

Best

• Reliability Score (𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 = 1)
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• Worst

– use Fletcher all the way

• Server & Best

– xor is good enough as 
memory checksum

• Consumer

– may drop below the goal 
as 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 increases



Evolving to Dynamic Mode

• Reliability Score vs 𝑡𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 for consumer

92 sec
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92 sec

Static Dynamic
switching the memory checksum 
from xor to Fletcher after 92 sec



Verify

GenerateGenerate

Dynamic Mode
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DISK

MEM

t0 t1 t2 t3

write() read()

Fletcher

xor

t4

xor Fletcher

tswitch

Verify Verify Verify
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Implementation

• Attach checksum to all buffers
– User buffer, data page and disk block

• Checksum handling
– Checksum chaining & checksum switching

• Interfaces
– Checksum-aware system calls (for better protection)
– Checksum-oblivious APIs (for compatibility)

• LOC : ~6500
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Evaluation

• Q1: How does Z2FS handle data corruption?

– Fault injection experiment

• Q2: What’s the overall performance of Z2FS?

– Micro and macro benchmarks
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Verify

GenerateGenerate

Fault Injection: Z2FS
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DISK

MEM

t0 t1

write()

Fletcher

xor

FAIL
Ask the application to rewrite



Overall Performance
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• Better protection usually means higher overhead
• Z2FS helps to reduce the overhead, especially for warm reads

Dominately by 
Random I/Os
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Summary

• Problem of straightforward end-to-end data integrity
– Slow performance
– Untimely detection and recovery

• Solution: Flexible end-to-end data integrity
– Change checksums across component or overtime

• Analytical Framework
– Provide insight about reliability of storage systems

• Implementation of Z2FS
– Reduce overhead while still achieve Zettabyte reliability 
– Offer early detection and recovery
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Conclusion

• End-to-end data integrity provides 
comprehensive data protection

• One “checksum” may not always fit all
– e.g. strong checksum => high overhead

• Flexibility balances reliability and performance
– Every device is different

– Choose the best checksum based on device reliability
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Thank you!

Questions?

Advanced Systems Lab (ADSL)

University of Wisconsin-Madison

http://www.cs.wisc.edu/adsl

Wisconsin Institute on Software-defined 
Datacenters in Madison

http://wisdom.cs.wisc.edu/
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