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Abstract—Garbage collection plays a central role of flash-
based solid state drive performance, in particular, its endurance.
Analytical modeling is an indispensable instrument for design
improvement as it demonstrates the relationship between SSD
endurance, manifested as write amplification, and the algorithmic
design variables, as well as workload characteristics. In this
paper, we improve recent advances in using the mean field
analysis as a tool for performance analysis and target hotness-
aware flash management algorithms. We show that even under
a generic workload model, the system dynamics can be captured
by a system of ordinary differential equations, and the steady-
state write amplification can be predicted for a variety of
practical garbage collection algorithms, including the d-Choice
algorithm. Furthermore, the analytical model is validated by a
large collection of real and synthetic traces, and prediction errors
against these simulations are shown to be within 5%.

I. INTRODUCTION

Flash-based Solid State Drive (SSD) has seen a surge of
adoption in consumer devices. The significant technology
breakthroughs in capacity, reliability, speed and the dramatic
drop in price, have made the flash memory a viable storage
medium in enterprise solutions. Although exposing the same
block device interface as hard disk drives, the SSDs are funda-
mentally different. For example, a write operation in flash has
to be preceded by an erase operation. To avoid high latency
and shortened device lifetime due to this “erase-before-write”
procedure, a log-structured, or out-of-place, write scheme is
employed, where the data are written at a new location while
the old data are marked as invalid. Clearly, this scheme
necessitates a cleaning mechanism, called garbage collection
(GC), to reclaim invalid data and consolidate free space for
subsequent updates.

To perform the cleaning a block is first chosen by a victim
selection algorithm. Valid data in the block are copied to new
locations, leaving the block with invalid data only. Then the
block is erased and returned to the free blocks pool. This
implies that extra write operations are needed, and as a result
the actual amount of data written to flash usually exceeds the
write amount user requested, a phenomenon known as write
amplification.

Unfortunately, write amplification not only degrades speed
performance but also shortens the device’s lifespan. Thanks
to the extensive studies in the context of log-structured file
systems [23], [15] and flash community [21], [10], [22], the
side effects of GC process are well understood. Indeed, many
algorithms are proposed to mitigated these effects. Never-
theless, these works are mainly experimental validated by
trace-driven simulations. Like any experimental methodology,
trace-driven simulations suffer from long running time, and
more importantly, are incapable of revealing the relationship
between write amplification and algorithmic design variables,
as well as workload characteristics. Therefore, analytical tools
are urgently needed to explore the design tradeoff, particularly
in the instance of large-scale solid state drive systems. One
example of such tradeoff is the data hotness, which manifest
both as the workload characteristics and the algorithmic design
variable, as evidenced by recent works that hotness-aware
algorithms can often do significantly better [1], [5], [22], [14].

Luckily, recent progress in analytical modeling of garbage
collection algorithms in the context of SSDs has been formed.
Nevertheless, the proposed analytical frameworks either over-
look the role of data hotness or simply take a simplistic
hot/cold model [23] that does not ponder the complexity of
hotness characteristics in real workloads.

To bridge this gap, we propose an analytical framework
with a generic hotness model. To the best of our knowledge,
this is the first analytical framework accommodating multiple
hotness tiers for analyzing the d-Choice algorithm [16]. This is
accomplished by the abstraction of flash block state space, and
the stochastic modeling of the victim block selection process.
In particular, we ramp up on the mathematical tool of mean
field theory (MFT) [20], [2] to approximate the state transition
of the large system, thereby reducing the intractable large scale
stochastic process into a small deterministic process.

Of course, the idea of mean field analysis is not new and
has been used in many different areas [20], [3], [9], [2], [24],
[26], [16]. Most relevantly, Van Houdt [24] and Li [16] use
MFT to model the performance of garbage collection process
in flash-based storage. Our study is inspired by these recent
advances and a more detailed discussion on our improvements978-1-4799-5671-5/14/$31.00 c©2014 IEEE



can be found in Section VI.
The rest of this paper proceeds as follows. Section II defines

the problem. In Section III, we propose a system model, using
a Markov chain to capture the system dynamics of an SSD and
conduct the mean field analysis. Section IV develops analytic
results for selected GC algorithms, followed by comparison
to simulated results in Section V, and a discussion of the
impact of hotness in GC performance. We give detailed
review of related work in Section VI and conclude the paper
in Section VII.

II. PROBLEM STATEMENT

We consider a case where W ×B logical pages are written
to an SSD device with N × B physical pages, where 1) W
is the working set size, in number of blocks, in the workload
of interest; 2) N is the total number of physical blocks and
N > W ; and 3) B denotes the number of pages per block, or
the block size.

Independent of traffic model, hotness of a logical address is
identified by one of n tiers. To facilitate the separation of data
belonging to different tiers, one physical block in system is
designated as a write frontier (WF) of each hotness tier; pages
are written sequentially in the frontier until it becomes full.
Once it is full, the block is closed and a new block from a
free block list is opened as the frontier. As out-of-place write
is used to overwrite a logical page, the newly written physical
page is marked as valid, leaving the page containing old data
invalid. This implies that exactly W × B pages are valid at
all times, provided that the system has been operational for a
while, and each logical address has been written at least once.

Once the percentage of the free blocks drops below a
threshold, denoted by G, the cleaning, or formally called
garbage collection (GC), process begins. The GC is done
by (1) choosing a victim block by a selection algorithm; (2)
migrating valid data remaining in the block to the frontier
designated to the corresponding hotness tier; and (3) erasing
the block and moving it to the free block list. If the victim
block contains V valid pages and B − V invalid pages, the
total gain will be B − V . As migrating the valid pages
unproductively consumes free pages, it is considered as a
source of write amplification, numerically defined as the ratio
of total number of physical pages written to the number of
logical page write requests, or formally,

A =
B

B − V
(1)

where V is the mean of valid pages in chosen victim blocks.
The free blocks preservation can be characterized by a factor

ρ = W
N×(1−G) , called working set ratio, which is the ratio of

written logical address space to the in-use physical space when
the system is under steady state. In practice, we have ρ < 1.

III. SYSTEM MODEL

A. Data Hotness Model

Throughout the paper we consider general workloads ab-
stracted by an n-tier hotness model that represents an write
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Fig. 1. A general traffic model. The fraction of the total number of page
writes with hotness h ∈ H is r(h); these pages represent a fraction of f(h)
of the overall written address space.

distribution where the write frequency of any given logical
page falls into one of n disjoint hotness tiers, denoted by
h ∈ H = {1, 2, . . . , n}. Each tier is characterized by f(h)
and r(h), shown in Figure 1, meaning that a fraction r(h)
of write operations belong to tier h, addressing to a fraction
f(h) of the logical address space. A general I/O workload
is abstracted through a n-tier workload by grouping pages
with similar hotness into the same bin. Pages in a higher tier
bin are considered hotter than those in a lower tier bin. This
hotness model is a generalization of the hot/cold data model
in Rosenblum [23] used in [8] and [25], where logical data
are considered either hot or cold. In addition, we assume that
the access pattern is stationary in this work.

B. Markov Chain Formation

Let set N = {1, 2, . . . , N} and set B = {0, 1, 2, . . . , B}.
We classify each physical block into a type based on 1) the
number of valid pages contained in the block; and 2) the
hotness tier the block has been allocated for. Specifically, if
a block containing tier h ∈ H data has exactly j ∈ B valid
pages, we say the block is in state 〈h, j〉, or call it a block of
type 〈h, j〉. Considering the free blocks that are not attached
to any hotness tier, we extend H to H′ = H ∪ {0}, where 0
indicates an undefined hotness tier. Let s(x, t) = 〈h, j〉, x ∈ N,
denote the state of block number x at time t, then the state
descriptor for the SSD is

〈s(1, t), s(2, t), . . . , s(N, t)〉 (2)

Figure 2 shows a state transition diagram with B = 4 and
n = 2. We have 11 possible states denoted by the nodes and
5 types of state transitions. For example, a write operation
performed in a block of type 〈1, 0〉 increases the number of
valid pages in it and thus changes the block’s type to 〈1, 1〉.
At the same time, the updated (“over-written”) page in a block
of type 〈1, 3〉, for example, becomes invalid and thus change
the block’s type to 〈1, 2〉. In addition, an erased block is of
type 〈0, 0〉 and a newly created write frontier is of type either
〈1, 0〉 or 〈2, 0〉 depending on hotness assignment.

Using the notations in [24], we define the set ∆N = {~m =
(~m1, ~m2, . . . , ~mB), where ~mj = (m1

j ,m
2
j , . . . ,m

n
j ) ∈ Rn,

j ∈ B such that 0 ≤ mh
j ≤ 1, h ∈ H,

∑
j∈B,h∈Hm

h
j = 1 and∑

j∈B,h∈H j ×mh
j = Bρ. We define occupancy measure [2]
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Fig. 2. Block state transitions. (B = 4 and n = 2)

TABLE I
AN EXEMPLARY SNAPSHOT OF OCCUPANCY FRACTIONS IN SSD WITH

B = 4 AND n = 2

j=0 j=1 j=2 j=3 j=4
h=0 1/100 0 0 0 0
h=1 5/100 2/100 7/100 3/100 15/100
h=2 10/100 9/100 20/100 8/100 20/100

MN : T 7→ ∆N with M(t) = ~m as the vector of fractions
of type 〈h, j〉 blocks in system at time t. In other words, the
system state can be described by ~m with

mh
j =

1

N
ΣN

x=11[s(x, t) = 〈h, j〉] (3)

where mh
j is the occupancy fraction of type 〈h, j〉 blocks in

SSD at time t.
Table I shows an exemplary instantaneous SSD state de-

scribed by the occupancy fractions. For example, 9% of blocks
are of type 〈2, 1〉 at the moment. In addition, since h = 0
implies a free block, m0

j = 0, ∀j 6= 0.
We now describe the state transitions of a block by the

occupancy fraction. First of all, read requests do not change
mh

j for any h and j. Second, because erasing a victim block
and allocating a write frontier always appear in pair in one GC
process, we know that m0

0 ≡ G once the SSD reaches the GC
threshold for first time, i.e., ∀j, m0

j does not change between
the GC intervals. Therefore, the values in row h = 0 in Table I
can be treated as “don’t care”. For the sake of simplicity, we
consider only the non-free blocks for Equation (3) from now
on. Third, only write and invalidate (update) operations change
the state. We derive the state transition probability as follows.
Assuming each logical address has been written at least once,
there are in total mh

j ×N × (1−G)× j valid pages in 〈h, j〉
blocks. Since the total number of tier h logical addresses is
B×W×f(h), with an assumption that logical addresses in the
same tier have equal probability to be updated, the probability
that an external write updates a valid page in a block of type
〈h, j〉 under system state ~m is given by

u(h, j, ~m) = r(h)×
mh

j ×N × (1−G)× j
B ×W × f(h)

=
r(h)

Bρf(h)
×mh

j × j
(4)

Clearly ~m is a Markov chain on space ∆N , whose evolution
is driven by not only the external requested writes but also
internal data migration by GC process. The state transition is
discussed in detail in Section III-E.

C. Mean Field Analysis

To understand the dynamics of ~m, we employ the mean
field model [2] characterized by a set of ODEs, the solution
of which can be used to approximate the evolution of the
Markov chain.

More specifically, the stochastic process MN (t) can be
approximated by a mean field model by means of a de-
terministic process ~φ(t) = (~φ0(t), ~φ1(t), . . . , ~φB(t)), given
~m(t) = ~φ(t/N) as N approaches to infinity. Here ~φj(t) =
(φ0j (t), φ1j (t), . . . , φnj (t)) and φhj (t) denotes the fraction of
blocks of type (h, j) at time t in the deterministic process. The
evolution of ~φ(t) is captured by the following set of ODEs:

d~φ(t)

dt
= ~θ(~φ(t)) (5)

where ~θ(~m), called the drift [24] for ~m ∈ ∆N , is de-
fined as the expected change of ~m during one GC interval,
with ~θ(~m) = (~θ0(~m), ~θ1(~m), . . . , ~θB(~m)) and ~θj(~m) =

(θ1j (~m), θ2j (~m) . . . , θnj (~m)) for j ∈ B. ~θhj (~m) represents the
expected change of the number of type 〈h, j〉 blocks in GC
process provided that the system is under state ~m. In other
words, for N large and finite t, we can approximate MN (t)
by ~φ(t/N), which is the unique solution of Equation (5) with
~φ(0) = MN (0).

D. Convergence

The convergence exists if five conditions, called H1 to H5,
given in [2], are satisfied. With similar reasoning in [24],
all the conditions are met given Equation (5). Therefore, the
following theorem follows from Corollary 1 in [2].

Theorem 1. If MN (0) → ~m in probability as N tends to
infinity, then sup0≤t≤T

∥∥∥MN (t)− ~φ(t)
∥∥∥ → 0 in probability,

where ~φ(t) is the unique solution of the ODE Equation (5)
with ~φ(0) = ~m.

This theorem states that for N large and finite t, we
can approximate MN (t) by ~φ(t/N), which is the unique
solution of the ODE Equation (5) with ~φ(0) = MN (0).
Corollary 2 in [2] shows that it suffices to show that the ODE
given by Equation (5) has a unique fixed point, or a global
attractor [2].

E. State Transition

The drift ~θ(~m) changes the system state. We thus derive
θhj (~m) by extending the results developed in [24] with the
consideration of data hotness. We define p(h, j, ~m) as the
probability that a block of type 〈h, j〉 is chosen by the GC
algorithm for cleaning under state ~m.

As shown in Equation (5), θhj (~m) is the expected change to
mh

j between two GC processes. For j < B,

θhj (~m) =

(
n∑

h=1

B∑
k=1

p(h,B − k, ~m)× k

)
×

[u(h, j + 1, ~m)− u(h, j, ~m)]− p(h, j, ~m)

(6)



This expression can be understood intuitively by noting that
n∑

h=1

B∑
k=1

p(h,B − k, ~m)× k represents the mean of externally

requested writes between two executions of the GC algorithm.
Any such request to a block of type 〈h, j + 1〉 increases the
total number of type 〈h, j〉 blocks, while a request to a block
of type 〈h, j〉 decreases the total number of type 〈h, j〉 block.
In addition, we also lose a type 〈h, j〉 block if the selection
algorithm chooses such a block under state ~m.

For j = B,

θhj (~m) =

B∑
k=0

p(h, k, ~m)× bB−k,k/BNf(h)
0 − p(h, j, ~m)

−

(
n∑

h=1

B∑
k=1

p(h,B − k, ~m)× k

)
× u(h, j, ~m)

(7)

where bq,pi =

(
q
k

)
pi(1− p)q−i is the binomial probabilities.

The latter two terms can be understood as before, while the
first term states that a type 〈h,B〉 block is formed (as a write
frontier) by k pages copied from the immediately preceding
GC process cleaning a block of type 〈h, k〉 and B − k recent
externally requested writes demanding pages in a tier h block,
none of which invalidates the former k pages. Note that
k/BNf(h)� 1, bB−k,k/bNf(h)

0 ≈ 1. Therefore, Equation (7)
can be reduced to

θhj (~m) =

B∑
k=0

p(h, k, ~m)− p(h, j, ~m)−(
n∑

h=1

B∑
k=1

p(h,B − k, ~m)× k

)
× u(h, j, ~m)

(8)

Note that Equation (1) is now transformed to

A =
B

B −
n∑

h=1

B∑
j=1

j × p(h, j, ~m)

(9)

IV. ANALYTIC RESULTS

A. The d-CHOICES GC Algorithm

The d-Choice GC algorithm [16], [24] randomly selects d
blocks and reclaims the block containing the least number
of valid pages. d is a tunable parameter with a value range
of 1 ≤ d ≤ N . Note that in special cases where d = 1
(resp. d = N ), the algorithm corresponds to the random (resp.
greedy) GC algorithm.

A block containing j valid pages is chosen as the victim
implies that 1) all selected blocks have at least j valid pages;
and 2) at least one of the d blocks has exactly j valid
pages. Furthermore, probability of the selected block, given

it contains j valid pages, is of type 〈h, j〉 is mh
j /

n∑
h′=1

mh′

j .

Therefore, with the d-Choice GC algorithm p(h, j, ~m) can be
jointly written as follows:

p(h, j, ~m) =

mh
j

n∑
h′=1

mh′
j


 n∑

h′=1

B∑
k=j

mh′

k

d

−

 n∑
h′=1

B∑
k=j+1

mh′

k

d

(10)

With ghj =
B∑

k=j

mh
k and ghB+1 = 0, j ∈ B, h ∈ H,

Equation (10) can be written as in Equation (11) by noting
that mh

k = ghk − ghk+1.

p(h, j, ~m) =

(ghj − ghj+1)×

[(
n∑

h′=1

gh
′

j

)d

−
(

n∑
h′=1

gh
′

j+1

)d
]

n∑
h′=1

(gh
′

j − gh
′

j+1)

(11)
Then we derive dghj /dt for j ∈ B, h ∈ H.

dghj
dt

=

B∑
k=j

dmh
k

dt
=

B∑
k=j

θhk (~m) (12)

Using Equation (10) we can write

n∑
h=1

B∑
k=1

p(h,B − k, ~m)k = B −
B∑

k=1

(
n∑

h=1

ghk

)d

(13)

Equation (13) can be understood as follows. The right-hand
side is the mean of free pages gained from a GC process,
which should match the mean of externally requested writes
between two GC executions, represented by the left-hand side
in the equation.

Applying Equation (6), Equation (8) and Equation (13)
to Equation (12), we obtain the following ODEs for j ∈ B.

dghj
dt

=

j−1∑
k=0

p(h, k, ~m)− βu(h, j, ~m) (14)

where β , B −
B∑

j=1

(
n∑

h′=1

gh
′

j

)d

in the second term. Since

u(h, j, ~m) can be replaced by mh
j , dghj /dt can be further

represented by ghj and ghj+1 with mh
j = ghj − ghj+1.

Now, we have a system of ODEs ready. The set of ODEs
given by Equation (14) have an intuitive interpretation. The
first term on RHS represents the rate at which tier h blocks
with less than j valid pages are cleaned; or equivalently the
rate at which tier h block with j or more pages are produced
by GC. β in the second term represents the mean number of
user writes that can be accommodated between two executions
of GC. Then βu(h, j, ~m) is the rate at which blocks of type
〈h, j〉 disappear. Therefore, the combined results on the right
hand side is the rate at which the number of blocks of type
〈h, j〉 varies, which is exactly the meaning of dghj /dt.



TABLE II
SSD PARAMETERS

Parameter Value
page size 4KB
# of pages per block(B) 32
# of blocks per plane 4096
# of planes per die 2
# of dies per package 4
# of packages in SSD 4
SSD capacity 16GB
GC threshold (G) 5%

As β represents the mean number of pages freed by GC
processes, the write amplification A can be written as:

A =
B

β
(15)

We numerically solve the ODEs given in Equation (14) by
Matlab [12] built-in solver ode45 assuming that the numbers
of valid pages in blocks initially conform to a binomial
distribution. We consider the system state to be steady if
Var (dg/dt) < 10−4.

V. TRACE-DRIVEN EVALUATION

We have thus far characterized the dynamics of GC process
and present an analytical model that predicts the write ampli-
fication. In this section we validate the accuracy of the model
via simulations.

A. System Setup

1) SSD configuration: We have used a commercial flash
array simulator offered by our industry partner, who is an
SSD vendor. The simulator models real devices, and can
simulate an arbitrary SSD array configuration with different
flash device characteristics, number of channels, and number
of dies per channel. It can also drive the input using trace files
in DISKSIM format, or using common IO benchmarking tools
such as iometers, vdbench etc. The capacity of the simulated
flash array can scale to the terabyte range. To make sure
our reported result can be repeated, and compared apple-to-
apple, we have chosen SSD configuration that is consistent
with prior literature, and can be likely handled by academic
simulators [13].

Table II summarizes the default values of parameters that
we use to configure an SSD in our evaluation. The flash
array configuration is based on a common SLC SSD [6].
Specifically, the SSD contains 4 flash packages, each of
which can process I/O requests in parallel. Each flash package
contains 4 dies and each die contains 2 planes consisting of
4096 blocks. Each block contains 32 pages of size 4KB. Thus,
each flash package contains 32768 physical blocks in total and
the physical capacity of the SSD is 16GB.

We determine the cleaning threshold to 5%, meaning that
GC will be activated when the number of free blocks in the
system drops below 5% of the total number of blocks in the
SSD device.

TABLE III
WORKLOAD CHARACTERISTICS

Trace write ratio # of 4KB
writes

Write range
(GB)

Working set
ratio ρ

fileserver 72.5% 2837651 13.3 11.3%
oltp 27.2% 945505 13.3 6.0%
varmail 79.9% 8729692 13.3 1.0%
videoserver 17.8% 836614 13.3 18.8%
webproxy 64.6% 10061642 13.3 1.4%
webserver 26.7% 2059610 13.3 23.2%
fin2 21.5% 7621600 9.3 37.9%
hm 66.0% 7857142 13.9 10.9%

2) Workloads: We describe both synthetic and real traces
that drive the simulation. As read requests do not influence our
analysis, we record the write requests only. The write requests
are normalized to aligned 4KB page accesses.
• Filebench [18] is shipped with a library of pre-defined

workload personalities, emulating I/O activity for a va-
riety of applications. The personalities include tunables
for scaling workloads for specific systems. For instance,
the fileserver workload file that emulates simple file-
server I/O activity performs a sequence of creates, deletes,
appends, reads, writes and attribute operations on a
directory tree. In this work, we examine six pre-defined
workloads including fileserver, oltp, varmail, videoserver,
webproxy and webserver [17]. Characteristics of the cre-
ated workloads are given in Table III. Understandably,
with different working set sizes of the selected workloads,
ρ, as defined in Section II, varies accordingly.

• SPC Financial2 [7] is a block I/O trace collected from
an online transaction process application running at a
large financial institution. There are two financial traces
in [7], namely Financia1.spc and Finanacial2.spc. Since
the logical addresses in the former span over 10 terabytes,
which is too large for the chosen SSD capacity, we
only use Financial2.spc, abbreviated to fin2. 21.5% of 36
millions 4KB requests are writes, or 7621600 user write
requests in total. The logical addresses span 9.3 GB and
the working set ratio is 37.9%.

• hm [19] is collected from a hardware monitor server in the
data center in Microsoft Research Cambridge for a week.
The logical addresses span 13.9 GB and the working set
ratio is 10.9%.

3) Hotness binning: In this work, hotness of a logical ad-
dress is measured by update counts. The hotness distributions
of selected workload are shown in Figure 3 - Figure 9. While
the horizontal axis indexes the hotness, the vertical axis is the
number of unique logical addresses. As expected, in general
data hotness is inversely proportional to the number of unique
logical addresses characterized by the hotness. For example,
in Figure 9 a hundred thousand of logical addresses have been
written exactly twice, while a few logical addresses have been
written more than 10,000 times. By grouping addresses with a
similar degree of hotness, the addresses are binned into n tiers
using n− 1 thresholds. In chosen application benchmark and
real traces hotness distributions are highly skewed, meaning



TABLE IV
HOTNESS BINNING FOR SELECTED WORKLOADS WITH n = 2

Workload Hotness binning
fileserver r(1) = 0.468

r(2) = 0.532
f(1) = 0.903
f(2) = 0.097

oltp r(1) = 0.403
r(2) = 0.597

f(1) = 0.672
f(2) = 0.328

varmail r(1) = 0.361
r(2) = 0.639

f(1) = 0.465
f(2) = 0.535

videoserver r(1) = 0.199
r(2) = 0.801

f(1) = 0.894
f(2) = 0.106

webproxy r(1) = 0.091
r(2) = 0.909

f(1) = 0.406
f(2) = 0.594

webserver r(1) = 0.445
r(2) = 0.555

f(1) = 0.904
f(2) = 0.096

fin2 r(1) = 0.349
r(2) = 0.651

f(1) = 0.762
f(2) = 0.238

hm r(1) = 0.064
r(2) = 0.936

f(1) = 0.741
f(2) = 0.259
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Fig. 3. Hotness distribution of write traffic in fileserver

that traffic are dominated by write operations targeting on a
very small portion of logical address space. Thus binning the
address space with equal width would result in highly skewed
values for hotness variables, i.e., r(h) and f(h). We therefore
manually choose thresholds ensuring reasonable partitions for
both r and f . Binning with n = 2 for the selected workloads
are given in Table IV. The second column of the table gives the
fractions of total number of write operations, while the third
column gives the fractions in working set space. For example,
the hot (tier 2) data in fin2, occupying 65.1% of total writes,
are written to 23.8% of working set space, denoted by r(2)
and h(2), respectively, as specified in Section III-A.

4) Simulation behavior: One workload is exercised in one
simulation. Each simulation starts with an empty state, mean-
ing that the SSD is clean and no data has been written. As a
warmup, the trace file is loaded once, ensuring each address
has been written at least once, after which it is repeated. We
collect the cleaning statistics from the second run. To make
sure that the device reaches the steady GC state, the exercising
trace is repeated until more than 50,000 GC are performed.
The write amplification is reported when the simulation ends.

B. Validation by simulation

In Table V and Table VI, we show that with different
settings of block size, hotness binning and d-Choice char-

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000

N
u
m

b
er

 o
f 

u
n
iq

u
e 

p
ag

e 
n
u
m

b
er

s

Update counts (hotness)

Fig. 4. Hotness distribution of write traffic in oltp

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000  10000  100000

N
u
m

b
er

 o
f 

u
n
iq

u
e 

p
ag

e 
n
u
m

b
er

s

Update counts (hotness)

Fig. 5. Hotness distribution of write traffic in varmail
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Fig. 6. Hotness distribution of write traffic in videoserver
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Fig. 7. Hotness distribution of write traffic in webproxy
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Fig. 8. Hotness distribution of write traffic in webserver
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Fig. 9. Hotness distribution of write traffic in fin2

acterization, write amplifications predicted by our analytical
model agree with simulation results for the selected application
benchmarks and real traces with relative errors within 5%.
The A (predicted) is the write amplification predicted by
our model, while A (simulated) is the result of simulation.
Besides, for varmail and webproxy benchmarks, the write
amplifications converge to 1 for all given settings. This is
caused by their small working set ratio making the “perfect”
victim blocks dominant the disk. Our predictions conform to
the simulation results for these two cases.
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TABLE V
ANALYTIC VS. SIMULATED WRITE AMPLIFICATIONS FOR APPLICATION

BENCHMARK [18] WITH d-CHOICE GC ALGORITHM (B = 32)

trace hotness
awareness

d A
(predicted)

A
(simulated)

rel. error

1 1.127 1.128 0.1%
unaware 2 1.024 1.024 0

fileserver 4 1.002 1.002 0
1 1.127 1.128 0.1%

aware 2 1.021 1.018 0.3%
n = 2 4 1.001 1.001 0

1 1.064 1.064 0
unaware 2 1.007 1.006 0.1%

oltp 4 1.000 1.000 0
1 1.064 1.064 0

aware 2 1.008 1.007 0.1%
n = 2 4 1.000 1.000 0

1 1.231 1.233 0.2%
unaware 2 1.066 1.037 2.7%

videoserver 4 1.017 1.004 1.3%
1 1.231 1.233 0.2%

aware 2 1.065 1.036 2.8%
n = 2 4 1.014 1.002 1.2%

1 1.303 1.306 0.2%
unaware 2 1.102 1.100 0.2%

webserver 4 1.033 1.019 1.4%
1 1.303 1.304 0.1%

aware 2 1.100 1.098 0.2%
n = 2 4 1.032 1.017 1.5%

C. Comparison with prior work

We compare our predictions with results given by the state-
of-the-art analytical frameworks. When n = 1, β in Equa-

tion (14) reduces B −
B∑

j=1

(g1j )d, conforming to Equation (18)

in [24], which corresponds to one hotness tier, a special case
of our framework. Table VII shows the agreement with the
results based on ODE(18) in [24] with different values of d
and ρ.

When d = 1, regardless of the value of n, the analytic
results conform to the results given by Theorem 2 in [24] for
the random GC algorithm. Table VIII shows the agreement
between Equation (14) and the closed form results in Theorem
2 in [24] with different values of n and ρ.

When d→∞, it corresponds to the Greedy GC algorithm.
From Equation (10) and Equation (14) we have the following
two expressions, respectively:

p̂(h, j, ~m) =


mh

j
n∑

h′=1

mh′
j

, if
n∑

h=1

ghj = 1 and
n∑

h=1

ghj+1 < 1.

0, otherwise.
(16)

and

β̂ = B −max{j|
n∑

h=1

ghj = 1,

n∑
h=1

ghj+1 < 0} (17)

, for j ∈ B and h ∈ H.
We obtain Equation (16) and Equation (17) as a new set of

ODEs for the Greedy GC Algorithm, expressed by

dghj
dt

=

j−1∑
k=0

p̂(h, k, ~m)− β̂u(h, j, ~m) (18)



TABLE VI
ANALYTIC VS. SIMULATED WRITE AMPLIFICATIONS FOR TRACE fin2 AND

hm WITH d-CHOICE GC ALGORITHM

trace B hotness
awareness

d A
(predicted)

A
(simulated)

rel. error

1 1.611 1.587 1.5%
2 1.271 1.229 3.4%

unaware 5 1.128 1.083 4.2%
10 1.096 1.054 4.0%
1 1.611 1.582 1.8%

32 aware 2 1.268 1.212 4.6%
n = 2 5 1.127 1.078 4.5%

fin2 10 1.095 1.056 3.7%
1 1.611 1.585 1.6%

unaware 2 1.279 1.234 3.6%
5 1.133 1.083 4.6%
10 1.103 1.054 4.6%
1 1.611 1.573 2.4%

64 aware 2 1.278 1.221 4.7%
n = 2 5 1.130 1.093 3.4%

10 1.097 1.040 5.5%
aware 1 1.122 1.124 0.2%

32 n = 2 2 1.022 1.013 0.9%
hm 4 1.001 1.001 0

aware 1 1.122 1.123 0.1%
64 n = 2 2 1.023 1.015 0.8%

4 1.002 1.001 0.1%

TABLE VII
ANALYTICAL RESULTS AGREEMENT TO HOUDT [24] WITH B = 64 AND

n = 1

d ρ ODE Equation (14) ODE (18) in [24]
2 0.93 9.63 9.64
4 0.93 7.72 7.72
8 0.93 7.00 7.00
2 0.86 4.96 4.96
4 0.86 4.08 4.07
8 0.86 3.73 3.74
2 0.79 3.37 2.37
4 0.79 2.80 2.80
8 0.79 2.59 2.59

Another way to approximate performance of the Greedy
GC algorithm is to use a large d value in d-Choice. d ≥ 10
manages to achieve a negligible difference [24]. We therefore
compare the results given by both Equation (18) and Equa-
tion (14) with d = 100, shown in Table IX, to Bux [4] where
the Greedy cleaning is used. We reach the agreement with the
results shown in Figure 1 and Figure 2 in [4] . We set n = 1
for this comparison because hotness is not considered in [4].

With hotness awareness, we compare our results to the
modeling of the Greedy GC algorithm presented in [8]. For a
fair comparison, we create synthetic traces in which 80% data
are hot destined to 20% of working set space with different
ρ values. Note that ρ is equivalent to the over-provisioning
factor α defined in [8], with a value of 1/α. The traces
contains 6-9 million writes ensuring the GC process is fully
exercised. Focusing on the steady GC state, we record the
numbers of valid pages in the selected blocks for the last
100,000 GC processes and report the write amplifications
under the steady state. Predictions by our model demonstrate
better approximation

(1)r(1) : r(2) = 0.2 : 0.8 and f(1) : f(2) = 0.8 : 0.2

TABLE VIII
ANALYTICAL RESULTS AGREEMENT TO HOUDT [24] FOR THE RANDOM

GC ALGORITHM WITH B = 32 AND d = 1

n ρ ODE Equation (14) Theorem 2 in [24]
2(1) 0.24 1.32 1.32
4(2) 0.24 1.32 1.32
2 0.19 1.23 1.23
4 0.19 1.23 1.23
2 0.17 1.20 1.20
4 0.17 1.20 1.20

TABLE IX
WRITE AMPLIFICATION PREDICATED BY EQUATION (18)

AND EQUATION (14) FOR GREEDY GC ALGORITHM

A A
ρ B by Equation (18) by Equation (14), d = 100

0.8 8 2.000 2.157
0.8 16 2.286 2.371
0.8 32 2.461 2.494
0.6 8 1.333 1.310
0.6 16 1.333 1.380
0.6 32 1.391 1.417

D. Design Implications

Since write frontiers are employed to separate data with
different hotness, the degree of hotness skewing affects the
rates at which data in different hotness bins are updated. As
a result, the numbers of valid pages in blocks polarize as
the skewness increases. Figure 12 shows write amplifications
under different degrees of skewness in a 2-tier hotness model
for an SSD with ρ = 0.95 and B = 16. Lower values of
r(1) and higher values of f(1) indicate a higher degree of
skewness. With both d = 2 and d = 20, we observe that
the write amplifications tend to decrease while the skewness
becomes more intensive. In addition, the write amplification
is more sensitive to the skewness change for a larger d value.

Intuitively, the skewness in data hotness affects the rates
at which the numbers of different types of blocks vary. More
specifically, the higher degree of skewness, 1) the higher rate at
which the hot pages are updated; or/and 2) the higher number
of blocks containing hot pages in system. The implication is
that victim blocks with less valid pages have a higher chance to

Fig. 11. Comparison of analytical results for Greedy GC algorithm with
hotness awareness (n = 2, r(1) = 0.2, f(1) = 0.8)

(2)r(1) : r(2) : r(3) : r(4) = 0.1 : 0.2 : 0.3 : 0.4 and f(1) : f(2) :
f(3) : f(4) = 0.4 : 0.3 : 0.2 : 0.1
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Fig. 12. Sensitivity of write amplifications on degree of hotness skewing.
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be selected by the d-Choice algorithm. Analytically, the value
of u(h, j, ~m) in Equation (14) polarizes while the degree of
skewness increases, making the max value of j that satisfies
n∑

h′=1

ghj = 1 smaller. Thus, the second term in the expression of

β decreases, and the value of β thus increases. As a result, the

write amplification A in Equation (15) drops. As
n∑

h′=1

gh
′

j ≤ 1

for all j ∈ B, the write amplification declines quicker when
the value of d increases.

VI. RELATED WORK

Most analytical frameworks evaluating garbage collection
performance in log-structured systems have studied GC algo-
rithms in one of two categories:

1) The w-Windowed GC algorithm [11] picks the block
containing the least number of valid pages among w ∈
[1, N ] least-recently-written blocks.

2) The d-Choice GC algorithm [16] picks the block con-
taining the least number of valid pages among d > 0
randomly chosen candidates.

Desnoyers [8] presents an analytic framework for the FIFO
GC algorithm, a special case of the w-Windowed GC algo-
rithm (w = 1). In general the FIFO GC algorithm results
in the worst write amplification among windowed algorithms.
Clearly, the amplification can be reduced by enlarging the
value of w. However, the improvement is quite limited unless
the window size is very large [8], [11].

On the other hand, the d-Choice algorithm manages to
achieve close to optimal with a small d value [24]. As the
greedy GC algorithm, a special case of the d-Choice GC
algorithm, always selects the block carrying the least number
of valid pages, it offers the best cleaning efficiency. Bux et
al. [4] propose a model to analyze the Greedy GC algorithm
under the uniform workload, and Desnoyers [8] presents a
closed-form solution with an extension of hot/cold data model
proposed by Rosenblum [23].

With the same hotness model, Houdt [24] introduces a
mean field model to analyze the write amplification of a class
of garbage collection algorithms including the greedy GC
algorithm and confirms that the windowed GC algorithm is
not very effective in reducing the write amplification for small
w value. Relying on this framework, Houdt further proposes
an approach [25] separating GC traffic and user traffic and
shows that the amplification reduces significantly as the hot
data gets hotter. Houdt’s models assume that pages containing
data with different hotness can co-exist in a physical block,
while we vision that by designating a write frontier to each
hotness the GC cleaning costs can be further reduced. Li
et al. [16] unify a class of GC algorithms where the best
victim block is selected among a group of randomly chosen
blocks. Their work, based on the mean field analysis, extends
the performance evaluation by revealing trade-off between
cleaning cost and wear-leveling. However, the write behavior
in their framework does not seem to rely on the write frontier
scheme, which apparently is not practical.

While enjoying the high accuracy, our model advances
the state-of-the-art by providing more analytical capability.
First of all, our model is adaptive to generic workloads, not
relying on any type of traffic model, such as the uniform
or hyper-exponential distribution, which are rarely seen in
real applications. The only assumption we make is that the
statistics in the interested workload are stationary. Second,
our framework has the capability of modeling a wider class
of GC algorithms other than the Greedy algorithm. Third, the
support of multiple write frontiers facilitates the investigation
of hotness separation impact on cleaning performance. Fur-
thermore, we perform comprehensive experimental validations
and demonstrate the agreement with the results in [4], [24],
[25], where the trace-driven evaluations were not presented.
A comprehensive comparison of the state-of-the-art analytical
frameworks is given in Table VI.

VII. CONCLUSION

In this paper, we generalize the use of the mean field analy-
sis tool for analyzing the SSD garbage collection performance
to A) a general workload traffic model; B) a wider class of
garbage collection algorithms; and C) a write-frontier based
hotness separation scheme. We find that the predictive power
of the proposed analytical model is accurate, and can therefore
serve its purpose to explore algorithmic design tradeoffs.
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