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Abstract—Providing transactional primitives of NAND flash
based solid state disks (SSDs) have demonstrated a great poten-
tial for high performance transaction processing and relieving
software complexity. Similar with software solutions like write-

ahead logging (WAL) and shadow paging, transactional SSD has
two parts of overhead which include: 1) write overhead under
normal condition, and 2) recovery overhead after power failures.
Prior transactional SSD designs utilize out-of-band (OOB) area
in flash pages to store transaction information to reduce the first
part of overhead. However, they are required to scan a large part
of or even whole SSD after power failures to abort unfinished
transactions. Another limitation of prior approaches is the unicity
of transactional primitive they provided.

In this paper, we propose a new transactional SSD design
named Möbius. Möbius provides different types of transactional
primitives to support static and dynamic transactions separately.
M¨obius flash translation layer (mFTL), which combines normal
FTL with transaction processing by storing mapping and trans-
action information together in a physical flash page as atom

inode. By amortizing the cost of transaction processing with FTL
persistence, MFTL achieve high performance in normal condition
and does not increase write amplification ratio. After power
failures, Möbius can leverage atom inode to eliminate unnecessary
scanning and recover quickly. We implemented a prototype of
Möbius and compare it with other state-of-art transactional SSD
designs. Experimental results show that Möbius can at most
67% outperform in transaction throughput (TPS) and 29 times
outperform in recovery time while still have similar or even
better write amplification ratio comparing with prior hardware
approaches.

I. INTRODUCTION

Transaction is an abstract firstly introduced in database field
which means a serial of database operations must succeed or
fail as a complete unit. It has a set of properties: atomic-
ity, consistency, isolation and durability (ACID) [1], which
serve to guarantee the transactional semantics. To provide
data integrity and avoid data contention, transaction is then
extended to file systems [2], [3] and memory systems [4],
[5], [6]. Write-ahead logging (WAL) and shadow paging are
two primary techniques adopted in database and file systems
to guarantee the transactional semantics. The basic idea of
these two techniques is to avoid in-place updates and recover
data to the original version after transactions are aborted or
interrupted by power failures. These techniques can protect
database and file systems from data corruption. However, these
techniques also introduce complexity of transactional code

and a proportionate number of error-prone points in software
layer [7], [8]. For example, ext3 file system (kernel version
2.6.34.15) has about 28.7% of its code to handle transactional
updates on journaling block device (JBD) layer and MySQL
5.1.34 has about 10.1% code to handle transaction processing
in its InnoDB storage engine.

Recently, with the price per bit of NAND flash decreases
rapidly, NAND flash based solid state disks (SSDs 1) be-
come popular in high performance storage systems [9], [10],
[11], [12]. They feature low power consumption and high
responsiveness. However, NAND flash presents several dis-
advantages. For instance, data are physically organized in a
specific manner, in blocks of pages of bits. The flash blocks
must be erased before they are able to program (i.e., write)
their pages again, which results in out-of-place updates. These
limitations are somehow mitigated by a software abstraction
layer, called a flash translation layer (FTL), which maps
logical page numbers (LPNs) to physical page numbers (PPNs)
and make out-of-place updates, and internal operations like
garbage collection (GC) wear leveling transparent to upper
layer.

Since SSDs have already supported out-of-place updates,
it is intrinsic to leverage this feature to enable transactional
primitives in SSDs. There are several prior approaches to re-
alize transactional processing logic in the firmware of NAND-
like storage devices. TFFS is a transactional file system for
embedded flash micro-controllers [13], but flash is managed by
upper layer file system and not considered as an independent
device in this paper. As a type of conceptual device, transac-
tional SSD, is firstly introduced by Prabhakaran et al. in their
work [14], which allows multiple write operations to be issued
as a single atomic unit with rollback support. Ouyang et al.
proposed another transactional SSD design and implemented
it on FusionIO firmware [15] which could support both read
and write operations in transactions [16]. LightTx is another
transactional SSD design presented by Lu et al. in their
inspiring paper [17]. It utilized a zone-based scheme to scan
and recover transaction states. MARS is another inspiring
transactional non-volatile memory (NVM) SSD which allows
applications to safely access and modify log contents to im-
plement complex transactions simpler and more efficient [18].
Since TFFS and MARS are not NAND devices, we will only

1In this paper, we refer to the NAND flash based SSD simply as the SSD.
Since there exists other SSD like NVM SSD, we will specify in such situations.
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concentrate on the other three types of transactional SSDs in
the following sections. These transactional SSDs efficiently
support transactional primitives in their firmware, but there
are still some unsolved problems left.

First and the most important problem is the long recovery
time after power failures. Since commit flags and other trans-
action information are stored in out-of-band (OOB) area of
flash pages, existing transactional SSDs are all recovered by
whole or a large part of SSD scanning to discard unfinished
transactions. It will introduce a long period of offline time
to repair database or file systems live in SSDs. And it is
intolerable for today’s data-centric applications.

Second, different types of transactional primitives are intro-
duced for different purposes. Basically, existing transactional
primitives can be classified into two main categories, which
are static and dynamic transactional primitives (Details can
be found in Section II-C). Each transactional SSD is designed
with a single transactional primitive to support a certain type
of transactions. And the unicity of transactional primitive they
provided limit the usage of these transactional SSDs.

Essentially, the data of a page is persisted only after
its mapping information becomes durable in SSD. The third
problem of existing transactional SSDs is that they persist
their metadata such as mapping information in FTL once
the transactions are committed. So after each transaction is
committed, there will be some extra FTL persistence writes. It
will cause serious performance problems in some scenarios.

In this paper, we propose a novel transactional SSD de-
sign named Möbius and implement it on Jasmine OpenSSD
platform [19] as a prototype. Möbius can be recovered from
power failures quickly by scanning atom log area (ALA) of
SSD using a directed edge graph (DAG) verification method.
Besides, Möbius provides host interfaces which support rich
transactional primitives for different types of transactions. For
file system transactions, Möbius provides static primitives; and
for long database transaction will include read and write op-
erations, Möbius provides dynamic primitives. By combining
FTL persistence with transaction processing, Möbius can avoid
extra FTL persistence writes in a larger time scale and enhance
the performance.

By revising Linux ATA drivers and adding hundreds of
lines code in upper layer software, we can support database
transaction for MySQL and file system transactions which
provide version consistency for the ext2 file system easily by
using transactional primitives provided by Möbius. It can get a
better transaction processing performance compared with other
transactional SSDs or software solutions. And after a crash, we
can roll back database or file systems to a clean state quickly.

Our main contributions can be summarized as follows:

• Design and implementation of a quickly-recoverable
transactional SSD. We call our transactional SSD
Möbius and implement it in OpenSSD platform as a
prototype. Möbius puts transactional processing logic
into FTL and stores FTL persistence and transaction
information together in a certain area called atom log
area (ALA) of SSD. After power failures, SSD can be
quickly recovered by scanning transaction information
stored in ALA using a directed edge graph (DAG)

verification method. In addition, we revise the page
allocation, garbage collection and wear leveling pro-
cedure of SSD to guarantee these mechanisms won’t
affect Möbius.

• Rich transactional primitives. To the best of our
knowledge, this is the first work to provide both static
and dynamic primitives for transactional SSD. Möbius
can support both primitives with corresponding design
and implementation.

• Real system test and evaluation on our prototype. We
first compare Möbius with normal SSD to demonstrate
performance overhead to support transactional primi-
tives. Then, for end-to-end comparison, we compare
Möbius with other transactional SSD designs. Exper-
imental results show that Möbius can at most 67%
outperform in transaction throughput (TPS) and 29
times outperform in recovery time comparing with
other transactional SSDs.

The rest of this paper is organized as follows. Section II
gives the background of transactional SSD architecture. In
Section III, we propose the atom file abstract and give our
design of Möbius. Then we describe implementation details
of Möbius in OpenSSD platform in Section IV. We evaluate
Möbius on our prototype by real system tests in Section V.
Conclusions are provided in Section VI.

II. BACKGROUD

A. SSD Primary

NAND flash-based SSD is composed by NAND flash chips
and a chip is composed by several flash planes, while planes
are composed by dozens of flash blocks. A block has 64 or
more flash pages live in it and each page has a data area
sized from 2KB to 16KB and OOB area sized 64Byte to
512Byte [20], [21]. Page is the minimum read and write unit
in NAND flash and each page needs to be erased before
write, while erase is an operation with high latency in block
granularity.

To avoid expensive erase operation before every in-place
update, modern SSDs write data in form of log and use a map-
ping table to map logical page number (lpn) to internal physical
page number (ppn). This is known as “out-of-place” updating
specialty of SSDs. And the logical to physical address mapping
scheme within the device is known as the Flash Translation
Layer (FTL). FTL plays the core role in SSD design and
has direct impact on the performance and durability of the
SSD device and significant effort [22], [9], [23], [24], [25],
[26] has gone into optimizing the FTL for performance, space
efficiency, durability, or a combination of these properties.

By mapping granularity, FTL techniques can be divided
into block-level FTL, hybrid FTL and page-level FTL. Because
of high cost block merge operation, block-level FTL and
hybrid FTL are replaced by page-level FTL with big size
DRAM chips are used in SSD.

DFTL [23] is a typical page-level FTL designed for limited
RAM size which can selectively cache page-level address
mapping entries in RAM. DFTL divides SSD flash into three
parts: Data Blocks Area (DBA), Translation Blocks Area



(TBA) and Global Translation Directory (GTD). DBA is used
to store user data, while TBA is used to store mapping table. A
translation page in TBA stores sequential lpn to ppn mapping
entries. GTD is used to index translation pages in TBA since
translation pages are changed frequently. GTD size is small
(4KB for 1GB flash), so it can be cached in RAM with hot
translation pages. DFTL has better performance comparing
with hybrid FTL in limited RAM environment because locality.

Except FTL, out-of-place updating specialty induces extra
complexity in the hardware design of SSD. For example,
Garbage Collection (GC) operation is periodically executed
in SSD to erase and reclaim outdated physical pages and
migrate useful pages in blocks. To realize the sophisticated
internal mechanism in SSD, there are some other components
except NAND flash chips. Like a small computer, SSDs usually
have a ARM-based controller and on board RAM chips to
cache mapping entries and buffer data. Some high-end SSDs
have super capacitors as Sudden Power-Off Recovery (SPOR)
facility.

B. Sudden Power-Off Recovery Mechanism in SSD

In this paper, we regard mapping table and other data stored
in flash except user data as the metadata of SSD. We divide
metadata of SSD into two categories: Global Metadata (GM)
and Local Metadata (LM). GM means metadata describes
whole-disk information and stored in separate pages like
mapping table, free block list and pointers. While LM means
metadata attached with user data in page OOB like lpn, ECC
and version number.

GM is extremely important to SSD since it describes the
SSD. But if we persist GM like mapping entry after each new
page write, it will induce serious Write Amplification [27]
problemi in SSD. So with the size of DRAM in SSD become
bigger, more GM are cached in RAM. But when crash or power
failure or happened, GM in RAM like mapping entries and
pointers will be lost without persistence.

Because SSD internal techniques are confidential in com-
mercial SSDs, there are only few academic work about SPOR
mechanism in FTL after power failure [24], [25]. In addi-
tion, some patents are published on this topic [28], [29].
PORCE [24] is used in block level FTL SSD and mainly
focus on consistency problem when SSD faces power failure
in GC operation. It utilizes some separate blocks to store log
information when GC begins and ends. By these logs, PORCE
can recovery from power failure quickly. CR-FAST [25] is
another work on SSD crash recovery based on a hybrid FTL
named FAST [30]. It writes periodically newly generated
address mapping information in a log structured way. So after
power failures, mapping table is rebuilt by scanning pages
which mapping information is still uncheckpointed. Rogers
et al. presented a similar periodical checkpointing method in
their patent [28]. Lee et al. gave a method by tracing updates
with the same lpn using pointers stored in OOB to efficiently
recover SSD from power failures [29].

C. Transactional SSDs Interface and Design

State-of-the-art transactional SSD interface appears a little
messy. Different transactional SSD designs provide different
interfaces. Actually, they can be divided into two categories

by supporting different types of transaction. We define static
transaction that all data manipulated in the transacton is
determined before the transaction begins, e.g., all data are
already in cache, and dynamic transaction that all data in
this trasaction are not determined when it begins. Accordingly,
static interface only supports the static transaction processing
and dynamic interface can support the dynamic transaction
processing. It is worth noting that dynamic interface can
also support static transaction processing easily. Comparing
with static interface, dynamic interface is more flexible. Static
interface usually can only support write operation in trans-
action, and dyanmic interface could support read operation
in transaction. But for dynamic interface, supporting read
operation in transaction could be difficult in prior designs.

TxFlash [14] proposes two cyclic commit protocols named
SCC and BPCC to realize its static AtomicWrite interface
only for write operations. It links all pages in each transaction
in one cyclic list by keeping pointers in the OOB area of
pages. It judges whether the cyclic list is closed to determine
the state of each transaction after power failures. Since SCC
and BPCC are simple methods by adding a little pointers in
OOB, there’s no extra metadata in SSD GM. But the pointer-
based protocols in TxFlash have two limitations. First, because
there’s no global metadata can be used, TxFlash is required to
scan the whole SSD to find the unfinished transactions and
abort them after power failures. Second, garbage collection
should be carefully performed to avoid the ambiguity between
the aborted transactions and the partially erased committed
transactions, because neither of them has a cyclic list.

Atomic-Write is another transactional SSD interface pro-
posed by Ouyang el al [16]. Their design is based on log-
based FTL and it stores an extra one-bit commit flag with the
value 0 or 1 to determine whether or not the last transaction
was committed before crashes. Atomic-Write is lightweight
and can support both static and dynamic transactions and it
can even support read operations in a transaction. The cost
of transaction can be ignored because it only adds an one-bit
flag in FTL log. But this design also restricts that there is at
most one running transaction in the SSD and this can be the
bottleneck of whole system.

LightTx is a trasactional SSD design which supports
dynamic interface for write operations [17]. It divides flash
blocks into four zones: checkpointed zone, unavailable zone,
available zone and free zone. When crash happens, LightTx
only scan the unavailable and available zones to abort unfin-
ished transactions. This will reduce the recovery time from
power failures in a certain degree. But scanning and verifying
overhead could be high if the zone becomes bigger. Besides
mapping entries are persisted to flash once the transaction
is committed. In page level FTL, it will incur dozens of
page write for a large transaction with hundreds of pages
and make the Write Amplification problem severe. Moreover,
LightTx claims that it provides flexible isolation levels for
transaction processing. Nonetheless, as we will discuss in
Section III-G, this kind of flexibility could induce performance
even correctness problems.

D. Summary

In this paper, we propose a novel transactional SSD ar-
chitecture named Möbius. Möbius is motivated by providing
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Fig. 2: Architecture of Möbius.

FTL SPOR mechanism combining with transaction processing
in SSD. Möbius supports both static and dynamic transaction
interface with corresponding implementation and it can support
read operation in dynamic transaction. Besides, by combining
FTL persistence with transaction processing, Möbius can avoid
extra FTL persistence write in a larger time scale. After power
failure, Möbius can avoid large scale scanning and recover
SSD immediately to a right state.

To differentiate between existing transactional SSD designs
clearly, Figure 1 explains how transactions grow in different
transactional SSDs. In Atomic-Write, transactions are grew
in one-dimension and at any time there will be at most one
running transactions. Trsactions grow in LightTx is in two-
dimension, this will make state tracking difficult. In MU,
transactions are growing in two-dimension, and we use Atom
Log Area (ALA) to track transaction information and recover
from power failure quickly.

III. DESIGN OF MÖBIUS

In this section, we first outline the architecture of Möbius
and then depict its major components in detail.

A. Overview

Möbius is designed as a subsystem in SSD that can store
transaction in the form of a special type of file, atom file, which
has exact one-page-size metadata. Transaction information and
mapping information for pages in the transaction and other
global metadata of SSD are written to a page as atom inode.
Figure 2 gives an overview of Möbius and unveils its major
differences from other transactional SSDs:

• First, Möbius supports both static and dynamic trans-
actions and provides two different interfaces for the
system. For different interfaces, Möbius uses different
mechanism to realize it. In our design, it is possible
that several static transactions running at the same
time without conflict. But for dynamic transactions,
we cannot be whether or not there is proactively. And
to avoid potential confliction, we take a conservative
method. There is at most one dynamic transaction to
run in Möbius simultaneously.

• Second, Möbius combines SSD SPOR mechanism in
its design. Instead of just persisting newly generated
mapping information, i.e. remap table, to flash period-
ically, Möbius regards remap table as delta of mapping
table and stores it in the one-page-size atom metadata.
And after each transaction is committed, there is no
need for FTL to persist remap table explicitly. New
mapping table is built by merging the original mapping
table and deltas in the startup procedure.

• Third, Möbius can provide concurrent processing for
static transactions. And Möbius supports read oper-
ation in dynamic transactions. In prior approaches,
write is the only operation considered in transactional
SSDs because most of them focus on write-back
cache. For write-through cache, computation may also
rely on data read from persistent layer. Thus, read is
an important operation in dynamic transactions.

Details of the interface, internal mechanisms and commit
protocol of Möbius are given in the following subsections.

B. The Interface Matters

Operations Description
WRITE(p) normal write
READ(p) normal read
SWRITE(uuid, p1, . . . ,p

n

) static transactional write
SREAD(p) serializable read
DWRITE(p, flag) dynamic transactional write
ABORT(uuid) abort the transaction

TABLE I: Host Interface.

In order to support the transaction primitives, we revise the
device interface of SSDs by two principles: a) compatible with
current interface; b) minimize interactions between system and
device.

As Table I shows the interface used in Möbius. WRITE and
READ are inherited from the current interface which, means
writing a page and reading a page.

SWRITE is a new command added to support static transac-
tions. The uuid parameter is generated by the system and can
be guaranteed as a universal unique identifier. The p1, . . . ,p

m

parameter denote the pages in memory to be written and here
m is greater than 1. Although there’s no read operation in
static transactions, there may be simultaneous read operations
outside the static transaction. So different isolation level reads
are provided. Normal READ can guarantee it won’t return
the data in the middle of a transaction, i.e. Read Committed
isolation level. While SREAD can provide the strictest Serial-
izable isolation level, which means it can guarantee all write
operations arrive before it are persistent.

DWRITE is the interface to support dynamic transactions.
The flag parameter can tell the device which type of page to get
written. There are 3 types of pages: HEAD, BODY and REAR.
HEAD means p is the first page of a transaction, and REAR
means p is the last page of a transaction. For the rest cases,
value of flag is BODY. ABORT is a new command used to abort
a transaction with a given id, when the id equals to 0 it means
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to abort dynamic transaction since there is at most one running
dynamic transaction in Möbius. In dynamic transaction, it can
use normal READ to support inner-transaction read. Since there
is at most one dynamic transaction running in Möbius at a
moment, we don’t consider isolation for dynamic transactions.

C. Static Transaction Processing

Atom File: We firstly introduce the abstract in Möbius,
which is used throughout this paper: atom file, which is also
abbreviated to atom. We define atom is a type of special file
with exact one-page-size inode. In Section II-A, we mentioned
that SSD can guarantee atomic write operation. In our design,
we combine mapping information persistence with transaction
processing together by storing transaction information with
mapping information in the one-page-size atom inode.

For static transaction, SSD can get all the addresses of
logical pages changed in the transaction before it begins. After
SSD assigns all physical pages for the transaction, Möbius
writes mapping information and transaction information as
atom inode to certain area named Atom Log Area (ALA)
in SSD continuously before starting the transaction. We will
introduce how we implement ALA in Section IV-C. The size
of atom inode always equals to the physical page size of the
SSD. Figure 3 gives an example of 4 KB size atom inode.
Since we mentioned above, a 4 KB physical page usually has a
128 Byte OOB. An address mapping item with a 32 bit logical
page address to a 32 bit physical page address will occupy 8
Byte. In our design, there will be at most 500 mapping items
in the data area of a page. And the left 96+128 Byte space
will be occupied by transaction information and other local
metadata for SSD like ECC.

After writing atom inode to the certain area in SSD, Möbius
will write the data to the assigned physical addresses. Unlike
normal SSD write, a 4 byte transaction id will be written in
the OOB with every page write. For every data write in static

Tx4 Tx5 Tx6 Tx7

Atom Log Area

Tx3

Committed Static Atom inode
Uncertain Static Atom inode

Tx8 Tx9

Dynamic Atom inode

Tx7
OOB

Tx7 Tx7 Tx7

Tx9 Tx3 Tx9

Tx2

User Data

Scanning Direction

Fig. 4: DAG Verification Method.

transaction, mapping information will not be changed in RAM
immediately after the data are written to SSD. They will be
changed together in RAM after the transaction is committed.
So read request will not read any data that belongs to an
uncommitted transaction. But there’s no extra procedure to
persist the dirty mapping information to SSD because they are
actually persisted to SSD before the transaction started within
the atom inode.

When all the pages in a transaction are written to SSD, the
status of this transaction, i.e. commit flag, will be changed in
RAM. Commit flag of a transaction is usually stored within
the transaction information. But in our design, the commit
flag will not be written to the same transaction while it will
be written to the coming-in transactions. So there’s no extra
write for the commit flag. And one atom inode can store as
many as 8 commit flag for other transactions. Since atom inode
that denotes the transaction is stored one by one in ALA,
if we consider the commit flag as a directed edge from the
source transaction to the committed transactions, there will be
a directed edge graph (DAG) in ALA, Möbius use this DAG
to quickly recover from power failures.

DAG Commit Protocol: If a transaction is committed, the
commit flag of this transaction will be written within the atom
inode of a following transaction.

When power failure happens, atom inodes will to check
transaction status by backward scanning. If an atom inode is
pointed by another atom inode, it means that the transaction



denoted by the first atom inode is committed. For those atom
inodes don’t pointed by some other atom inodes, since map-
ping information can be easily get, a read-and-verify procedure
will be carried out to check the transaction status. For every
physical pages in a transaction, Möbius will check whether
they are belonging to this transaction by read pointers stored
in OOB. As Figure 4 shows that, Möbius firstly scans the
ALA to get the DAG, then further checking will be carried
out on those atom inodes without any pointer pointing to them.
To minimize the scanning cost, Möbius set a threshold value
S
max

. S
max

means commit flag of a transaction can be stored
in a atom inode after at most S

max

transactions.

D. Dynamic Transaction Processing with Normal READ and
WRITE

Since dynamic transactions are unpredictable, when we
start a dynamic transaction we don’t know the coming request
of this transaction. Furthermore, as we will introduce in Sec-
tion III-G, dynamic transactions will have contention problem
in concurrent processing. So Möbius is designed to process
dynamic transactions with strict serializable order. We regard
dynamic transaction as normal write in our design. But when
Möbius is processing dynamic transaction, SSD cannot accept
other write request like SWRITE or normal WRITE requests.
Whenever DWRITE or normal WRITE begins, the first page
will be written to Head List in a determined area in SSD.

Unlike static transactions, Möbius cannot write atom inode
before dynamic transactions committed. Möbius use a link-
based commit protocol like SCC/BPCC [14] to solve dynamic
trasaction processing. In normal SSD, there will be a free block
list to be writing. In Möbius, except the free block list, there
will be another Head List to update the first page of a dynamic
transaction or a new begin normal WRITE. When Möbius
accept a dynamic transaction request, it will write the first
page to Head List with a pointer stored in its OOB to point
the next physical page for writing. Then the following pages
also store a pointer in their OOB to point the next page. When
the transaction is committed, the pointer in last page will point
to its head. When the dynamic transaction is committed, atom
inode with mapping information and transaction information
is written to ALA and marked as dynamic transaction. For
normal WRITE, after the mapping area of an atom inode is
full, the atom inode is written to flash and Möbius will accept
a new around WRITE requests. Normal WRITE cannot be
processed concurrently with any type of transaction interface
in our design.

Read operation is supported in dynamic transaction pro-
cessing. Unlike static transactions, when each page in dynamic
transaction is written to SSD, the mapping information in
RAM is changed. So read operation can be easily supported
whether inner-transaction or inter-transaction read.

When a crash happens, since there’s at most one dynamic
transaction running in Möbius, we only check the last transac-
tion in the Head List. Although read the linked list cannot be
accelerated by internal parallelism of SSD, it is still acceptable
because there’s only one linked list to be verified.

E. Other Interface Support

SREAD: SREAD is an interface to provide serializable isola-
tion for static transactions. If a SREAD request is coming, it

will return data after all the static transactions are committed.
Möbius realizes it by adding a flag in RAM to wait for
static transactions before it committed. By providing SREAD,
Möbius can prodivd different isolation level read operations
for static transactions. But for dynamic transactions, since any
time there will be at most one running dynamic transaction in
Möbius, it can provide strictest serializable isolation level for
READ and SREAD is not supported in dynamic transactions.

ABORT: Abort is an interface used to stop a transaction. For
static transactions, when the upper layer system wants to abort
a running transaction, Möbius just don’t store the commit flag
in the following transactions, and it will be garbage collected
if the threshold S

max

is violated. For dynamic transactions,
since atom inode is written after the data is written, Möbius
will write atom inode to mark this transaction as aborted.

F. mFTL

To provide a logical-to-physical mapping in Möbius, mFTL
is introduced as a page-level FTL based on DFTL [23]. As we
outlined in Section II-A, DFTL can selectively cache page-
level address mappings in RAM. In functionality, mFTL is the
same with DFTL, but the persistence logic of translation pages
in mFTL is different from DFTL.

Since DFTL is a fine-grained page level FTL, it avoids
merge operations in hybrid FTL and gains performance benefit.
Nonetheless, ”fine-grained” means more mapping information.
And more mapping information means more metadata persis-
tence. In DFTL, dirty translation pages is written to flash only
when the mapping item in this page is evicted from RAM and
GTD pages in RAM is written to SSD periodically. Whole SSD
scanning is needed to avoid data lost, otherwise DFTL can only
promise data persistence under GTD protection. Since the gap
between data write and translation page and GTD write, DFTL
cannot simply be used in Möbius.

In mFTL, since mapping information is written to flash
in atom inodes when transactions are committed, there’s no
need to write to translation pages again. But this incurs a
problem: How Möbius read the mapping information stored in
atom inodes? In mFTL, it splits Cached Mapping Table (CMT)
into Evicting Area and Resident Area. Evicting Area is like
CMT used in DFTL, but Resident Area is used for mapping
information stored in atom inodes and cannot be evicted out
of RAM. Under extreme condition, every atom inode stores
maximum number of mapping items, the size of atom inode
equals to Resident Area. Evicting Area is used from low to
high address while Resident Area is used from high to low
address. And Resident Area will be set a threshold c%. In
Jasmine OpenSSD platform, since the DRAM is 64 MB, we
set c=20. This threshold c% is close relevant to the threshold
Size

Active

which denotes active area size of ALA because
Size

Active

should promise size of Resident Area does not
violate the c% threshold under extreme condition.

When SSD is booting, the first step is aborting unfinished
transactions, after that, Möbius will read mapping information
stored in the active area of ALA to Resident Area. When the
size of the active area of ALA is greater than Size

Active

,
mapping information stored in the active area of ALA will be
merged into translation pages and the head pointer of ALA
will be updated.



coreutils/lib/full-write.c
41 size_t

42 full_write (int desc, const char

*

ptr,

size_t len)

43 {
44 ssize_t total_written = 0;

45

46 while (len > 0)

47 {
48 ssize_t written = write (desc,

ptr, len);

. ...

. ...

. ...

61 total_written += written;

62 ptr += written;

63 len -= written;

64 }
65 return total_written;

66 }

coreutils/src/copy.c
317 buf = (char

*

) alloca (buf_size +

sizeof (int));

318

319 for (;;)

320 {
321 ssize_t n_read = read

(source_desc, buf,

buf_size);

. ...

. ...

. ...

372 if (ip == 0)

373 {
374 size_t n = n_read;

375 if (full_write (dest_desc,

buf, n) != n)

376 {
377 error (0, errno, _("writing

%s"),

quote (dst_path));

378 return_val = -1;

379 goto

close_src_and_dst_desc;

380 }
381 last_write_made_hole = 0;

382 }
383 }

Fig. 5: Code segment of cp in GNU coreutils.

G. Discussion on Concurrent Transaction Processing

Contention between Transactions: A) For dynamic transac-
tions, it makes concurrent transaction processing more difficult
because of their unpredictable property. Figure 5 gives a
segment of code in GNU cp program as a simple example
to address the thrashing problem in concurrent processing. As
the code shows us, cp is a simple program to read data from
one file into a fixed size buffer and then write the data in repeat
buffer to another file. By repeating this operation, cp copys one
file to somewhere. Let’s think about running cp in a system
with write-through page cache. As the system prefetch function
works, write calls will send frequently. In a write system call,
data will be written and then metadata will be changed. If we
think one system call as a transaction (actually transactional
file systems do that), then reading and modifying logical pages
contain metadata of the file will be a preemption point. If
such contention happens, only one transaction will be reserved
while others be aborted. Such a procedure will invalidate a
lot of pages and become a performance problem. B) For static
transactions, contention brings correctness problem instead of a
performance problem because right order to update contention
pages can enhance concurrency in a certain degree. Let’s think
about two transactional writes to the same file again. This time,

these writes are issued by journal commit process in a system
which uses wirte-back page cache. Without consideration of
data page contention, the metadata page will be a preemption
point again. Tx(A) if the first static transaction including
logical page A, B and C. C is the metadata page which changes
the size of the file from 4KB to 8KB. Tx(B) is the second
static transaction including logical page D, E and C. C is the
metadata page which changes the size of the file from 8KB
to 12KB. Tx(A) is in priority order against Tx(B) in write
order. After Tx(A) and Tx(B) committed, size of the file will
be 12KB. If unfortunately, Tx(B) is committed earlier than
Tx(A), then there will be correctness problem and the file size
will be wrong.

Inter- and Inner- Transaction Read Problem: In a transac-
tional SSD designed to process dynamic transaction concur-
rently, if mapping item is updated in RAM after each page
write, then inter-transaction read operation may get data in
unfinished transactions; if if mapping items are updated in
RAM after transaction is committed, then inner-transaction
read may get the outdated data. As we mentioned above,
LightTx is a transactional SSD design to process dynamic
transaction concurrently. But the author didn’t point whether
or not LightTx will support read operation.

Because of these two problems in concurrent dynamic
transaction processing, Möbius chooses a conservative way to
process dynamic transactions, i.e. sequentially processes dy-
namic transaction and there’s no concurrency between dynamic
transactions.

IV. IMPLEMENTATION

A. Platform

(a) OpenSSD Platform (b) Serial Interface Debugging

Fig. 6: Implementation Platform for Möbius Architecture.

As Figure 6 shows that, we implement Möbius architecture
in Jasmine OpenSSD platform [19], which is a reference
implementation of SSD based on the Indilinx controller. The
firmware of Jasmine OpenSSD can be revised and it provides
a serial prot for debugging. To support transactional interface
in OpenSSD, we add several SATA command to extend the
existing interface of OpenSSD. To support transactional inter-
face in upper layer system, we also revise libATA to support
these command for Linux. In our current implementation, it
only works for SATA interface SSDs. Table II gives the brief
hardware specification of Jasmine OpenSSD platform. There
are two types of NAND flash chips used in our implementa-



Hardware Parameter Value
CPU ARM7TDMI-S up to 87.5MHz
SRAM 96KB
DRAM 64MB
Interface SATA 2.0
Capacity 64GB (open-ended)
NAND Flash 1 Page Size 4KB + 224Byte
NAND Flash 2 Page Size 8KB + 448Byte
ECC 24b/1KB

TABLE II: Brief hardware specification of Jasmine OpenSSD.

tion2.

B. Sync-SWRITE vs. ASync-SWRITE

We implement two modes of SWRITE in our prototype.
Sync-SWRITE returns when all pages in transaction are writ-
ten to flash, but ASync-SWRITE returns once the atom inode
is written to flash.

ASync-SWRITE can also provide transaction guarantee,
but as we will mention in Section IV-E, ASync-SWRITE
may have “false positive” problem because system thought the
transaction is committed but it could be aborted as unfinished
transaction when recovery from power failure.

C. Internal Structures and Mechanisms Implementation

Atom Log Area (ALA) is used to store inodes of atom
files. ALA is an area with sequential physical addresses. ALA
is used to quickly scanning at the boottime because continuous
physical addresses can enhance internal parallelism of SSD and
shorten the scanning time. The most important characteristic
of ALA is that the left boundary of active ALA (Active ALA
Head) is assured and stored as Global Metadata in SSD, but
the right boundary of it is determined by scanning. When the
scanning meets a blank page, it is the right boundary.

As we mentioned in Section III-F, the size of active ALA
cannot exceed c% of RAM size. In our implementation, we
set size of active ALA 12MB, and it can store at most
12MB/4KB=3072 atom inodes. We set the total size of ALA
500MB in our implementation. When the size of active ALA
exceeds 12MB, mapping entries in Resident Area will be
written to flash. This operation won’t block FTL read and
write. After all mapping entries are persistent in flash, left
boundary of active ALA is changed and written to flash.

In static transaction processing, physical addresses are
allocated before transaction starts. We implement a simple
addresss allocation scheme in our prototype which allocates
physical pages sequentially.

D. Garbage Collection

Except ALA, garbage collection scheme is the same as
DFTL. Since data page is invalid only when the mapping entry

2NAND flash 1 uses 34nm Micron MT29F32G08CBABA flash chips and
NAND flash 2 uses 35nm Samsung K9LCG08U1M flash chips. We mainly
test on 4KB page size flash, and only use 8KB page size flash to compare
Write Amplification ratio.

is merged into translation page, the garbage collection process
appears to be delayed. Since ALA is a new internal structure
in SSD, mFTL gives the garbage collection procedure in ALA.
When the ALA is merged with translation pages, these blocks
are outdated and there’s no useful information needed to be
collected. So after left boundary of active ALA is changed,
pages live in the left of the boundary will be erased directly
when SSD is idle.

E. Limitations

Static transaction size limitation is one of the limitations
in Möbius architecture. For large transactions whose mapping
information bigger than one page size, Möbius cannot directly
support it. In our implementation, we divide the transaction
into several small transactions but this actually breaks the
transactional semanteme. For a flash chip with 4KB page size,
it can support at most 500 pages in a trasacntion, which is
2000KB in size; while for a 8KB page size flash chip, it can
support at most 1000 pages in a transaction, which is 8000KB
in size. For super large transaction, it can be supported by
regarding its atom inodes update as a transaction and use
another atom file update to abstract the transaction. This is
just an iteration process.

Besides, Write Amplification problem seems to be another
limitation when Möbius is used to process small transactions
since for every transaction, Möbius will wirte an extra page as
atom inode. In our implementation, for small static transactions
with less than 10 pages size, Möbius will merge them as a big
transaction to alleviate the extra atom inode write cost.

“False positive” problem of ASync-SWRITE interface is
another limitation in Möbius. Under ASync-SWRITE, Möbius
will return after atom inode is written to flash. At this time,
the left of the transaction is still in RAM. Nonetheless, ASync-
SWRITE can still provide the transactional guarantee.

Prior transactional SSD designs use various techniques to
avoid commit log for transactions [14], [16], [17]. But in
Möbius, atom inode is not simply a commit log. It contains
both transaction information and FTL mapping entries to avoid
extra mapping persistence. We will show experiment results in
Section V, Möbius doesn’t make Write Amplification problem
more severe. On the contrary, Möbius has a similar perfor-
mance with others in most cases. In some cases, Möbius even
has better performance because it avoids mapping persistence
in a large time scale.

V. EVALUATION

We evaluate our prototype of Möbius by experimental tests
under different baselines. All tests are performed on a real
machine for which the specification is shown in Table III. For
comparing requirements, we also implement raw DFTL [23],
Atomic-Write [16] and LightTx [17] on OpenSSD. We imple-
ment Möbius with 20MB active ALA size.

In the following, we firstly compare Möbius with raw
DFTL SSD using micro-benchmarks to demonstrate potential
performance overhead of transaction processing. Then we
run macro-benchmarks on top of real transactional SSDs to
compare Möbius against Atomic-Write and LightTx in terms
of performance, write amplification ratio and recovery time.



Processor Xeon X3210 @ 2.13GHz
DRAM 8GB DDR3 1333MHz 2x4GB DIMMs

Boot Device 256GB Samsung SSD
Storage Device Möbius SSD

Operating System Ubuntu 10.04
Linux Kernel 2.6.32

TABLE III: Experimental Machine Configuration.

Since hardware transaction processing outperforms software
solutions has been proved in prior work [14], [16], be restricted
by content length, we don’t give the results of Möbius com-
paring with software transaction processing solutions in our
paper.

A. Möbius vs. Raw DFTL SSD

Since Möbius is based on DFTL and it doesn’t change
the read procedure in DFTL, so we mainly focus on write
operation in this comparison. Actually, there are three types of
write operation in Möbius: SWRITE, DWRITE and WRITE.
As we described in Section III-D, DWRITE and WRITE
essentially have the same internal mechanism. So in the
following comparison tests, we only compare SWRITE and
DWRITE in Möbius with DFTL. Besides, as we mentioned
in Section IV-B, SWRITE has two modes: Sync-SWRITE (S-
SWRITE) and ASync-SWRITE(A-SWRITE).

We compare DFTL with Möbius by performing a com-
pound write which consists of 32, 64, 128 and 256 pages
to storage (averaged over 50 iterations). Since transaction
size is not measured in this test, we only running tests on
NAND Flash 1 with the 4KB page size. To avoid the noise of
environment, we disable the Linux buffer cache for raw device
in our tests to evaluate the overhead of Möbius. Since we don’t
revise page cache for file systems, it will not affect system
performance obviously. Besides, single thread I/O process is
running sequentially, it cannot measure the performance of
raw device accurately. So we also utilize the Linux native
asynchronous I/O library, libaio, to submit all pages via one
I/O request, wait for the operation to complete.

For SWRITE interface, similar with experiments in
Atomic-Write [15], we encapsulate all pages in a single
transaction, issue the request to Möbius, then wait for its
completion. For DWRITE interface, we send the WRITE
request one by one as a dynamic transaction. Both SWRITE
and DWRITE will not buffer data. For Random workload,
pages are randomly scattered within a 5 GB range and aligned
to 4KB boundaries. For sequential workload, logical pages be
written are in sequential order.

Write Latency: Figure 7 shows the average latency to com-
plete these writes with one single process or libaio under
random or sequential workloads. Under random workloads,
raw DFTL SSD outperforms normal single I/O process using
libaio because single process cannot utilize SSD sufficiently.
DFTL is able to slightly outperform DWRITE in Möbius both
using single process and using libaio because there is no
transaction processing logic in DFTL. But both Sync-SWRITE
and ASync-SWRITE is better than AIO DFTL because their
are extra system calls when we use libaio in raw DFTL SSD.

ASync-SWRITE is best among these interfaces because it
returns when the atom inode is persisted in flash. Although
transactions use ASync-SWRITE may have “false positive”
problem, but it still can provide transactional guarantees. Under
sequential workloads, both DFTL and Möbius have better
performance because locality advantage in DFTL. And DFTL
SSD use libaio is better than its random workload result
because of I/O consolidatation functionality in libaio.
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Fig. 8: Bandwidth Comparison Over Raw DFTL and Möbius
on OpenSSD.

Write Bandwidth: Figure 8 shows the average bandwidth
with one single process or libaio under random or sequential
workloads in DFTL SSD and Möbius. Since number of pages
in a transaction has little impact bandwidth, we only give the
bandwidth of 256 pages compound write. Because OpenSSD is
an experimental platform, so the extreme bandwidth is limited
in about 95MB/s. In Async mode SWRITE, it can approach
the extreme write bandwidth of our platform.

B. Möbius vs. Other Transactional SSD Designs

To compare Möbius with other transactional SSD designs
by macro-benchmark, we evaluate an industry standard trans-
action processing workloads DBT-2 [31] which is implemen-
tation of TPC-C [32] and fileserver and webserver benchmark
in Filebench [33]. For these three types of micro-benchmark,
DBT-2 is used on revised MySQL database and filebench
is running on a revised jbd layer for ext3. We first run
these benchmarks on different transactional SSD to get the
bandwidth and then get the TPS (Transaction per Second)
metric as the performance index for each transactional SSD.

Figure 9 shows that the performance under macro-
benchmark in terms of bandwidth and Transaction per Second
(TPS). Transaction throughput is normalized by the result
of Atomic-Write. We can find that, Möbius can at most
67% outperform Atomic-Write using A-SWRITE in transac-
tion throughput result. S-SWRITE is a more strict form of
transactional interface and it can provide similar throughput
comparing with Atomic-Write. In filebench tests, Atomic-
Write outperforms S-SWRITE because transactions are small
in these scenarios.

Figure 10 shows the Write Amplification ratio compari-
son between Möbius, raw DFTL Atomic-Write and LightTx.
Result shows that Möbius do not enlarge Write Amplification
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Fig. 7: Latency Comparison Over Raw DFTL and Möbius on OpenSSD.
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actional SSDs on OpenSSD.

ratio comparing with other methods although it adds one page
size atom inode for each transaction. It is because atom file
also absorbs some mapping writes. Moreover, it is even better
than LightTx. LightTx is a sliding zone based method, and
the boundaries of zones will be written frequently once the
transaction states are changed. As for Atomic-Write, it will
write mapping information once a transaction is committed.
This will introduce a serious number of extra mapping writes.

Figure 11 shows recovery time comparison between
Möbius and other transactional SSDs under different scanning
zone size. ALA is the scanning zone in Möbius while Available
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Fig. 11: Recovery Time of Different Transactional SSDs.

Zone and Unavailable Zone is the scanning zones in LightTx.
In Atomic-Write implementation, its scanning zone size is
fixed and small enough for quickly scanning. But in LightTx
and Atomic-Write, it Sudden Power-Off Recovery (SPOR)
procedure is operated by FTL. Specifically, DFTL needs to
scan large part of the SSD. Result shows that Möbius 29
times outperform LightTx in recovery time, when the scanning
zone size is 4GB. 4GB is a common size for scanning after
power failure because common SSDs running I/O intensive
workloads could easily get 4GB in nearly 50 seconds. Möbius
combines SPOR and transaction logic together to get the
shortest recovery time.



VI. CONCLUSION

Transaction processing is an important property required by
modern storage systems. Since NAND flash based SSDs are
extensively employed as storage devices, design of transac-
tional SSD becomes challenging for software implementation
due to “out-of-place” issue of SSDs. Thus, architecture level
solutions become more attractive. With the help of our Möbius
architecture, transaction processing is enabled for different
interfaces. More important, the FTL consistency issue, which
is neglected in previous approaches, is also addressed. In addi-
tion, the experimental results show that Möbius can outperform
state-of-art approaches.
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