
Jericho: Achieving Scalability Through Optimal Data Placement on Multicore Systems

Stelios Mavridis1, Yannis Sfakianakis1, Anastasios Papagiannis, Manolis Marazakis and Angelos Bilas1

Foundation for Research and Technology - Hellas (FORTH)
Institute of Computer Science (ICS)

100 N. Plastira Av., Vassilika Vouton, Heraklion, GR-70013, Greece
{mavridis, jsfakian, apapag, maraz, bilas}@ics.forth.gr

Abstract—Achieving high I/O throughput on modern servers
presents significant challenges. With increasing core counts,
server memory architectures become less uniform, both in terms
of latency as well as bandwidth. In particular, the bandwidth
of the interconnect among NUMA nodes is limited compared
to local memory bandwidth. Moreover, interconnect congestion
and contention introduce additional latency on remote accesses.
These challenges severely limit the maximum achievable storage
throughput and IOPS rate. Therefore, data and thread placement
are critical for data-intensive applications running on NUMA
architectures. In this paper we present Jericho, a new I/O stack
for the Linux kernel that improves affinity between application
threads, kernel threads, and buffers in the storage I/O path.
Jericho consists of a NUMA-aware filesystem and a DRAM
cache organized in slices mapped to NUMA nodes. The Jericho
filesystem implements our task placement policy by dynamically
migrating application threads that issue I/Os based on the
location of the corresponding I/O buffers. The Jericho DRAM
I/O cache, a replacement for the Linux page-cache, splits buffer
memory in slices, and uses per-slice kernel I/O threads for I/O
request processing. Our evaluation shows that running the FIO
microbenchmark on a modern 64-core server with an unmodified
Linux kernel results in only 5% of the memory accesses being
served by local memory. With Jericho, more than 95% of accesses
become local, with a corresponding 2x performance improvement.

I. INTRODUCTION

Modern servers have switched from SMP to NUMA mem-
ory architectures, for scaling the number of cores as well
as the capacity and performance of memory. NUMA archi-
tectures consist of nodes, each node having its own local
memory controller and high speed interconnect to other remote
nodes. By increasing the NUMA nodes in a system, we can
scale memory in terms of capacity as well as aggregate
throughput.All these design choices result in different memory
latency and bandwidth towards local and remote memory, with
remote accesses being significantly slower [1], [2]. Application
performance varies over a disturbingly wide range, depending
on the affinity of threads to memory pages. Moreover, due
to possible contention in memory controllers and queuing
delays in the interconnect, applications may experience further
performance degradation.

Applications seriously affected by NUMA effects include
scientific applications using MapReduce and similar frame-
works, virtual machine workloads, and other I/O-intensive
applications, especially when application threads access in-
dependent file sets. Focusing on the later, a major cause of

1Also with the Department of Computer Science, University of Crete,
Heraklion, Greece.

performance degradation is the weak buffer affinity policies in
the Linux page cache.

The Linux kernel has been NUMA-aware since version
2.5 [3]. System memory is organized into zones, each of them
corresponding to a single NUMA node. Accordingly the page
cache became NUMA-aware by using the first-touch policy.
When a miss occurs, the newly allocated buffer is allocated
from the issuer’s local NUMA node. This eliminates remote
accesses as long as all later accesses happen from a CPU core
in the same NUMA node. The problem with current versions of
the Linux kernel is that the task scheduler implements a weak
affinity task placement policy. This means that task migrations
will not always keep tasks in the same NUMA node as their
buffer, breaking affinity.

 0

 6

 12

 18

 24

 30

 36

 42

 48

 54

 60

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e

ss
e

s
(%

)

cores

Local Accesses(Native Placement)
Throughput(Native Placement)
Throughput(Proper Placement)

Fig. 1. Comparison of proper and native task placement with FIO.

Figure 1 shows how the FIO microbenchmark [4] scales
on a 64-core NUMA server. The entire dataset fits in the
server’s page cache, i.e. there is no I/O device activity. There
is one thread per core, each accessing its own data file. The
proper placement curve presents performance under optimal
placement, where the buffers for each of the data files are
from a single NUMA node and each task only accesses buffers
for its local NUMA node. The native placement curve shows
an execution without enforcing affinity. The bars in the back-
ground of the graph show the ratio of local memory accesses
in the native placement run. For the proper placement run, the
local ratio is always close to 100%. Without explicit placement
for achieving locality, the Linux scheduler migrates threads,
thereby leading to remote memory accesses, and performance
does not scale with more than 16 threads. With explicit
placement, threads run only on cores of the NUMA node
where their accessed data reside, generating exclusively local
memory accesses, with throughput scaling up to 64 threads.
The throughput difference between the two configurations is

978-1-4799-5671-5/14/$31.00 c© 2014 IEEE

VFS

I/O Scheduler

To I/O Devices

Filesystem

[Userspace]

[Kernelspace]

Application Threads

Inode Cache
Dentry Cache
Page Cache

Common I/O Path[Native Stack] [Jericho Stack]

Inode Cache
Dentry Cache

JeriCache

XFS

JeriFS
Task Affinity

Control
Container
Allocator
Journal

Extent Allocator
Journal

Buffering/Caching

Container
Allocator
Journal

Slices

Rq Queue

Hash Table
Pipeline

Evictor

Rq Queue

Hash Table
Pipeline

Evictor
Slices

Fig. 2. Comparison of native IO stack versus Jericho.

3.3x with 64 threads, showing the dramatic impact of locality
management on workloads executing on a NUMA server.

This paper introduces Jericho, a redesigned I/O stack
aiming to achieve optimal affinity of data and processing
contexts in manycore systems. Jericho consists of a NUMA-
aware filesystem and a replacement for the Linux page cache.
This approach is necessary to enforce placement constraints
for both tasks and I/O buffers.

In order to accomplish our design goals a radical redesign
of the I/O stack is necessary. As shown in Figure 2, our I/O
stack modifies key components of the VFS layer. The existing
page cache is bypassed and our own JeriCache is used instead.
With the existing page cache, although the first-touch policy
results in buffers being allocated locally to the I/O-issuing
tasks, later task migrations (after context switches) may break
affinity. Our page cache replacement, JeriCache, is organized
as as a group of independent caches. We use the term ’slice’
to describe a single cache instance, limited to using memory
from a single NUMA node and caching a specified range of
blocks from an underlying storage device. Mapping storage
block ranges to NUMA nodes allows us to implement policies
based on the actual data set of each application, instead of
tracking I/O requests and I/O buffers in the Linux kernel.
Having a custom filesystem, JeriFS, allows us to determine
at the time of each I/O request whether the I/O-issuing task
is placed at the same NUMA node as the requested data. The
storage space managed by this filesystem consists of a set of
block ranges from the underlying storage that correspond to
the JeriCache slices. This arrangement allows to place files to
use storage from a specific storage block range and, moreover,
I/O buffers from a single NUMA node.

We compare Jericho with the unmodified Linux kernel
and we find that for 64 threads we improve sequential read
I/O throughput to 1.8x over the baseline system, and sequen-
tial write I/O throughput by 2.5x. Similar improvements are
achieved for random IOPS performance.

Overall, our contributions in this paper are:

• We quantify the impact of thread and data placement

on a NUMA server.

• A simple locality management scheme, allowing
proper affinity with negligible overhead.

• A NUMA-aware filesystem, capable of enforcing cor-
rect task placement.

• A page-cache design capable of controlling page
placement.

The rest of this paper is organized as follows. Section II
describes the design of Jericho. Section III presents our experi-
mental results and compare our approach with two unmodified
Linux kernel versions. Section IV reviews prior related work.
We summarize our conclusions in Section V.

II. DESIGN

NUMA[0] NUMA[1]

(T0)

(Tx)

Buffer(A)thread(A)
Local Access

Buffer(A)thread(A)
Remote Access

thread(A)
 Local AccessWeak Affinity (Thread can leave initial node)

(No Migration)

(Migrated)

Fig. 3. Locality Management in Linux.

A. Locality Management in Linux

In this paper, we address the issue of how to improve
thread-to-data affinity for data-intensive workloads running
on a NUMA servers. Intuitively, to achieve consistently good
performance we need to keep each thread close to its data,
avoiding as much as possible the migration of individual
processes to a different processor core. Migration from one
core to another can be very expensive, due to the loss of ’warm
state’ in L1 and L2 caches. This cost is particularly severe for
migrations across NUMA nodes, where L3 cache state is also
lost for the migrating thread.

The Linux kernel offers primitives for allocating memory
from specific memory nodes, as well as primitives to influence
thread scheduling based on preferences about the cores to be
used. Their use by applications is limited however. To ensure
local memory accesses they use a first-touch policy, where
buffer placement is decided at the first access. The scheduler’s
weak-affinity policy however allows a task to be migrated
across nodes. This in turn negates any effect of the memory
placement policy (Figure 3).

NUMA[0] NUMA[1]

(T0)

(T1)

(Tx)

Buffer(A)thread(A)

Buffer(A)thread(A)

Thread Migration

Local Access

(NUMA0)
(NUMA1)

Buffer(A)thread(A)
Local Access

(NUMA1)
(Thread Pinned to
correct NUMA node)

Fig. 4. Locality Management in Jericho.

B. Locality Management in Jericho

Achieving proper task/data affinity requires task and buffer
placement. In our design task placement policies are applied at
the filesystem. Buffer placement is handled by our page cache.
In the following subsections, we describe the essential aspects
of Jericho.

C. JeriFS

JeriFS is a custom filesystem that implements key VFS
operations such as read, write, mkdir, open, close, fsync .
The filesystem uses the inode and directory (dentry) cache.
We bypass the existing page cache, using our own JeriCache
design (detailed in Section II-D).

Exploiting the fact that filesystem code runs on the same
context (albeit in kernel space) as the user application, we can
migrate the user context without having to modify scheduler
code. At every filesystem operation, the filesystem checks the
current affinity of the issuing thread and acts accordingly (see
Figure 4). Whenever the thread is attempting to access remote
buffers the filesystem alters the thread’s affinity, limiting it to
run only on the CPU core of the NUMA node where the buffer
is placed. Finally, it forces a context switch, effectively mi-
grating the process to a local node. When the process resumes
execution on its ’home’ node the I/O operation is guaranteed
to only cause local memory references. Although migrating a
process is an expensive operation, the cost is amortized since
every process issues multiple subsequent filesystem requests.

Having ensured tasks run only on CPUs of the ’home’
node, correct memory placement must be ensured. Similar to
other modern filesystems, JeriFS uses extents and containers1,
for block allocation. This allows for high concurrency of
allocations and better disk layout. We divide the underlying
storage into slices, each slice having a home node. Assigning
each slice a ’home’ node, ensures that each NUMA node is
responsible for an equal volume of data. Deciding slice sizes
and load placement policies based on number of processes
or throughput,is not a suitable heuristic as these can vary
greatly during execution. We instead opted for a directory
based, round-robin policy, where every directory in the root
of JeriFS is assigned a slice. This provides a user-controlled
mechanism for assigning workloads to NUMA nodes. Users
can implement policies better suited to their usage scenarios.

D. JeriCache

The Jericho page-cache, implemented as a kernel module,
supports multiple independent write-back caches over a shared
pool of page-sized buffers. For each cache instance (slice),
we explicitly specify from which memory nodes to consume
memory. Each cache is controlled by a private state machine
in a separate kernel thread that allows for explicit placement
and reduces cross-core interference.

1) Cache Operations: JeriCache supports a pointer-based
interface to buffers, to avoid data copies and page migrations
across NUMA nodes. The API supported by Jericho provides
our custom filesystem with direct access to page-sized buffers
managed by a cache instance. To serve a read or write request,

1Containers are similar in function to the XFS Allocation Groups

JeriFS issues a Get call for the desired block range. Write
requests to blocks holding filesystem metadata are marked (by
our custom filesystem code), so that the cache handles any
modifications to filesystem metadata blocks on storage in a
write-through fashion. This is essential for recoverability in
the event of failure.

The waitForGet call blocks the caller until all of the
requested blocks are available in the cache. Upon completion,
the caller receives a pointer to the appropriate buffers as well as
an opaque handle. The cache maintains a reference count for
each block, implemented as an atomic counter. For a buffer
to become eligible for release from the cache, the reference
count must be equal to zero. Modified (“dirty”) buffers will
be flushed to the underlying storage before re-use. The caller
is expected to issue a Put call when it no longer needs the
buffers provided by a previous successful Get call. For write
(and read-modify-write) calls, the caller also needs to provide
an indication if a buffer has been modified, by the means of
a dirty flag. The waitForPut call allows a caller to block until
all modified blocks, if any, have been flushed.

The JeriCache assists the filesystem in implementing the
fsync system call. The filesystem determines which blocks
need to be flushed to the underlying storage and then issues
the syncRange call. As with the Get/Put calls, the user then
can call waitForSync which blocks until all specified blocks
have been written to the underlying storage device.

2) Request processing and data structures: As our design
revolves around NUMA slices, each slice corresponds to a
cache instance. Every cache instance uses a hash table as
its lookup structure. Each hash table consists of double-
linked bucket lists with each entry contains a packed array
of elements. Element packing was inspired in part by the
work in [5]. Each element describes a page-sized buffer along
with a reference counter, flags and a timestamp. Packing
multiple elements together is an optimization for improving
processor cache utilization. Since the cacheline size on current-
generation servers is 64 bytes and the common pointer size is
8 bytes, we use the first 16 bytes as pointers for the next and
previous elements packed elements. In the remaining 48 bytes
of the cacheline, we place identifiers for the packed elements.
By placing these items in a single cacheline, we reduce CPU
cache misses on sequential scans. The remainder of the packed
array contains page pointers, flags and timestamps. Using our
element packing has reduced our metadata overhead along with
the reduction of memory accesses and the resulting reduction
of CPU cache misses. Just Similar to the authors of [5] we
saw a 10-25% improvement in performance in most cases.

Hash tables have been used in page cache implementations
before. Linux used a hash table for the page cache until version
2.4. In 2.4 it was replaced by an RCU [6] radix tree, as the
single lock protected hash table showed poor scalability.

JeriCache uses a hash table protected with fine-grain locks.
Every bucket is protected by a lock, this coupled with the hash
function distribution results in very rare collisions and lock
contention. This approach achieves a good balance between
memory overhead and lock contention. Additionally we made
the bucket head structure fit in a single cache line, thus
eliminating false sharing.

Each cache instance is supported by two running contexts

together with bottom-half interrupt contexts. The pipeline
thread is responsible for processing cache requests in stages.
The evictor thread implements the replacement policy. Inter-
rupt contexts handle I/O completion notifications and delegate
processing to the pipeline thread. In the case of cache hits,
we avoid triggering the pipeline thread and we “inline” the
request processing flow in the I/O issuing context. This avoids
the impact of a context switch. In the case of cache misses,
we need to enqueue the request for processing by the pipeline
thread. The pipeline thread implements the following stages
for each I/O:

• New Stage This is the pipeline’s entry point. For each
page in every request we perform an atomic lookup-
insert operation. When a lookup results in a miss, a
new element is inserted in the cache. If on a miss,
a buffer for the newly inserted element cannot be
found, the request is moved to the stalled stage until
the necessary page(s) are available. On all hits, the
reference counter of the found element is increased. In
cases where the element is being written or read from
storage and the request or Get has already acquired
the element, it is then put on the Clashed stage until
the element becomes available again.

• Stalled Stage Requests in this stage have had one or
more pages resulting in a miss and the required pages
could not be acquired from the cache’s group. They
stay in this stage until the evictor reclaims the required
pages. After pages are assigned to the elements any
related I/O is issued.

• Clashed Stage Requests in this stage have one or
more elements that are either Stalled or part of an I/O
(read, or flush). The request has to wait for the I/O to
be completed or the element to acquire its page.

• Execute Stage This is the last stage of the pipeline
where the user provided completion callback is exe-
cuted and the request structure is returned to the free
request pool.

3) Flushing, Evictions, and Replacement: Eviction is im-
plemented by a separate thread per cache instance. The evictor
thread is responsible for both flushing dirty elements and
keeping the cache within user-specified size limits. The flush-
ing and eviction of dirty elements are coupled in the current
design. When creating a cache instance the user provides
two watermark-type thresholds for cache occupancy to control
when the evictor thread becomes active and for how long.

4) Cache Replacement Policy: Jericho implements an LRU
replacement policy. Instead of a list-based LRU implementa-
tion we use timestamps to approximate staleness and reduce
synchronization overheads. The evictor thread scans the buffers
in the hash table and evicts buffers with a timestamp older than
a threshold. If a buffer is clean and eligible for eviction, it is
immediately and atomically removed from the cache. If a dirty
buffer is encountered, then it is put in a queue of buffers to be
flushed. The evictor then searches for the next (consecutive)
buffer in the cache; if it finds such a consecutive buffer that is
dirty and eligible for eviction, it appends it to the flush queue.
When a consecutive buffer does not exist or cannot be evicted,
the flush queue is sent to the underlying storage device as a

M
em

or
y

C
on

tr
ol

le
r

6 CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA8

M
em

or
y

C
on

tr
ol

le
r

7CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA7

6.
4G

T/
s

M
em

or
y

C
on

tr
ol

le
r

4 CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA4

M
em

or
y

C
on

tr
ol

le
r

5CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA5

6.
4G

T/
s

M
em

or
y

C
on

tr
ol

le
r

0 CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA0

M
em

or
y

C
on

tr
ol

le
r

1CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA1

6.
4G

T/
s

M
em

or
y

C
on

tr
ol

le
r

2 CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA2

M
em

or
y

C
on

tr
ol

le
r

3CPU0
CPU1
CPU2
CPU3
CPU4
CPU5
CPU6
CPU7

NUMA3

6.
4G

T/
s

Socket 1Socket 0

Socket 3 Socket 2

8*6.4GT/s = ~6.4GB/s

8*6.4GT/s = ~6.4GB/s

16*6.4GT/s = ~12.8GB/s

8*6.4GT/s = ~6.4GB/s

16*6.4GT/s = ~12.8GB/s

8*6.4GT/s = ~6.4GB/s

16
*6

.4
G

T/
s

=
~1

2.
8G

B
/s

8*
6.

4G
T/

s
=

~6
.4

G
B

/s

16
*6

.4
G

T/
s

=
~1

2.
8G

B
/s

8*
6.

4G
T/

s
=

~6
.4

G
B

/s

Fig. 7. Organization of an 8 NUMA node server and 64 cores. Unidirectional
bandwidth inside arrows.

single (usually large-sized) write request. Issuing large writes
takes better advantage of storage device throughput therefore
resulting in better performance. After issuing the write request,
the evictor resumes the hash table’s scan.

Processor socket count 4
Cores/processor socket 16

Motherboard Tyan S8812
Processor type AMD Opteron 6272 (2.1GHz)

Processor core caches
L1: 2x32KB (code - per 2 cores), 16KB (data)
L2: 4x2MB (per 2 cores)
L3: 2x8MB (per 4 cores)

DRAM (DDR3, # DIMMs) Up to 16 (up to 512 GB, currently 256 GB)
Interconnect type HyperTransport 3.1

Interconnect topology Point-to-Point, asymmetric
Storage Devices 16 Solid State Disks (Samsung 830 Series) in RAID0 configuration

Storage Controllers 2x LSI MegaRAID SAS 9265-8i controllers,
each with 8 Solid State Disks attached

TABLE I. EVALUATION SETUP

III. EVALUATION

A. Experimental Testbed and Methodology

Figure 7 depicts the layout of the 8-node, 64-core server we
use in our evaluation [7]. Memory accesses to a local node go
through a local memory controller. As each memory controller
uses double channel DDR3 modules the maximum theoretical
throughput is 21.3 Gb/s per memory controller [8]. Each
socket contains two memory controllers with an aggregate
42.6 GBytes of throughput, and 16 processing cores. Remote
accesses on the other hand have to pass through one or
two interconnect links. This topology results in non-uniform
memory access times. In addition the interconnect bandwidth
is limited compared to the available memory bandwidth.

This system topology results in many different choices
for the relative placement of threads and their corresponding
data-sets result in widely varying performance levels. Many of
these placements can potentially lead to congestion on certain
interconnect links and overload for some memory controllers
in the system [9].

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

Fig. 5. FIO Reads for Jericho (left), Native 2.6.32 (middle) and Native 3.13 (right).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

Fig. 6. FIO Writes for Jericho (left), Native 2.6.32 (middle) and Native 3.13 (right).

Table I summarizes the testbed used in our experimental
evaluation. The testbed consists of 4 processor sockets and
each of them contains 2 NUMA nodes. As a baseline for the
evaluation of Jericho we use the native I/O stack of Linux
kernel v.2.6.32 which is currently used in most enterprise
Linux installations. For some of the experiments, we also
use the v.3.13 Linux kernel, because it has incorporated
several optimization related to NUMA memory organization.
We use FIO [4] and IOR [10] microbenchmarks for our
experimental analysis. These tools generate I/O workloads that
expose issues related to CPU/memory affinity, in a controlled
and reproducible manner. By using them we can stress the
testbed up to its maximum attainable I/O performance limits.

Each graph presents two sets of data points for a specific
system configuration. The first set, plotted as a curve, is
the application throughput, as reported by the corresponding
benchmark. The second set, plotted as vertical percentage bars,
is the percentage of local memory accesses. We calculate the
percentage of local memory accesses from samples collected
with the likwid performance tool [11]. We collect samples of
performance events related to the locality of memory accesses2

during the execution of each experiment.

Next, we discuss the results obtained with the FIO and IOR
microbenchmarks and finally we briefly discuss the impact
of NUMA-related overheads in the presence of storage device
accesses.

B. FIO Microbenchmark

FIO spawns a number of threads doing a particular type of
I/O pattern as specified by the user. We present experimental
results with up to 64 threads, with four different I/O patterns:
sequential reads, sequential writes, random reads, and random
writes. In all of the experiments in this subsection the I/O
request size os 4KB.

2UNC CPU REQUEST TO MEMORY LOCAL LOCAL CPU MEM
and UNC CPU REQUEST TO MEMORY LOCAL REMOTE CPU MEM

Each Jericho and Native run starts with a clean, freshly
booted, system state. First we run a 64 thread FIO instance
issuing sequential writes to quickly create our dataset, which
consists of 64 files, of 2 GBytes each. All files fit in memory,
for both the native I/O stack and Jericho. We then proceed
with the measurement phase, issuing the various I/O patterns
for a number of iterations, each lasting 30 seconds. We discard
the results from the first iteration, to focus our study on the
case where there is almost no device-level I/O access.

The initialization phase is subject to the system’s
task/memory placement policies. In the Jericho configuration,
workload threads are constrained to run only on CPU cores of a
single NUMA node, resulting in balanced arrangement of up to
8 threads per NUMA node. The native configuration results in
a load-balanced arrangement, where the scheduler assigns no
more than one thread per CPU core. The crucial difference is
that the native configuration does not restrict thread migration
across NUMA node boundaries. Thus, a thread migration
during the initialization phase will spread file blocks across
the memory of more than one NUMA nodes. Moreover, during
the measurement phase even this ’fragmented’ arrangement of
workload threads and file blocks will not be retained. Further
thread migrations will contribute to more memory accesses
across different NUMA nodes. In contrast, with Jericho the
placement of I/O-issuing threads will not change over time,
resulting in better and more predictable performance.

Figure 5 shows FIO with sequential reads. With the
unmodified 2.6.32 kernel (marked Native 2.6.32 in the graphs)
scaling is limited up to 16 threads, with almost no additional
throughput with more cores. Using the unmodified 3.13 kernel
(marked Native 3.13 in the graphs) scaling is limited up to 40
threads also with no additional throughput with more threads.
The more recent kernel shows improved I/O performance over
the older one. Performance shows a strong correlation with
the percentage of local memory accesses. Jericho outperforms
both Native kernels, with almost linear scaling up to the maxi-
mum number of threads. With 64 threads, the improvement in

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

Fig. 8. FIO Random Reads for Jericho (left), Native 2.6.32 (middle) and Native 3.13 (right).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

Fig. 9. FIO Random Writes for Jericho (left), Native 2.6.32 (middle) and Native 3.13 (right).

terms of throughput over Native 2.6.32 is 2.9x and over Native
3.13 is 1.8x.

Figure 6 shows FIO with sequential writes. We note a
strong correlation of local accesses to throughput. With Native
2.6.32, the highest throughput of 15 GBytes/s is achieved
with 24 threads, after which performance drops down to 10.5
GBytes/s using 64 threads. In the case of Native 3.13, the high-
est throughput of 19 GBytes/s is achieved with 58 threads, after
which performance drops down to 15.5 GBytes/s GBytes/s
using 64 threads. Jericho scales much better, reaching up to
35.5 GBytes/s with 64 threads. The improvement in terms of
throughput over Native 2.6.32 is 3.4x and over Native 3.13 is
2.3x.

Figure 8 shows the results with FIO running the random
read I/O pattern. We can see again the strong correlation of
local accesses to throughput. In Native 2.6.32 using 64 threads
the percentage of local accesses is 16.5%, in Native 3.13 it
is 15%, and in Jericho it is 96.5%. The improved locality
translates to a throughput improvement of Jericho over Native
2.6.32 by 2.8x and over Native 3.13 by 1.7x.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cores

Worst Placement
Native Placement
Perfect Placement

Fig. 10. Evaluation of Native, Best and Worst placement, with FIO.

Figure 10 illustrates that for FIO with the random read

I/O pattern on the Native 2.6.32 system configuration, thread
placement has a large impact on application performance. The
best case has 5.5x the throughput of the worst case, i.e. perfor-
mance variations can be quite pronounced without constraining
thread affinity. The typically occurring case (marked Native in
this graph) has 2.4x the throughput of the worst case.

Figure 9 shows FIO with random writes. With 64 threads
on Native 2.6.32, the percentage of local accesses is 13% and
the throughput reaches 8.5 GBytes/s. With Native 3.13 the
percentage of local accesses is 26.5% and throughput reaches
15 GBytes/s. With Jericho 96% of accesses are in the local
NUMA node. By minimizing the remote accesses we achieve
31 GByte/s, i.e. an improvement of throughput by 3.6x over
Native 2.6.32 and 2x over Native 3.13.

C. IOR Microbenchmark

IOR emulates a check-pointing application. In all exper-
iments the I/O request size is 4KB. Figure 11 shows IOR
read performance for Jericho, Native 2.6.32, and Native 3.13,
respectively. Native runs show poor scaling, with very little
performance improvement above 24 threads. We attribute this
to the very low ratio of local-vs-remote accesses: 15.5% local
accesses for Native 2.6.32 and 22% local accesses for Native
3.13, with 64 threads. In contrast, Jericho results in 95% local
accesses and a linear scaling curve, with higher throughput.
With Jericho we achieve almost twice the throughput of
Native, reaching 45 GBytes/s against 20 GBytes/s for Native
2.6.32 and 17.5 GBytes/s for Native 3.13.

Figure 12 shows IOR write performance for Jericho,
Native 2.6.32, and Native 3.13, respectively. With Jericho 95%
of accesses are local, and throughput reaches 35 GBytes/s,
when using 64 threads. For Native 2.6.32 86% of accesses
are local (with 11 GBytes/s throughput), whereas with Native
3.13 95% of accesses are local (18.5 GBytes/s throughput).
Despite showing the same percentage of local accesses, Jericho
scales better than Native 3.13. We attribute this difference to

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

Fig. 11. IOR Reads for Jericho (left), Native 2.6.32 (middle) and Native 3.13 (right).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

 0

 20

 40

 60

 80

 100

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Lo
ca

l
A

cc
e
ss

e
s

(%
)

cores

Local Accesses Throughput

Fig. 12. IOR Writes for Jericho (left), Native 2.6.32 (middle) and Native 3.13 (right).

the distinct locks being used in each of the cache instances in
Jericho (one per NUMA node). With 64 threads, the improve-
ment of throughput with Jericho compared to Native 2.6.32
is 218% and 89% compared to Native 3.13. Although Native
3.13 clearly outperforms Native 2.6.32 for the case of writes,
we still find that the Native I/O stack does not scale with more
than 44 threads.

D. Evaluation in the presence of device I/O

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

cores

Throughput(Bad Placement)
Throughput(Proper Placement)

Fig. 13. NUMA effects in disk I/O for up to 64 cores, with concurrent dd
instances.

Up to this point we have shown FIO and IOR results
where the entire dataset fits in memory and there is no
device I/O. In this subsection we experiment with device I/O,
using concurrent dd instances using direct I/O, with each
instance accessing a 1GB file. This allowed us to control
memory an task placement using the numactl utility, using
the physcpubind and membind parameters respectively. The
I/O pattern is sequential reads, with a request size of 512KB.
With this pattern, all of the storage devices (16 SSDs, on 2
controllers, RAID-0 with 32KB chunks, as per Table I) are
being accessed concurrently. We compare two configurations,
both using the Native 2.6.32 I/O stack: one with ’Proper’
placement and one with ’Bad’ placement.

Figure 13 shows the effects of task and buffer placement
under high I/O device activity. Thread and memory affinity are
specified using the physcpubind and membind parameters
of the numactl utility, respectively. For the Proper placement
configuration, we ensure that threads are pinned (in groups of
8) to each of the 8 NUMA nodes of our testbed in a manner
that avoid cross-node memory accesses. In contrast, for the Bad
placement configuration we ensure that all memory references
by all threads are remote.

We observe that even when all I/O requests are served from
storage devices rather than from I/O buffers in memory NUMA
effects are still clearly visible. In both configurations, there
is a noticeable drop in I/O throughput with every 8 threads,
which is exactly the number of cores in each of the NUMA
nodes. The Proper configuration always outperforms the Bad
configuration: up to 60% better, 11% better on average. With
the increasing popularity of fast devices on multicore servers,
a 11% difference can translate to a performance loss on the
order of GBytes/s. When we reach 56 and more threads,
I/O throughput drops dramatically to the roughly the same
level as for 4 threads. We believe that we reach a saturation
point of either an interconnect, memory controller or both.
This experiment, highlighting two extremes of the possible
thread placements, is indicative of the performance variability
that is often observed with several I/O workloads that do not
explicitly control affinity.

IV. RELATED WORK

Due to the performance discrepancy between workloads
executing on NUMA servers depending on thread and data
affinity, researchers and industry have considered various op-
timizations, mostly at the application level. Prior work has
mostly focused on the application level, finding ways to
achieve mostly local memory accesses and to minimize the
importance of initial thread and data placement. However,
I/O path optimizations related to NUMA awareness have not
received as much attention. With increasing data-sets for

applications and the trend towards manycore servers with more
pronounced non-uniformity in their memory access times, we
believe that locality management for I/O-related memory is
becoming a critical problem.

On NUMA systems, it is often the case that performance
degradation is not primarily due to increased memory access
latency. Task migrations by the scheduler may increase the
volume and frequency of remote memory accesses, thereby
increasing contention for the memory controllers and the
system interconnect. Prior work has produced algorithms and
heuristics for tracking the usage patterns of memory pages
and migrating threads and/or pages to improve performance.
A common technique is to maintain per-page access statistics.
For the case of I/O-intensive workloads, we have found that
we can derive the essential information for good locality at the
filesystem level, when an I/O access is being issued. Therefore,
we do not maintain per-page run-time state, but only check the
affinity masks of I/O-issuing threads.

With the AutoNUMA [12] Linux kernel patch, per-page
statistics are used for thread migration decisions. Threads
migrate toward the NUMA nodes holding the majority of
their accessed pages. All pages are periodically unmapped
from process address spaces, so that the next access will
trigger a page fault. The custom page fault handler of Au-
toNUMA migrates such unmapped pages to the requesting
NUMA node. AutoNUMA attempts to incrementally improve
the affinity of threads and pages, based on the observed access
pattern. However, AutoNUMA may incur excessive overhead
by triggering a long sequence of migrations with memory-
intensive workloads. Moreover, there is continuously overhead
from the scanning thread that periodically invalidates page-
table entries and the resulting page faults. For I/O-intensive
workloads, the main limitation is that AutoNUMA does not
track the I/O buffer pages. When application-level threads issue
I/O requests, system calls copy data to/from kernel-space I/O
buffers in the page cache. Only the application-level pages
are tracked and therefore affected by the control logic of
AutoNUMA.

In contrast, Jericho by design does not migrate I/O buffer
pages, keeping these pages at all times at the NUMA node
that corresponds to the corresponding slice of our filesystem.
With Jericho there is no need to gather per-page statistics
about locality. I/O-issuing tasks are properly placed by design,
guaranteed to do only local accesses. Using our filesystem
layer we migrate tasks as needed, based on readily available
information about the assignment of files to JeriCache slices.
To fully control the location of I/O buffer pages, we bypass the
page cache by having our custom filesystem issue I/O requests
to JeriCache slices. These design changes are necessary for
I/O intensive workloads. Unlike explicitly allocated memory,
e.g. for application-level data structures, page cache buffers
are not fully ’owned’ by a single process. On the contrary
it is common to have I/O-issuing threads fetch data for
processing threads. For instance, this is the case with the
qemu machine emulator and the PostgreSQL database server.
As discussed earlier, in such scenarios page migration is not
feasible, as kernel-space I/O buffers are not directly linked to
the application-level threads.

Contention-aware scheduling [13] characterizes pairs of
threads from the perspective of how much interference they

would experience if they were co-located, and then separates
threads that are likely to interfere. However, on NUMA systems
this approach needs to be augmented with the capability to
migrate memory pages across NUMA nodes and also with
criteria for avoiding unnecessary thread migrations [14]. Our
work focuses on the affinity of I/O-issuing threads, where this
prior work is not directly applicable. As the affinity controller
is implemented in the user-space, it cannot identify and then
migrate re-usable I/O-related buffers across NUMA nodes Its
scope is limited to the application-owned private memory
pages. The same limitation applies to the Carrefour system [9].
The Carrefour algorithm aims to minimize interconnect con-
tention, via a combination of techniques: page replication,
page migration, and task clustering. Carrefour makes page
placement decisions based on samples from hardware perfor-
mance counters and adjusts the placement of threads based
on the observed contention level. As our approach focuses
on locality we avoid replication and migration of pages. A
limitation of our approach is that we are not utilizing memory
space and throughput from than one NUMA nodes. However,
this limitation does not impact our target workloads - i.e. sets
of threads operating on independent file-sets. Our approach
guarantees that the I/O-issuing threads are ’pulled’ towards
the NUMA nodes that host their corresponding data, thus
eliminating unnecessary, expensive remote accesses.

The SSDFA user-level filesystem [15] is an attempt to
improve the scalability of the I/O stack on multicore servers for
fast storage devices. SSDFA is implemented on top of a native
VFS filesystem. Unlike stackable filesystems [16], [17] SSDFA
does not ’hook’ into the Linux VFS, using instead direct-
path mechanisms for I/O buffers and device access. Filesystem
requests are served from a custom-build page cache. Similarly
to our work, SSDFA pins threads and device interrupt handlers
to specific cores, taking into consideration affinity as well as
load balancing.

SSDFA relies on one I/O handling thread per storage
device, whereas in Jericho we have one thread for each cache
instance, allowing more configuration options. We can have
one cache instance per device, as in SSDFA, or we can have
one cache instance per CPU core, to further reduce contention
in the I/O issue path. Moreover, an important optimization
in Jericho is the inlining technique to avoid context switches
when the I/O-issuing thread runs on a CPU with proper affinity.
This optimization has significant impact in the case of fast
devices, where the overhead in issuing I/O requests becomes
a noticeable part of overall I/O latency.

Our design bears similarities to the recent multi-queue
block layer design [18], which improves device I/O scalability
by modifying the I/O-issue path, both at the software and
hardware levels. At the software level, the multi-queue block
layer increases the number of the I/O queues; instead of a
single queue as in the standard Linux block layer, the new
design allows having per-core or per-socket software staging
queues), thereby eliminating contention during I/O issue. This
flexibility is matched at the hardware controller level, with the
possibility to utilize multiple independent hardware dispatch
queues, responsible for actually issuing the I/O requests to
the underlying fast storage devices, e.g. to PCIe SSD devices.
In our work, JeriFS slices and the pipeline threads provide
similar scalability benefits. The threads operating on top of a

JeriFS slice and its corresponding cache are issuing their I/O
requests independently of each other, without going through a
single serialization point. Moreover, in our work we explicitly
change the CPU affinity mask of threads to reduce the impact
of NUMA-related effects. In Jericho, I/O requests are actually
issued to the underlying storage devices by the per-cache
evictor and pipeline threads (to serve writes and read misses,
respectively). Our design is thus able to make use of multiple
independent hardware dispatch queues if this capability is
available in the storage devices underlying the cache instances.

Jericho can be applied for VM workloads, but details of the
virtualization technology need to be considered, specifically
the question of which thread actually issues the I/O requests
to the underlying storage devices. Additional complexity arises
in the case where the hypervisor uses ’helper’ threads to handle
I/O on behalf of VMs. This is the case with kvm [19] which
relies on I/O threads dynamically spawned by the qemu ma-
chine emulator. Jericho sets the CPU affinity mask not only for
the issuing task, but also for the parent task. In this scenario,
the I/O-issuing threads are not the ones actually producing
or consuming the data being transferred to/from the storage
devices. In this scenario, we would need to additionally set
the affinity masks of the ’vCPU’ threads (i.e. the threads that
execute the VM’s instruction stream, one per emulated core).
Jericho would still offer performance benefits, by ’pulling’ the
I/O helper threads of the VM towards the appropriate NUMA
node, but this benefit would be short-lived, as the I/O helper
threads only have a transient lifetime. A useful extension to
our work would be to identify the ’vCPU’ threads and change
their affinity masks as well. In the case where the hypervisor
supports device assignment [20], Jericho will simply change
the CPU affinity mask of the I/O issuing threads to eliminate
remote memory accesses. In this manner, Jericho achieves the
benefits of affinity-aware thread placement, exactly as in the
case of native (host-level) workloads.

Jericho has been designed with server workloads running
on a single NUMA multicore server. With the rising popularity
of analytics workloads using Hadoop, a useful extension of our
work would be to add support for the co-ordinated allocation
and management of caches on multiple nodes. This would be
similar to the PACman system [21]. A major finding from this
work is that optimizing the I/O phase of jobs results in a huge
improvement of job completion times. PACman follows an all-
or-nothing policy for evictions, trying to keep the entire dataset
of each job and evict incomplete datasets. We could provide an
additional optimization for the I/O phase of Hadoop workloads
with our thread placement technique.

V. CONCLUSIONS

In this work we have identified scalability limitations of the
Linux kernel due to NUMA effects, using targeted intensive
tests of the common I/O path. We present an evaluation of
NUMA effects with our Jericho I/O stack that supports slices.
We demonstrate significantly improved scalability, for both I/O
throughput-intensive and IOPS-intensive tests. Most of these
limitations are not observed at relatively low core counts (8-
12), which is the currently common core count for servers,
but become severe with more than 24 cores. With 64 cores,
our Jericho I/O stack improves sequential read I/O throughput
by 2.9x over the baseline system and sequential write I/O

throughput by 3.4x. We demonstrate similar improvements
for random IOPS performance. Overall, our approach and
results will be more useful and relevant with upcoming larger-
scale NUMA server platforms, with more pronounced non-
uniformity in remote memory access times and cross-core
synchronization overheads.

In this paper we have not explored dynamic policies for
thread placement in our Jericho I/O stack. In our current
design, we use static configurations for the allocation of system
memory. This can lead to under-utilization of the memory in
nodes that have lower load. We are currently considering an
extension of our design to allow a local NUMA node with high
load to utilize free memory in remote NUMA nodes with lighter
load. This extension would effectively increase the effective
size of our JeriCache caches by allowing ’spill-over’ of I/O
buffers to remote NUMA nodes with low memory.

ACKNOWLEDGMENTS

We thankfully acknowledge the support of the European
Commission under the 7th Framework Programs through the
EuroServer (FP7-ICT-610456), IOLANES (FP7-ICT-248615),
and HiPEAC3 (FP7-ICT-287759) projects. We would also like
thank the following colleagues at FORTH for their assistance:
Konstantinos Chasapis, Yannis Klonatos, Spyros Papageor-
giou, and Markos Foundoulakis for useful comments and
discussion.

REFERENCES

[1] Y. Li, I. Pandis, R. Müller, V. Raman, and G. M. Lohman, “Numa-aware
algorithms: the case of data shuffling.” in CIDR, 2013.

[2] L. Bergstrom, “Measuring numa effects with the stream benchmark,”
arXiv preprint arXiv:1103.3225, 2011.

[3] C. Lameter, “Numa (non-uniform memory access): An overview,” ACM
Queue, vol. 11, no. 7, p. 40, 2013.

[4] J. Axboe, “Flexible i/o tester.” [Online]. Available:
https://github.com/axboe

[5] Z. Shao, J. H. Reppy, and A. W. Appel, “Unrolling lists,” in Proceedings
of the 1994 ACM conference on LISP and functional programming,
vol. 7, no. 3. ACM, 1994, pp. 185–195.

[6] P. E. McKenney, D. Sarma, and M. Soni, “Scaling dcache with rcu,”
Linux Journal, vol. 2004, no. 117, Jan. 2004. [Online]. Available:
http://www.linuxjournal.com/article/7124

[7] TYAN, “Ft48-b8812 v1.2a service engineer’s manual,” 2012. [Online].
Available: http://www.tyan.com

[8] JEDEC, “DDR3 SDRAM STANDARD,”
http://www.jedec.org/standards-documents/docs/jesd-79-3d.

[9] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic management: A holistic approach
to memory placement on numa systems,” in Proceedings of the 18th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2013, pp. 381–
394.

[10] W. Loewe and T. McLarty, “Parallel file systems benchmark,” 2003.
[Online]. Available: https://github.com/chaos/ior

[11] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Parallel Processing Workshops (ICPPW), 2010 39th International Con-
ference on. IEEE, 2010, pp. 207–216.

[12] J. Corbet, “Autonuma: The other approach to numa scheduling,” 2012.
[Online]. Available: https://lwn.net/Articles/488709/

[13] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Transactions on Computing
Systems, vol. 28, pp. 8–45, 2010.

[14] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, “A case
for numa-aware contention management on multicore systems,” in
Proceedings of the 2011 USENIX Technical Conference, 2011, pp. 1–16.

[15] D. Zheng, R. Burns, and A. S. Szalay, “Toward millions of file system
iops on low-cost, commodity hardware,” in Proceedings of SC13: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, 2013, pp. 69:1–69:12.

[16] E. Zadok, I. Badulescu, and A. Shender, “Extending file systems using
stackable templates,” in Proceedings of the Annual Conference on
USENIX Annual Technical Conference, ser. ATC ’99. Berkeley, CA,
USA: USENIX Association, 1999, pp. 57–70. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268708.1268713

[17] C. P. Wright, J. Dave, P. Gupta, H. Krishnan, D. P. Quigley, E. Zadok,
and M. N. Zubair, “Versatility and unix semantics in namespace
unification,” Trans. Storage, vol. 2, no. 1, pp. 74–105, Feb. 2006.
[Online]. Available: http://doi.acm.org/10.1145/1138041.1138045

[18] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet, “Linux block io:
Introducing multi-queue ssd access on multi-core systems,” in Proceed-
ings of the 6th SYSTOR International Systems and Storage Conference.
ACM, 2013, pp. 22:1–22:10.

[19] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: The
Linux Virtual Machine Monitor,” in Proceedings of the Ottawa Linux
Symposium, 2007.

[20] J. Liu, W. Huang, B. Abali, and D. K. Panda, “High performance vmm-
bypass i/o in virtual machines,” in Proceedings of the annual conference
on USENIX ’06 Annual Technical Conference. USENIX Association,
2006, pp. 29–42.

[21] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “Pacman: Coordinated memory caching for
parallel jobs,” in Proceedings of the USENIX NSDI Conference, 2012,
pp. 267–280.

