HiSMRIfs: a High Performance File System for
Shingled Storage Array

Chao JIN, Wei-Ya X<, Zhi-Yong CHING, Feng HUO, Chun-Teck LIM
Data Storage Institute, Agency of Science, Technology and Research, Singapore
®Corresponding Author: Xi_Weiya@dsi.a-star.edu.sg
{Jin_Chao, Ching_Zhi_Yong, Huo_Feng, Lim_Chun_Teck} @dsi.a-star.edu.sg

Abstract—HiSMRfs, a file system with standard POSIX in-
terface suitable for Shingled Magnetic Recording (SMR) drives,
has been designed and developed. HiSMRfs can manage raw
SMR drives and support random writes without remapping layer
implemented inside SMR drives. To achieve high performance,
HiSMRfs separates data and metadata storage, and manages
them differently. Metadata is managed using in-memory tree
structures and stored in a high performance random write area
such as in a SSD. Data writing is done through sequential
appending style and store in a SMR drive. HISMRfs includes a
file/object-based RAID module for SMR/HDD arrays. The RAID
module computes parity for individual files/objects and guaran-
tees that data and parity writing are 100% in sequential and in
full stripe. HiSMRfs is also suitable for a hybrid storage system
with conventional HDDs and SSDs. Two prototype systems with
HiSMRfs have been developed. The performance has been tested
and compared with SMRfs and Flashcache. The experimental
tests show that HiSMRfs performs 25% better than SMRfs, and
11% better than Flashcache system.

I. INTRODUCTION
A. Technologies for High Density Storage

Traditional magnetic hard drives are fast approaching their
limits in capacity growth [1]. Various technologies such as
Shingled Magnetic Recording (SMR), Heat-Assisted Magnetic
Recording (HAMR), Bit-Patterned Media Recording (BPMR),
and Helium filled drives, are being developed to increase data
density. SMR overlaps, or shingles, adjacent tracks to increase
disk areal density. In Gibsons Shingling Geometry Model [2],
a SMR disk density can be more than two times higher than
a conventional HDD. Both HAMR and BPMR have their own
innovative methods of packing data bits even more closely
together. However, these technologies face the challenge of
fabrication/assembly. SMR is based on Perpendicular Magnetic
Recording (PMR) technology and does not require much
change in their fabrication/assembly. Helium filled drives can
reduce air flow-induced mechanical vibrations which is helpful
to increase track density from the mechanical point of view.
SMR drives can be used together with either PMR or HAMR
or BPMR. It can also be used in a helium filled drive.
Three disk drive manufacturers, Seagate, Western Digital and
Toshiba, have SMR disk drives in their product lines.

B. SMR drives - Problem and Approaches

A major problem with SMR is that write updates may
erase previously written data. Therefore in a SMR disk, data
writing is restricted to sequential writes through appending [1].

SMR

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1
1
1
1
T

Reghricted
READ

Host |—

Unrestrict
READ

d

&
WRITE

g Loh e

Fig. 1. Data Management Layer for SMR

To address this problem, a data management layer has to be
designed and developed to redirect all update-in-place requests
to different locations so that a host can send unrestricted
read/write commands to a SMR storage device. The data
management layer can be implemented in the disk drive itself,
or in the host, or in both locations as shown in Figure 1. If the
data management layer is implemented inside the disk drive,
this approach is referred to as drive-managed SMR. If the data
management layer is implemented in the host, it is referred to
as host-managed SMR. If part of the data management layer
functions is implemented inside the host and the rest inside
the disk, this approach is called cooperatively-managed SMR
[4].

C. Related Work on SMR

Researchers and developers from both research institutes
and industry have proposed various approaches to solve the
problem so that SMR drives can be used for wider applications
rather than just for backup/archival (Read Many Write Once).
Gibson and Ganger presented research directions and possible
solutions for SMR drive [3]. Amer et.al. [5], [6], [18] presented
various possible data layouts and analysis for SMR drives.
Pitchumani et.al. [7] described a method of emulating a SMR
drive using a HDD. Lin et.al. [8] studied garbage collection
performance and proposed a hot data based garbage collection
scheme for SMR. Tan et.al. [14] designed and developed
simulation software for shingled disk simulation.

There have also been several significant works done for
drive-managed SMR solutions. Cassuto et.al. [9] proposed an
indirection system for disk drive firmware. Kasiraj et.al. [17]
presented a strategy to separate the shingled zone from the
non-shingled zone which can coexist in a single drive. Chang
et.al. [11] proposed a data layout strategy called floating guard
band for SMR. Feldman and Gibson presented a cooperatively-

978-1-4799-5671-5/14/$31.00 (© 2014 IEEE

managed SMR proposal for mostly sequential writing applica-
tions [4].

Although a drive-managed SMR solution can reduce the
dependency to the file systems/host system, a host-managed
SMR will provide more flexibility and performance benefits.
HiSMRfs adopts a host-managed approach. Besides HiISMRfs,
other reported works have also adopted the host-managed
approach. One is the log-structure file system for SMR disks.
This idea was proposed by New et.al. [10] but so far no
reported system has claimed to have implemented this. Another
is a hybrid architecture proposed by Gibson et.al. using SMR
drives together with SSDs for big data applications [3]. The
source codes of this work, SMRfs, have been released recently
[23].

In the log-structure file system, all writings and modifi-
cations are performed through sequential appending making
it suitable for SMR drives. However, the log-structure file
system does not separate the file metadata from the file data.
These are mixed and kept together. File metadata updates are
random and happen frequently and, in a conventional disk drive
system, is usually the bottleneck of the system. In a SMR
storage, frequent metadata updates can severely impact SMR
storage performance. To date, the authors are not aware of
any implementation of the log-structure file system in a SMR
system/prototype.

Both SMRfs and HiSMRfs separate metadata from data
storage and management. Metadata is stored in a high per-
formance and non-sequential writing storage space to improve
the file systems performance. The major difference between
HiSMRfs and SMRfs is that HiSMRfs implements an in-
memory metadata tree structure and hash tables are designed
to speed up metadata lookup of a file within a directory,
while SMRfs stores the metadata in the extended attribute of
a symbol link file in a conventional file system (e.g. Ext4 or
Btrfs). In addition, SMRfs is for fast prototyping with tmpfs
employed as a simple implementation of a read/write cache.
When a file is opened, the entire file needs to be copied to
tmpfs, a part of system memory, in order to perform any
read/write operation to the file. On the other hand, HiSMRfs
implements a complete file request queuing and scheduling
management module which can largely increase the perfor-
mance and decrease the system memory required.

The rest of this paper is arranged as follows. Section 2
presents details of the design and development of HiSMRfs.
Section 3 describes implementation of the prototype and
presents and discusses the results of performance tests. A
summary and suggestions for future work are contained in the
last section of this paper.

II. DESIGN AND DEVELOPMENT OF HISMRFS
A. SMR Drive Data Layout

There are two possible data layouts for a SMR drive. In
one, the disk media contains only multiple SMR bands/zones
and each band/zone are separated by guard bands. In this
design, all tracks on the disks are shingled. Compared to
a SMR drive which contains some non-shingled tracks, this
layout can provide a much higher amount of storage capacity.
However, all data writing within the shingled bands/zones has

to be done sequentially. In the other layout of a SMR drive,
the disk media contains one or more conventional magnetic
recording (CMR) bands/zones and multiple SMR bands/zones.
In the CMR bands/zones, tracks are not overlapped so that
update-in-place can be performed. The CMR bands/zones in
SMR drives are also called random write zones where random
writes/updates can be performed.

Compared to the previous layout with all shingled tracks,
this layout consumes much more disk media space to store
the same amount of data. This is because the write head in a
SMR drive is normally much bigger (could be 3 times bigger)
than the size of the write head in a conventional HDD. Thus
the track-to-track distance of the CMR bands/zones in a SMR
drive has to be much wider than that in a conventional disk.
This means, for the same disk area occupied by a CMR in a
SMR drive, the useful data storage capacity provided by the
CMR zone is only one third that provided in a conventional
disk drive. Having CMR bands/zones coexisting with SMR
bands/zones in a SMR drive is therefore a very significant
disadvantage. Because of this, it is thus highly unlikely that a
SMR drive with both CMR zones and SMR zones will become
available commercially. Hereafter in this paper, a SMR drive
refers to one which has only shingled tracks on the disk media.
The HiSMRfs can be used for this type of SMR drives.

B. File System Metadata and Data Accesses

In a storage system, there are normally two types of data.
One is the file metadata and the other is the actual file data.
File metadata are data that provides useful information about
the actual data stored in the file. File metadata are small in
size but need to be accessed/updated frequently. The actual
file data, on the other hand, are usually much larger and do
not need to be updated as often as their metadata.

To have an estimate of how often file metadata are accessed
compared to file data, an experiment was conducted on a
personal computer with a hard disk drive attached and running
under Linux. Filebench was used to generate the workload for
the disk drive which was formatted using the Ext4 file system.
A predefined number of files, ranging from 50K to 800K, was
generated and stored in the disk drive. A file server application
then generated a workload to access the files stored in the
disk. Blktrace was used to count number of file data accesses
to the disk. The number of metadata accesses was computed
from the total number of disk accesses less the number of file
data accesses. The ratio of the number of metadata accesses
to the number of file data reads was then computed. This ratio
varies with the total number of files stored on the disk and the
relationship is shown in Figure 2.

It can be seen from Figure 2 that as the number of files
stored in the disk increases, a larger number of metadata
IOs is needed to access a single file data. With 800K files
stored, to read a data file requires, on average, three metadata
accesses. Normally in enterprise storage, the number of file
stored is much bigger than 800k. For a storage with 1TB
capacity, if each file size is 1MB, the total number of files
stored is about 1 million. File metadata requests are usually
random, requiring random accesses to disk storage, and small
in size. Especially for a disk with a large number of stored
files, this is likely to become the bottleneck limiting the file

Ratio (MetaData I0s/Read OPS)
4 3.19
3
2

1.08

1 033 0.58 .
o mm W

50k 100k 200k 800k

Fig. 2. Ratio of number of metadata IOs to number of file read IOs

system performance. To improve storage system performance,
it is therefore more effective and critical to improve the
performance of file metadata accesses rather than those of file
data accesses [20].

C. Data Writes/Updates of a SMR Drive

There are two main ways that a SMR drive performs data
writes/updates. One is update-in-place through read-modify-
write, and the other is to write at the end through appending.

In update-in-place, once an update request is received, the
whole data band/zone in which the to-be-updated data file is
stored is first read into memory. Updating of the data file within
the data band/zone is then performed in memory and once this
is done, the whole updated data band/zone is written back to
disk storage into the same original location.

In writing at the end through appending, when an update
request is received, the new data is written directly at the end
of a data band/zone through appending. The old data is then
invalidated and the space released will be claimed through a
subsequent garbage collection process.

The two ways of data writing/updating result in different
performance of a SMR drive. Le et.al. [18] conducted tests to
compare the numbers of block movements in SMR drives for
the two writing approaches to the number of block movements
in conventional hard disk drives. The results showed that, the
scheme with SMR write at the end through appending has
about one third of the number of block movements when
compared to that of a conventional hard disk drive. The fewer
the number of block movements involved, the better the disk
performance will be. Therefore, HISMRfs adopted the writing
at the end through appending approach when writing file data
to a SMR drive.

D. HiSMRfs

HiSMRfs has been designed, developed and implemented
at the Linux user space. Figure 3 shows the block diagram
of the architecture of HiSMRfs. HiSMRfs provides a stan-
dard POSIX interface to user applications. To achieve better
performance, the metadata and data are totally separated in
the HiSMRfs and managed differently by two modules, the
Metadata Management module and the File Data Management
module. Through these two modules, the metadata and file
data are written to the unshingled and shingled partitions re-
spectively and separately and directly from user space through
raw-device read/write interfaces.

-

[User Applications

i
/ viswRss |

Application Interfaces

File Caching & Migration Module

[)
{ Metadata Management} { File Data Management }
{ 1
{)

RAID Module

Q ﬁ Device Interfaces T} }
{1 |

{ Unshingled Partition H Shingled Partition

{——

L)\

Fig. 3. Architecture of HiSMRfs

The File Caching and Placement module identifies hot file
data to be cached in the unshingled partition when extra storage
space is available and where data storage/retrieval is much
faster there. The minimum capacity required for the unshingled
partition is to store all the metadata of the HiSMRfs. This is
about 1~2% of the storage capacity occupied by the file data
in the shingled partition. When there is extra storage space
available at the unshingled partition, for example when the
number of files has not reached the capacity of the disk storage
system, the File Caching and Placement module will identify
hot file data to be cached there. A simple algorithm for file
data caching, based on file data size and access frequency, has
been implemented in the HiSMRfs.

HiSMRfs can also be used to optimize the performance of
storage systems with both high and low performance zones,
with high performance zone corresponding to the unshingled
partition, and low performance zone corresponding to the shin-
gled partition. In a conventional HDD, the high performance
zone can be located at the outermost diameter of the disk
media as data transfer rates is highest there. For hybrid drives,
the high performance zone can be the consolidated storage
space of the NVM/flash embedded in these drives and the low
performance zone can be the consolidated disk media storage
space. In a hybrid storage system, the high performance zone
can also be a SSD and the low performance zone can be the
SMR drives.

1) Metadata Management: Figure 4 illustrates the in-
memory metadata structure of the HiISMRfs. The file directory
hierarchy is represented by a tree structure. Starting from the
root directory, each file or directory is allocated a node in the
tree structure. Each node stores the metadata information of
the file or directory. The node for each file also records its file
extent list to indicate where the file content is stored in the
device. The file and directory nodes are connected through the
children, parent, and neighbors pointers.

In addition, hash tables are used to speed up the meta-
data lookup for a file within a directory. As file creation,
modification and deletion operations cause changes to the
metadata structure, these metadata operations are recorded with
timestamps in a log file stored in the unshingled partition.
Periodically, the whole metadata structure is synchronized into
the metadata file as persistent checkpoints in the unshingled

Root
<Attribute List>

Children First | Last

Parent NULL
Neighbors NULL [NuLL

Directory File . .
- s <Attribute List>
<Attribute List> " .
<File Extent List>
Children First | Last Children ot | o
Parent — Parent T
Neighbors NULL | NeXWA NULL
File File
<Attribute List> <Attribute List>
<File Extent List> <File Extent List>
Children no [o] e Mehildren NULL [NULL
Parent Parent —
Neighbors NULL | Next Neighbors Previous | NULL

Fig. 4. Metadata Structure

partition.

2) File Data Management: File data, including newly
written data and modifications to existing data, is sequentially
appended at the end of each band/zone in the low performance
zone built in the SMR drives. The File Data Management
system implements four major modules, including File Da-
ta Allocation module, Garbage Collection module, Request
Queue Scheduling module and Band/Zone Layout module. The
File Data Allocation module determines where the data will be
written. File Request Queuing and Scheduling module arranges
file read/write requests into queues and efficiently schedule
them to increase performance and decrease memory usage of
the file system when large files are accessed.

File deletion and modification will cause invalid data block-
s in the data log, and these invalid blocks need to be reclaimed
to free storage space. The Garbage Collection module is re-
sponsible to reclaim released space. Two different approaches
have been designed for garbage collection in HiSMRfs. One
is the file-based approach, in which all the files are copied
sequentially to a new place, and the old data blocks, including
the invalid blocks, are freed. The other is the band-based
approach. In this approach, several candidate bands are first
selected to be reclaimed and the valid blocks in these bands
are moved to a new band freeing all these candidate bands.

The Band/Zone Layout module emulates a SMR data
layout and its related information and passed the information
to the File Data Allocation module and the Garbage Collection
module for them to issue data access requests to access data.

3) RAID Module: Conventional RAID systems implement
data redundancy at the block level. While block-level RAID
provides independency to the above file systems, it lacks the
file system information and shows several disadvantages when
compared with file-level RAID. In HiSMRfs RAID functions
are implemented at the file system level. HiSMRfs is thus
capable of working on an array of SMR storage devices, and
providing, in addition, good fault tolerance. With the informa-
tion from the file system, HISMRfs further optimizes the RAID
reconstruction processes in the event of fault occurrences or
device failures.

File Block Cache Parity

vewdata | [1 B[|
P

|
(Cal|lcalco|lca)

SSD | | SSD

SWD || SWD | | SWD || SWD

N~ T~ @ @I~

(Mirroring) (Parity Stripe)

Fig. 5. Structure of RAID in HiSMRfs

Figure 5 shows how the RAID module is implemented in
HiSMRfs. HISMRfs implements the RAID function at the file
level. Each file block in HiSMRfs is chopped into multiple
equal-sized sub-blocks, and their XOR sum computed as the
parity sub-block. While this is just an example for HiSMRfs
to tolerate a single disk failure, it is clear that this can be
easily extended in HiSMRf{s to tolerate multiple disk failures
by using erasure codes. Each of the sub-blocks is written to
one of the SMR devices in the array correspondingly. In other
words, HiSMRfs organizes each file block as an independent
parity stripe, and writes this to the disk array through a full-
stripe write. The file blocks are written to the disk array in
using appending mode, ensuring that writes to each of the
SMR/HDD device also follows the appending style. On the
other hand, metadata in the unshingled partition (e.g., SSD) is
protected by mirroring.

With the RAID function implemented at the file level
in HiSMRfs, optimization of the data reconstruction process
can be achieved when disk failures occur. By traversing the
metadata tree, only the failed blocks which are allocated by
the file blocks need to be reconstructed, skipping the other
invalid or free blocks.

III. PROTOTYPE AND PERFORMANCE TEST

The HiSMRfs can be used for either SMR drives or
conventional HDDs. There is no SMR drive available in the
market yet, therefore two prototype systems are developed
using HDDs. In Prototype I, the storage consists of one SSD
and one HDD. In the other Prototype II, the storage consists
of one SSD and five HDDs. Extensive tests were conducted
on both prototypes to evaluate their performance. These tests
showed that HiSMRfs can perform 25% better than SMRfs
system and 11% better than EXT4 with Flashcache [22].

A. Prototype 1

Table ITI-A shows hardware and software configuration of
storage array Prototype 1. The storage Prototype I consists of
one SSD and one HDD. The server is installed with Linux and
filebench.

The HiSMRfs Prototype I has been tested under workload
of Creatfile and Varmail. These results are used to compare
with published test results of SMRfs [23]. Figure 6 shows
the performance comparison of HiSMRfs and SMRfs under
Createfiles workload. Figure 7 is the performance comparison

TABLE 1. PROTOTYPE I CONFIGURATION TABLE II. PROTOTYPE II CONFIGURATION
Item Specification Item Specification
Server Intel(R) Xeon(TM) CPU quad core @3.00GHz with 4GB memory Server Intel(R) Xeon(TM) CPU E5645 @2.4GHz with 2GB memory
SSD ZUES Z16IFE3B 73GB SSD x1 MTRON SSD MOBI 3500 SATA 16GB
HDD Seagate Barracuda ST380013AS 7200rpm HDD x5 Maxtor Maxline Plus II 250GB 7200rpm
Linux Kernel 2.6.35 Fuse version 2.9.2 RAID Level RAIDS
Filebench Version 1.4.9 Linux Kernel 3.10.0 Fuse version 2.9.2
Filebench Version 1.4.9
Pre-Allocation Time (s) Throughput (MB/S) Flashcache Version 3.0
12 30
1 25 |
0.8 20
0.6 15
0.4 10 vs
02 5 RAID 5
0 0
SMRfs HiSMRfs SMRfs HiSMRfs
Operations per Second Latency (ms)
6000 14
5000 12
4000 - 10
3000 | 8
2000 -| N
4
1000 | 2
0 s — 0 cRts —— Fig. 8. Topology of two systems built on Prototype II
Fig. 6. Performance Comparison of HiSMRfs and SMRfs under Createfile system nomal]y consists of a lot of small sized files and also

‘Workload

of the two systems under Varmail workload. It can be seen
that for both workloads, the pre-allocation time used for both
systems are about the same. For Creatfile workload, the HiSM-
Rfs is about 20% better than the SMRfs in terms of IOPS and
bandwidth; while for Varmail workload, the HiISMRfs is about
30% better than the SMRfs in terms of OPS and bandwidth.
For both workloads, the HiSMRfs demonstrates significant
shorter latency than the SMRfs. From the tests conducted,
it can be seen that HiISMRfs shows more advantages when
the system is under varmail application workload. Varmail

Pre-Allocation Time (s) Throughput (MB/s)
1.2 25
L 20
0.8
15 +
0.6
10 +
0.4
02 5
0 0
SMRfs HiSMRfs SMRfs HiSMRfs

Operations per Second Latency (ms)

7000 12
6000 | 10
5000 o
4000 |
6
3000 |
2000 | 4
1000 - 2
0 0
SMRFs HISMRfs SMRFs HISMRfs
Fig. 7. Performance Comparison of HiSMRfs and SMRfs under Varmail

Workload

a lot of metadata of the files. HISMRfs can speed up metadata
accesses, and therefore the overall system performance can be
improved significantly.

B. Prototype II

Table III-B shows hardware and software configuration of
storage array Prototype II. The storage of the Prototype II
consists of five Maxtor HDDs and one SSD. The server is
installed with Linux and Filebench.

Two different systems have been built on Prototype II to
test and compare their performances. One is the HiSMRfs
and the other is EXT4 with Flashcache. Figure 8 shows the
topology of the two systems. On the left side of the Figure 8
is the HiSMRfs system and on the right side is the EXT4
with Flashcache system. The HiSMRfs manages the SSD as
high performance zone and five HDDs as low performance
zone. The HiSMRfs RAID module configures the HDDs as
RAID 5. Flashcache uses the SSD as the cache and five
HDDs configured RAIDS as its storage. Flashcache virtualizes
underlying storage including both SSD and HDDs and presents
them to EXT4 as single storage volume.

Prototype II was first setup as HiSMRfs system and con-
ducted the tests. Once the tests are done, the Prototype II
is then setup as EXT4 with Flashcache system on the same
hardware and then tested under the same workload as the one
used for the HiSMRfs system.

In actual system, high performance storage capacity such
as SSD is limited and it is normally fully utilized, in other
words, millions of files need to be generated in order to fully
utilize up the SSD capacity. To reduce files to be generated
which can take long time, the amount of SSD capacity used
for the test is reduced to 1GB for both systems under test so
that less number of files needs to be generated.

Pre-Allocation Time (s) Throughput (MB/s)

8000 10
7000
6000 8
5000 6
4000
3000 41
2000 2
1000

0 0 -

Flashcache HiSMRfs Flashcache HiSMRfs

Operations per Second Latency (ms)

400 600
350 500
300
250 | 400
200 300
150 | 200
100 |
50 | 100
Flashcache HiSMRfs Flashcache HiSMRfs
Fig. 9. Performance comparisons between HiSMRfs and EXT4 with

Flashcache under file server workload

File server application workload consisting of 200K files
is generated by Filebench to conduct the test. Figure 9 shows
performance results of the two systems under tests. It can be
seen that HiISMRfs can perform better than the Flashcache
system on data allocation, OPS, throughput and latency. The
pre-allocation is about 9 times shorter than the Flashcache
system. HiSMRfs can performance about 11% better than
Flashcache system in terms of OPS, throughput and latency.

In the test, Flashcache used nearly 100% of the 1GB SSD
space, while HiSMRfs just used the SSD to store metadata,
which is about SOMB. Therefore, HISMRfs can provide bet-
ter performance than Flashcache even with much less SSD
resource usage.

IV. SUMMARY

HiSMRfs is a high performance file system with standard
POSIX interface. It is designed to efficiently manage a storage
system consisting of two different storage media with different
performance characters. It is suitable to manage a storage
consisting of SMR drive array with all shingled bands. The
HiSMRfs supports random writes and can provide high perfor-
mances so that SMR drives can be used for wider applications
such as those require random writes and high performances.

Two prototype systems implemented with HiSMRfs have
been developed. The first prototype is implemented in single-
node mode and compared with SMRfs. The experimental
results show that HiSMRfs can perform 25% faster than
SMRfs system. The second prototype is implemented in disk-
array mode and compared with Flashcache. The performance
test results show that HiSMRfs, even with much less SSD
resource usage, can perform 11% better than Flashcache.

REFERENCES

[11 Y. Shiroishi, K. Fukuda, I. Tagawa, S. Takenoiri, H. Tanaka, and N.
Yoshikawa. Future options for HDD storage. IEEE Transactions on
Magnetics, vol. 45, no. 10, Oct. 2009.

[2] G. Gibson and G. Ganger. Principles of Operation for Shingled Disk
Devices. Carnegie Mellon University Parallel Data Lab Technical Re-
port, CMU-PDL-11-107, April 2011.

(3]

(4]

(31

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

G. Gibson and M. Polte. Directions for shingled-write and two dimen-
sional magnetic recording system architectures: synergies with solid
state disks. Carnegie Mellon University Parallel Data Lab Technical
Report, CMU-PDL-09-104, May 2009.

T. Feldman and G. Gibson. Shingled magnetic recording areal density
increase requires new data management. USENIX issue, Vol. 38, No.
3, June 2013.

A. Amer, D. D. E. Long, E. L. Miller, J.-F. Paris, and S. J. T. Schwarz.
Design issues for a shingled write disk system. In Proceedings of IEEE
Symposium on Mass Storage Systems and Technologies (MSST), May
2010.

A. Amer, J. Holliday, D. D. E. Long, E. L. Miller, J.-F. Paris, T.
Schwarz. Data Management and Layout for Shingled Magnetic Record-
ing. IEEE Transactions on Magnetics, vol. 47, no. 10, October 2011.

Rekha Pitchumani, Andy Hospodor, Ahmed Amer, Yangwook Kang,
Ethan L. Miller and Darrell D. E. Long. Emulating a shingled writing
disk. In Proceedings of the 20th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunica-
tion Systems (MASCOTS), August 2012.

Chung-I Lin, Dongchul Park, Weiping He and David H.C. Du. H-SWD:
Incorporating Hot Data Identi?cation into Shingled Write Disks. In
Proceedings of the 20th IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), August 2012.

Y. Cassuto, M. Sanvido, C. Guyot, D. Hall, and Z. Bandic. Indirection
Systems for Shingled-Recording Disk Drives. In Proceedings of IEEE
Symposium on Mass Storage Systems and Technologies (MSST), May
2010.

Richard New, Mason Williams. Log-structured file system for disk drives
with shingled writing. US patent 20050071537.

Dar-Der Chang, Ken Hong, Byeung Jun Lee, Xin Guo. Floating Guard
Band for Shingled Magnetic Recording. US Patent 20110304935.

C. Jin, W. Y. Xi, K. L. Yong and Z. Y. Ching. Data storage system,
method of writing to storage in the data storage system, hard disk and
method of forming the hard disk. US patent.

W. Y. Xi, S. Tan, K. L. Yong, C. T. Lim, Z. Y. Ching and C. Jin.
Architecture design and method to store data in hybrid shingled writing
disk. US patent.

S. Tan, W. Y. Xi, Z. Y. Ching, C. Jin, and C. T. Lim. simulation for
a shingled magnetic recording disk. IEEE Transaction on Magnetics.
March 2013.

W. Y. Xi, S. Tan, Z. Y. Ching, T. C. Low, X. J. Wu, E. Toh, C. Jin,
Y. Jia. SS_sim - Network and Storage Simulation Part 1: Performance
Simulation. International Journal of Advancement in Computing Tech-
nology (ISSN: 2005-8093), to be published.

W. Y. Xi, W. K. For, D. H. Wang, R. Kanagavalu, W. K. Koh. OSDsim:
a Simulation and Design Platform of an Object-based Storage Device.
In Proceeding of 14th NASA Goddard, 23rd IEEE Conference on Mass
Storage Systems and Technologies (MSST), May, 2006.

P. Kasiraj, R. New, J. de Souza, and M. Williams. System and method
for writing data to dedicated bands of a hard disk drive. US patent
7490212.

Q. M. Le, K. SathyanarayanaRaju, A. Amer, and J. Holliday. Workload
Impact on Shingled Write Disks: All-Writes Can Be Alright. In Pro-
ceedings of IEEE Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), July 2011.
W. Y. Xi, S. Tan, Z. Y. Ching, T. C. Low, X. J. Wu, E. Toh,
C. Jin, Y. Jia. SS_sim - Network and Storage Simulation Part 2:

Power Consumption Simulation. International Journal of Advancement
in Computing Technology (ISSN: 2005-8093), to be published.

Jaegeuk Kim. f2fs: introduce flash-friendly file system.
http://http://lwn.net/Articles/518718/, Samsung.
Mike Yan. Open computer project, cold storage hardware.

http://www.opencompute.org/projects/storage/, Facebook.

Mohan Srinivasan. Flashcache: A Write Back Block Cache for Linux.
https://github.com/facebook/flashcache, Facebook.

CMU SMR Wiki. https://wiki.pdl.cmu.edu/smr/webhome.

