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Abstract—Current technology trends for efficient use of in-
frastructures dictate that storage converges with computation by
placing storage devices, such as NVM-based cards and drives,
in the servers themselves. With converged storage the role of
the interconnect among servers becomes more important for
achieving high I/O throughput. Given that Ethernet is emerging
as the dominant technology for datacenters, it becomes imperative
to examine how to reduce protocol overheads for accessing remote
storage over Ethernet interconnects.

In this paper we propose Tyche, a network storage protocol
directly on top of Ethernet, which does not require any hardware
support from the network interface. Therefore, Tyche can be
deployed in existing infrastructures and to co-exist with other
Ethernet-based protocols. Tyche presents remote storage as a
local block device and can support any existing filesystem. At
the heart of our approach, there are two main axis: reduction
of host-level overheads and scaling with the number of cores
and network interfaces in a server. Both target at achieving high
I/O throughput in future servers. We reduce overheads via a
copy-reduction technique, storage-specific packet processing, pre-
allocation of memory, and using RDMA-like operations without
requiring hardware support. We transparently handle multiple
NICs and offer improved scaling with the number of links and
cores via reduced synchronization, proper packet queue design,
and NUMA affinity management.

Our results show that Tyche achieves scalable I/O throughput,
up to 6.4 GB/s for reads and 6.8 GB/s for writes with 6
x 10 GigE NICs. Our analysis shows that although multiple
aspects of the protocol play a role for performance, NUMA
affinity is particularly important. When comparing to NBD,
Tyche performs better by up to one order of magnitude.

I. INTRODUCTION

Today, storage in datacenters is typically a separate tier
from application servers and access happens mostly via a stor-
age area network (SAN). Current efforts to improve efficiency
of datacenters in terms of capital expenses, e.g. reduced energy
consumption, and operational expenses, e.g. less expensive
storage, dictate bringing storage closer to applications and
computation by converging the two tiers. Converged storage
advocates placing storage devices, most likely performance-
oriented devices, such as solid state disks or non-volatile mem-
ory, in all servers where computation occurs and adapting the
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TABLE I. NETWORK STORAGE PROTOCOL AND GENERIC NETWORK
PROTOCOL BASED ON ETHERNET.

Software Hardware

Storage NBD, iSCSI iSER, SRP
AoE, FCoE gmblock

Generic PortLand [1] iWARP, RoCE
JNIC

current I/O stack to the new model. In the converged storage
model many storage accesses require crossing the network for
various reasons: additional storage capacity, reliability, and
sharing. Therefore, storage requests are exchanged between
all compute servers and the network protocol used plays an
important role.

Today, it is generally accepted that there are many advan-
tages to using Ethernet-based physical networks for storage as
well. A single Ethernet network for network and storage data
traffic reduces cost and complexity. In the past, there has been
a lot of research work on interconnects, such as Infiniband,
which scale and impose low overheads. However, it is unlikely
that such interconnects will dominate and displace Ethernet
in the datacenter. For this reason, the network protocol used
on top of Ethernet plays a significant role in achieving high
efficiency for remote storage access.

Table I provides a summary of storage-specific and general-
purpose network protocols based on Ethernet. We further
classify these protocols in two categories, whether they need
hardware support or not. Software-only protocols typically
exhibit relatively low throughput for small requests and incur
high overheads. A main reason is that they mostly either use
TCP/IP or they are not optimized for storage. TCP/IP inher-
ently incurs high overheads due to its streaming semantics.
On the other hand, hardware-assisted protocols usually obtain
maximum link throughput at lower CPU overheads, but they
require custom NICs or other extensions to the underlying
interconnect, which is a significant impediment for deployment
and adoption.

In this paper, we examine the issues associated with
networked storage access over Ethernet, and we design Ty-
che a network storage protocol that achieves high efficiency,
without requiring any hardware assistance. Our proposal can
be deployed in existing infrastructures and to co-exist with
other Ethernet-based protocols. To the best of our knowledge,
our approach is the first to achieve 90% of link efficiency for
16 kB request sizes without any specialized hardware support.978-1-4799-5671-5/14/$31.00 c© 2014 IEEE
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Fig. 1. Overview of send and receive path.

Given current technology trends, the expectation is that
future servers will host hundreds of cores and hundreds of
GBits/s of network throughput and will mainly access remote
storage devices. Already today, typical servers employ 64 cores
and multiple 10 GBits/s Ethernet NICs. Tyche provides low-
overhead communication by carefully considering protocol op-
erations, structures in the common path, memory management,
and synchronization required to access networked storage. We
identify two main challenges:

1) Host-overhead for remote storage access. The I/O
throughput provided by current network storage pro-
tocols, such as Network Block Device (NBD), is lim-
ited to a small percentage of the network throughput.
For instance, NBD achieves around 600 MB/s for
sequential reads and writes (Section IV-A), which
is far from the 1.2 GB/s provided by the NIC. In
addition, NBD requires requests of 1 MB in size
and incurs a 100% of CPU utilization to provide
this 600 MB/s; in contrast, Tyche achieves the same
throughput at 4 kB requests and only 50% CPU
utilization.

2) Transparent use of multiple NICs. Current network
storage protocols are only able to use a single NIC.
Transparently sharing multiple NICs from many cores
increases synchronization and memory management
overhead. For instance, if a fine-grain approach is
used for assigning NICs to cores at the packet level,
this leads to significant synchronization at high net-
work speeds.

To reduce host overheads, Tyche efficiently maps I/O
requests to network messages, pre-allocates memory, and
handles NUMA affinity. The preallocation and placement of
buffers is done per connection. We use a copy reduction
technique based on virtual memory page remapping to reduce
packet processing cost. Indeed, Tyche avoids all copies for
write requests by taking advantage of storage semantics, but
requires a single copy for reads at the initiator side, due to OS
kernel semantics for buffer allocation.
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Fig. 2. The network ring protocol structure used in the send and receive
path.

To limit synchronization, Tyche uses the familiar connec-
tion abstraction to privatize the main structures (rings and
memory buffers) and thread processing context, which are
typically shared across in today protocols. Mapping cores to
connections and connections to links allows for flexibility man-
aging the amount of throughput available to each application.

Our results show that Tyche achieves scalable throughput
of up to 6.4 GB/s and 6.8 GB/s for sequential reads and writes,
respectively, on 6x10Gbits/s network devices. Results also
show that, to achieve maximum throughput, NUMA affinity
should be taken into account, otherwise, throughput drops by
up to 2x. When comparing Tyche against NBD, for sequential
reads and writes, our proposal outperforms NBD by one order
of magnitude when using 6 NICs, and by about 2x with a single
NIC. For actual applications, Tyche significantly increases
throughput, for instance, for Psearchy Tyche achieves 2x and
8x better throughput compared to NBD, when using 1 and 6
NICs, respectively.

The rest of this paper is organized as follows. Sections II
and III present Tyche and the main decisions taken to achieve
the previous issues. Section IV discusses our results. Section V
describes related work and Section VI concludes this work.

II. SYSTEM DESIGN

The overall design of Tyche is depicted in Figure 1. Tyche
is a connection-oriented protocol that allows the creation of
multiple connections between the client (initiator) and the
server (target). Each Tyche connection uses its own private
resources to minimize synchronization for shared structures
and to allow scaling with the number of NICs and cores. Tyche
handles several NICs transparently and each connection can
span a single or multiple NICs.

To initialize the network stack, Tyche opens several con-
nections, one per available NIC, between the initiator and the
target. For each connection, the initiator and target exchange
information about buffers and resources. Then the initiator is
ready to receive I/O requests the network storage device. The
new storage device can be mounted and used as a regular block
device, and can support any existing file system.

A. Network messages

Tyche supports two different message types, one for trans-
ferring I/O requests/completions and one for transferring data.
An I/O request/completion message uses a single packet. Re-
quest packets are small, less than 100 bytes in size, and they are
transferred in small Ethernet frames of the corresponding size.
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Fig. 3. Overview of the send path at the initiator.

In this work, we do not batch I/O requests to avoid increasing
I/O response time. Data messages are sent via RDMA-type
messages by using scatter-gather lists of memory pages (I/O
buffers). The corresponding (data) packets are transferred in
separate Jumbo Ethernet frames of 4 or 8 kB. An Ethernet
jumbo frame of 9000 bytes carries two 4 kB pages, so, a data
message for an I/O request of N pages is split into N

2 data
packets.

Tyche allows out-of-order transfer and delivery of packets
over multiple links or different network paths. For this reason,
the Ethernet header of each data packet includes the message
id, the position of the packet in the message, and the number
of packets that compose the message.

B. Main data structures

The target allocates memory for each new request and data
message. To reduce the overhead of memory management,
Tyche uses two separate and pre-allocated queues (Figure 1),
one for request messages (remq) and one for data messages
(damq). damq contains lists of pre-allocated pages for sending
and receiving data messages. The lists point to memory pages
that the target uses for issuing write and read requests to the
local device. Although both queues are allocated by the target,
they are managed directly by the initiator (during the connec-
tion negotiation phase, the queue information is exchanged,
so the initiator knows all necessary identification handlers of
the target queues). The initiator specifies fixed positions in the
message header for the target queues. For instance, the initiator
specifies on-behalf of the target the position (pages) where
data packets has to be placed when they arrive (for writes),
and the target uses these pages for submitting the regular I/O
write requests. Completion messages are prepared in the same
buffer where the corresponding request was received. The
initiator also uses similar queues with the exception that damq
lists refer to pointers of pages, because the pages are already
provided by the user I/O requests.

To process messages and packets, our protocol uses three
rings (Figures 1 and 2), one for transmitting, TX_ring,
one for receiving, RX_ring, and one for notifications,

If data for write request:
   Interchange NIC pages and damq pages
If data for read request:
   Copy data from NIC pages to damq pages

Fetch next packet

Receive packet

Network layer

Ethernet driver

Place notification at not_r_data

data packet

Copy request msg to 
rm-ID position of remq

Place notification 
at not_r_req

request packet

Fig. 4. Overview of the receive path in the target at the network layer.

Not_ring (not shown in Figure 2). Since Tyche handles
two kinds of packets (request and data packets) for each ring,
it also has two ring instances. Therefore, a request packet
is transmitted using the TX_ring_small, it is received
in the RX_ring_small, and the corresponding notifica-
tion is placed in the Not_ring_req. In the same way, a
data packet uses the TX_ring_big, RX_ring_big and
Not_ring_data rings.

To reduce synchronization, each ring uses only two pointers
(Figure 2), a head and a tail. The head points to the last packet
sent or received. The tail points, for the transmission ring, to
the last packet currently acknowledged by the remote node,
and, for the receive and notification rings, to the last packet
currently processed. In addition, the receive ring has a third
pointer, rx_ackd, to the last packet currently acknowledged
towards the remote node. Other implementations usually use
more pointers for handling rings. For example, the transmis-
sion ring has a third pointer for controlling packets currently
sent by the NICs. However, this pointer can be avoided,
because a position can only be re-used when its corresponding
ACK has been received, and if a packet is acked, it is because
the NIC has sent it. This approach delays certain protocol
processing, but allows us to reduce synchronization overhead.

Each cell of the transmission ring has two fields to denote
its state: the packet is ready to be sent or it has been sent.
They are used when the NIC is busy and sending packets has
to be delayed. Each cell of the receive ring also has a field to
denote that the packet has arrived and to control packets that
arrive several times due to re-transmissions. These two fields
are updated by atomic operations.

C. Networked I/O path

Figures 3, 4, 5, 6, and 7 summarize the flow path of our
network storage protocol. For simplicity, we do not include
error handling and retransmission paths. Numbers on the
arrows denote the order of execution when several actions are
run after a previous one. In Figure 3, we mark some actions
with labels s1, s2, and s3 to indicate that a synchronization
point is required to execute the corresponding action.

At the initiator side, for each new I/O request, Tyche selects
one connection. On this connection, Tyche gets one request
message (rm-ID) in remq and one position (dm-ID) in damq.
The initiator composes the request message and associates the
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pages of the I/O request to the dm-ID position in damq. For
writes, these pages are sent to the target, and for reads, upon
arrival, data is directly placed in the proper pages.

Tyche can operate in two different modes. In the first,
“inline” mode (Figure 1), the application context issues I/O
requests to the target, without requiring any context switch in
the issue path. In the second, “queue” mode, regular I/O re-
quests are inserted in a Tyche queue, and several Tyche threads
dequeue these I/O requests and issue them to the target. With
the queue mode, the issuing context blocks just after enqueuing
the request. We evaluate both modes in Section IV-D. Figure 3
shows how the initiator issues a network I/O request in the
inline mode. The queue mode is similar, with local I/O requests
being inserted in a queue and a Tyche thread executing the
issue path for each request.

At the target side, dedicated network threads, one per NIC,
process incoming packets, compose messages, and generate a
notification to Tyche. The interrupt handler of the NIC is only
used for waking up the corresponding network thread. Note
that the request message is placed in the rm-ID of the remq,
and the data pages, if any, are placed in the dm-ID position
of the damq. As a consequence of the notification, Tyche
processes the request message and fetches the corresponding
data message in case of a write request. Then, Tyche constructs
a proper Linux kernel I/O request and issues it to the local
block device. The receive path at the target is summarized in
Figure 4 for the network layer and in Figure 5 for the block
layer.

The target uses work queues, one per core, to send back
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Fig. 7. Overview of the receive path in the initiator.

completions to the initiator. Local I/O completions run in
an interrupt context, which is not able to perform network
send/receive requests that can block. For this reason, the local
I/O completion schedules a work queue task that executes
the required Tyche operations. When a completion arrives at
the initiator, the network thread constructs the message and
generates the notification to Tyche. Finally, the corresponding
regular I/O request is completed. Figure 6 depicts the comple-
tion path at the target. Figure 7 presents the receive path of the
block layer at the initiator which corresponds to the completion
of a request. Figures 6 and 7 do not include the network path
for sending/receiving, because both paths are already shown
in Figures 3 and 4, respectively.

D. Storage-specific network protocol

We include some fields on the Ethernet header to provide
end-to-end flow-control, to facilitate communication between
the block layer and the network and to allow several connec-
tions per NIC.

For request packets, the header includes the corresponding
connection, the local position in the transmission ring what
also denotes the same position on the receive ring, the position
on the request message queue, and positive acknowledgements.
For data packets, the header includes the connection, the
position on the receive ring, the position on damq, the number
of pages of the data packet and the number of pages on the
data message.

By using the same position on the transmission and receive
rings, we reduce packet processing overhead in the receive
path. By including for each packet message its position in
remq, upon its arrival the corresponding message is placed
in its final position and we avoid the copy from the network
rings to the block data. By including the position in damq for
a data packet, the data pages are directly placed from the NIC
ring in the pages of the I/O requests.

III. MAIN CHALLENGES

In our design, we deal with the following main challenges:
i) synchronization; ii) memory management overhead; iii)
NUMA affinity; and iv) many cores accessing a single NIC.
Next, we discuss how Tyche addresses these challenges.

A. Synchronization

We minimize the synchronization when accessing shared
Tyche structures by reducing the number of spin-locks and
mutexes used and by using atomic operations whenever is



possible. Here, we describe the synchronization points needed
in our proposal.

In the send path several threads can submit requests con-
currently. Therefore, Tyche synchronizes access to all queues,
rings, and the NIC itself. In the initiator, the block layer uses
two mutexes for exclusive access to remq and damq (s1 in
Figure 3). The network layer has spin-locks to control accesses
to transmission rings (s2 in Figure 3), and to update the header.
The tail of the transmission rings is updated by an atomic
operation. When a data message corresponds to several data
packets, several positions are requested in a single operation
to acquire just once the lock of the transmission ring for
data packets. An additional spin-lock, one per NIC, is used
to transmit the packets through the NIC (s3 in Figure 3).

In the receive path, the network threads concurrently poll
NICs for reception of events, but, to reduce synchronization,
a single thread processes pending events and cleans up the
receive rings. An atomic operation controls the access to these
two functions.

In the (uncommon) case that overlapping messages are
processed concurrently, a per-buffer lock is required to avoid
concurrent remapping of a single buffer. This lock is defined
as an atomic operation, and it has to be acquired every time
a message is processed (note that a message is normally
processed just once). To avoid synchronization, each packet
has already assigned by the sender its position in the receiving
ring. The three pointers used for controlling the receiving ring
are updated by atomic operations.

For positive and negative acknowledgments we use a per-
connection lock for ensuring that only a single thread sends the
corresponding packet. Since several threads can simultaneously
set/get notifications, each notification ring has two spin-locks,
one for the head and one for the tail.

B. Memory management

As already mentioned, Tyche has pre-allocated request
messages (remq) and buffer pools (damp) to reduce memory
management overhead when issuing I/O requests to the target
and when receiving/sending data messages.

At the target, the pre-allocated pages are used for sending
and receiving data as well as for issuing regular I/O requests to
the storage device. Note that, at the initiator, there are no pre-
allocated pages because the kernel allocates pages at higher
layers when creating I/O requests.

Network protocols over Ethernet involve a copy of data in
the receive path from NIC buffers to the actual data location.
The reason is that arriving data is placed in the physical pages
belonging to the NIC’s receive ring, however, these data should
be placed eventually in the pages of the corresponding request.
The copy of data occurs in the target for write requests and in
the initiator for reads. To avoid the overhead of the memory
copy in the target, from NIC buffers to Tyche pages, we
interchange pages between the NIC receive ring and damq.

For reads, at the initiator, this interchange technique cannot
be applied. When a read is sent over the network, the layer
that initially issued the request expects specific non-sequential
physical pages (struct page objects in the Linux kernel)
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to be filled with the received data. Therefore, exchanging pages
does not work, and a memory copy is required.

C. NUMA affinity

For scalability purposes, modern servers employ NUMA
architectures, such as the one depicted in Figure 8 that corre-
sponds to the servers in our work. In such architectures, there
is significant difference in performance when accessing local
or remote memory [2], [3].

In the I/O path, there are four elements related to NUMA
affinity: application buffers, protocol data structures, kernel
(I/O and NIC) data buffers, and placement of NICs on server
sockets. To achieve maximum performance, the relative place-
ment (or affinity) among application, protocol data structures,
kernel buffers, and NICs must consider the system topology
and use resources that are close to each other.

We consider two types of affinity that affect the Tyche
behavior. The first, that we call threads-core affinity, implies
that threads always run in the same NUMA node where
the memory they use is allocated and the NIC they use is
attached. This affinity includes application threads, protocol
threads, work queues, and interrupt handlers. The second,
called memory-NIC affinity, implies that memory used by
Tyche in the send/receive path is allocated in the same NUMA
node where the NIC is located. For instance, at the NIC
level, pages of the corresponding Ethernet ring are allocated
in the same NUMA node where the NIC is attached, and the
connection that uses this NIC allocates their pages, rings, and
data structures in the same NUMA node. Therefore, in the
architecture of Figure 8, data structures for NICs 0, 1 and
2 and data structures for the connections associated to these
NICs are all allocated in “Memory 0”.

We do not study the impact of the threads-cores affinity,
for several reasons: i) controlling application thread placement
can have adverse effects on application performance; ii) in
the Linux kernel version used in our implementation, it is
not possible to force placement of I/O completions nor the
assignment of jobs to work queues; and iii) it is not possible to
control placement of page cache. Nevertheless, as future work,
we plan to study the affinity for Tyche send/receive threads.



In our design we have considered and analyzed two vari-
ants of the memory-NIC affinity. The first, called kmem-NIC
affinity, allocates in a specific NUMA node all pages, rings,
and data structures of each connection, kernel buffers, and the
pages of the NICs. Then, Tyche ensures that each connection
will only use NICs located in the same NUMA node. In this
case, we do not consider the affinity for user I/O requests:
sending data for writes and receiving data for reads, involves
no NUMA affinity decisions; we rather select the connection,
and therefore the NIC, in a round robin manner. So, at the
initiator, the pages of the I/O requests might not be in the
same node as the connection-NIC used.

The second one, called full-mem affinity, is kmem-NIC
affinity plus affinity at I/O request level. For each user I/O
request issued to the initiator, Tyche checks in which node its
pages are allocated and then selects a connection-NIC in the
same node. The pages for I/O requests are in the same NUMA
node as the connection ring and the NIC ring used to transmit
or receive the request.

To achieve both types of affinity, Tyche opens a logical
connection per NIC and allocates the resources of each co-
nnection on the physical memory of the NUMA node where
the NIC is attached. Similarly, the NIC rings are allocated on
the NUMA node where the NIC is attached. Finally, Tyche
selects connections depending on the NUMA node where the
buffers of the user I/O request are located.

For writes, kmem-NIC affinity affects the receive path and
full-mem affinity both the send and receive path. For reads,
kmem-NIC affinity affects the send path at the target and the
receive path at the initiator, whereas full-mem affinity also
affects the receive path when copying the data from the NIC
pages to the pages of the user I/O request. We examine the
impact of both types of affinity in Section IV-B.

D. Many cores accessing a single network link

The increasing number of cores in modern servers increases
also contention when threads from multiple cores access a
single network link. In the send path, the initiator uses the
queue mode, where multiple threads place requests in a queue,
and Tyche controls the number of threads that can access
each link. At the target, work queues send completions back,
limiting the number of contexts that interact with each NIC by
using one work queue thread per physical core. In the receive
path, Tyche uses one thread per NIC to process incoming
data. Our measurements show that one core can sustain higher
network throughput than a single 10 GigE NIC, and therefore
does not limit the maximum throughput (Section IV-C).

IV. EXPERIMENTAL EVALUATION

We implement Tyche in Linux kernel 2.6.32. We use as
baseline NBD (Network Block Device) that is a popular,
software-only solution for accessing remote storage. NBD can
only use one NIC per remote storage device. We have used
iSCSI as well, however, NBD performs better than iSCSI, so
we only include NBD in our graphs. For evaluation purposes,
and as an intermediate design point, we also implement a
version of Tyche that uses TCP/IP. In this version, called

TSockets, Tyche creates a socket per connection, and com-
municates with the remote node through the socket. TSockets
uses all available NICs by creating a connection per NIC.

Our experimental platform consists of two systems (initia-
tor and target) connected back-to-back with multiple NICs.
Both nodes have two, quad core, Intel(R) Xeon(R) E5520
CPUs running at 2.7 GHz. The operating system is the 64-
bit version of CentOS 6.3 testing with Linux kernel version
2.6.32. Each node has six Myricom 10G-PCIE-8A-C cards.
Each card is capable of about 10 Gbits/s throughput in each
direction for a full-duplex throughput of about 120 Gbits/s.
The target node is equipped with 48 GB DDR-III DRAM and
the initiator with 12 GB. The target uses 12 GB as RAM and
36 GB as ramdisk. Note that we use ramdisk only for avoiding
the overhead of the storage devices, since we are interested in
focusing on the network path.

To understand the basic aspects of our approach, we
evaluate its main features with two micro-benchmarks zmIO
and FIO. zmIO is an in-house micro-benchmark that uses the
asynchronous I/O API of the Linux kernel to issue concurrent
I/Os at low CPU utilization [4]. FIO is a flexible workload
generator [5]. In addition, we analyze the impact of Tyche
with the following applications.

IOR [6] emulates various checkpointing patterns that ap-
pear in the high performance computing domain. IOR uses
MPI and typically exhibits moderate user time, whereas the
I/O issued by several concurrent MPI processes results in
significant I/O wait time.

BLAST [7] is an application from the domain of compar-
ative genomics. We run multiple instances of BLAST each
with a separate set of queries on a separate database. We use
random query sequences of 5 kB, which is a common case in
proteome/genome homology searches. BLAST is I/O intensive
and the execution time is primarily dominated by user time.
We use BLAST for Nucleotide-Nucleotide sequence similarity
search.

Psearchy [8] is a file indexing application. We run it using
multiple processes where each process picks files from a shared
queue of file names. We modify the original Psearchy to
use block-oriented reads instead of character-oriented reads to
improve I/O throughput.

HBase is a NoSQL data store that is part of the Hadoop
framework. We use the YCSB benchmark [9]. We first build a
database using the YCSB load generator with a workload that
makes only insert operations. We then run a workload that
does 100% read. We also run a workload that makes 100%
insert operations, but without the load phase.

A. Baseline performance

First, we analyze the baseline performance with zmIO.
We run zmIO with sequential reads and writes, synchronous
operations, direct I/O, 32 threads submitting requests and 2
outstanding requests per thread, a request size of 1 MB, and a
run time of 60 seconds. The remote storage device is accessed
in a raw manner (there is no file system). The test is run for
1 to 6 NICs, with one connection per NIC.

Figure 9 depicts results for Tyche, TSockets, and NBD.
For reads, when 1, 2, and 3 NICs are used, Tyche achieves



 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

# NICs

Tyche

TSockets

NBD

(a) Read requests

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

# NICs

Tyche

TSockets

NBD

(b) Write requests

Fig. 9. Throughput, in GB/s, achieved by Tyche, TSockets and NBD with
zmIO, for sequential reads and writes, and a request size of 1 MB.

the maximum throughput of the NICs. When using 4, 5, and
6 NICs, Tyche provides a bit lower throughput, 4.3 GB/s, 5.4
GB/s, and 6.2 GB/s, respectively. This is due to the overhead of
copying pages in the initiator that becomes noticeable at high
rates. For writes, Tyche achieves the maximum throughput
provided by the NICs except for 6 NICs, that it obtains
6.5 GB/s. With 6 NICs, when running this benchmark, the
initiator is almost a 100% CPU utilization. TSockets achieves
a throughput of 2.1 GB/s and 1.7 GB/s for reads and writes,
respectively. NBD obtains a throughput of 609 MB/s because
it is only able to use a single NIC.

We see that Tyche throughput scales with the number of
NICs, and our proposal achieves between 82% and 92 %
of NIC throughput. NBD is only able to use a single link.
TSockets does not scale with the number of NICs, and by using
6 NICs, it is able to saturate at most 2 NICs. Tyche achieves
6.5 GB/s, compared to 2.1 GB/s and 609 MB/s for TSockets
and NBD respectively, so Tyche has about 10x the throughput
of NBD and more than 3x the throughput of TSockets. We
also see that TSockets is more than 3x better than NBD, which
shows that TCP/IP is responsible only for part of the overheads
when accessing remote storage.

B. Dealing with NUMA

To analyze the impact of the NUMA architecture we con-
sider three configurations of Tyche: no affinity (“No affinity”
in Figure 10); only kmem-NIC affinity; and full-mem affinity.

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6

T
h

ro
u

g
h

p
u

t 
(G

B
/s

)

# NICs

No affinity

Kmem-NIC

Full-mem

(a) Read requests

 0

 1

 2

 3

 4

 5

 6

 7

1 2 3 4 5 6
T

h
ro

u
g

h
p

u
t 

(G
B

/s
)

# NICs

No affinity

Kmem-NIC

Full-mem

(b) Write requests

Fig. 10. Throughput, in GB/s, achieved by Tyche depending on the affinity,
with zmIO for 32 threads, sequential reads, and writes and 1 MB request size.

We run zmIO with the same configuration as in Section IV-A.

Figure 10 depicts throughput achieved by Tyche depending
on placement. Up to 3 NICs there is almost no difference
among the three configurations. However, for 4 or more
NICs results vary significantly. Maximum throughput is only
achieved when all types of affinity are considered, and both the
send and receive path use pages that are in the same NUMA
node where the NIC is located. With kmem-NIC affinity,
throughput is higher than without placement, but, for writes
the difference between no affinity and kmem-NIC affinity is
higher than for reads. The reason is that for writes this affinity
has impact on the receive path, whereas for reads, the impact
is more on the send path due to the copy done at the initiator
receive path.

When comparing the results of full-mem placement to no
affinity at all, Tyche improves the performance up to 35% and
97% for reads and writes, respectively. If the comparison is
with the kmem-NIC affinity, the improvement is up to 15%
and 54% for reads and writes, respectively.

Results show that Tyche achieves the maximum throughput
only when the right placement is done. The kmem-NIC place-
ment is particularly important for writes due to the interchange
of pages made between the NIC and the list of pages of
Tyche, since the NIC uses these new pages for receiving the
data. Therefore, when receiving write data, our protocol checks
if the pages to interchange are in the same node, and the
interchange is done only in this case. If the pages are allocated



TABLE II. THROUGHPUT, IN MB/S, OBTAINED BY TYCHE WITH
ZMIO, WITH 32 THREADS, SEQUENTIAL READS/WRITES FOR A VARYING

NUMBER OF CONNECTIONS AND NICS.

# NICs
1 6

#Connections 1 3 6 1 3 6
Read 1,174 1,175 1,050 4,530 4,699 6,316
Write 1,177 1,153 998 4,493 3,910 6,654

in different NUMA nodes, the protocol will copy the data from
the NIC page to the Tyche page.

We also evaluate the affinity impact by using four different
configurations that depend on the number of logical connec-
tions and NICs. We compare the throughput obtained when 1,
3, and 6 connections are in use, but only over 1 and 6 NICs.
The resources (rings, data structures and pages) of the first
three connections are allocated in NUMA node 0 (“Memory
0” in Figure 8), whereas, for the other connections, they are
allocated in the node 1 (“Memory 1” in Figure 8). When 6
NICs are in use and only 1 or 3 connections, Tyche selects
the NIC in a round robin manner.

We run zmIO with the same configuration and workloads
as in Section IV-A. Table II presents the throughput achieved
depending on the number of NICs and connections. Results
show the impact of NUMA affinity between the memory
allocation of the connections and the NIC. With a single NIC
there is almost no difference between using 1 or 3 connections,
since all the resources are allocated in the same node. But,
with 6 connections, there are affinity problems, since three
connections have their resources allocated in a different node
than the NIC is attached. Consequently, the throughput drops
by 10% for read operations and by 15% for writes. This
problem is worse for 6 NICs. The maximum performance
is obtained with 6 connections. With 1 or 3 connections,
only 3 NICs are attached to the same NUMA node where
the connections have allocated their resources. With 1 or 3
connections, the throughput drops to the level of no affinity.

C. Receive path processing requirements

Typically, receive-path processing is heavier than send-path
processing in network protocols. To properly understand trade
offs with today’s CPUs and high speed links we examine
processing requirements of the Tyche receive path. Figure 11
depicts Tyche throughput when there is a single network thread
for all NICs (curves with “X-SinTh”, where X is the request
size) and when there is a thread per NIC (curves with “X-
MulTh”). We use zmIO with sequential reads and writes,
synchronous operations, direct I/O, 32 threads issuing requests,
2 outstanding requests, and a run time of 60s. We use 4 kB,
16 kB, 64 kB, 128 kB, and 1 MB request sizes. Tyche uses
affinity optimizations. We only show results for 4 kB, 64 kB
and 1 MB, since the other results are similar. We see that
a single thread can process requests for two NICs, so about
20 GBits/s. Therefore, using a thread per NIC, Tyche can
achieve maximum throughput as well as reduce receive path
synchronization.

D. Efficiency of the send path at initiator side

As mentioned, the Tyche initiator can operate in two
different modes. In the inline mode, there are many threads
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Fig. 11. Throughput, in GB/s, obtained by Tyche when a single network
thread processes packets from all NICs (SinTh) or when a thread per NIC is
used (MulTh), with zmIO, sequential reads and writes, and 4 kB, 64 kB, and
1 MB request sizes.

submitting requests but the system incurs no context switch
overhead. In the queue mode, a context switch is used to
avoid having many threads access a single NIC and incur the
associated synchronization overhead.

Figure 12 depicts throughput achieved by Tyche as a
function of the number of threads and the mode of the send
path. We use FIO with sequential reads and writes, direct I/O,
a 256 MB file size, request sizes of 4 kB and 512 kB, a run
time of 60s. It is run for 1 - 128 tasks, each one with its own
file. XFS is used as file system. With this test, Tyche obtains
its maximum throughput: 6.48 GB/s for reads with 128 tasks
and the inline mode, and 6.81 GB/s for writes with 64 tasks
and the queue mode.

For writes, with a request size of 4 kB, there is no
difference between both modes up to 16 threads. However,
for 32, 64, and 128 threads, the inline mode outperforms the
queue one by up to 31%. For a request size of 512 kB, both
modes achieve the same throughput up to 32 threads. For 64
and 128 threads, the throughput significantly drops by up to
31% for the inline mode, whereas, the queue mode achieves
maximum throughput, due to the increased contention for the
NIC lock. The queue mode pays the cost of a context switch
but uses 18 Tyche threads for submitting packets (3 per NIC),
and lock contention is reduced.

For reads, the inline mode outperforms the queue one up
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Fig. 12. Throughput, in GB/s, of Tyche depending on the send path mode,
with FIO, sequential reads and writes and 4 kB and 512 kB request sizes.

to 27% (for a request size of 4 kB and 64 tasks), because
the latter pays the overhead of a context switch when there is
just a single thread submitting requests. The exception is for
a 512 kB request size and 16 threads or more, in which case
both modes achieve similar throughput. For large requests the
throughput obtained depends more on the delay of the target
than on the overhead at the initiator.

Figure 13 depicts the CPU utilization, calculated as system
time utilization plus user time utilization at the initiator and
target sides for both modes, depending on the number of
application threads and on the request size. At the initiator
and with a request size of 4 kB, due to the context switch,
the CPU utilization for the queue mode is higher by 29% and
15% for 32 and 64 threads respectively. However, at the target,
the queue mode makes less processing, it drops up to 19%,
because this mode achieves lower throughput.

When the request size is 512 kB, for reads, the initiator
incurs higher processing, up to 31% in the queue mode, due
to the context switch. At the target, both modes use almost the
same CPU and the throughput achieved is similar. For writes,
up to 32 threads the queue mode incurs more processing at
the initiator side, up to 16% more, whereas, at the target, both
modes have similar CPU utilization. For 64 and 128 threads, at
the initiator, the inline mode makes up to 30% more processing
than the queue one, due to the synchronization overhead and
lock contention. At the target, since the inline achieves lower
throughput, its CPU utilization is also lower, up to 40%.
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Fig. 13. CPU utilization of Tyche depending on the send path configuration,
with FIO for sequential reads and writes and request sizes of 4 kB and 512 kB.



TABLE III. THROUGHPUT, IN MB/S, ACHIEVED BY TYCHE, NBD AND
TSOCKETS FOR PSEARCHY, BLAST, IOR, AND HBASE.

Throughput (MB/s)
Tyche NBD TSockets

NICs 1 6 1 1 6
Psearchy 1,154 4,117 499 488 1,724
Blast 775 882 438 391 564
IOR-R 512k 573 1,670 212 226 745
IOR-W 512k 603 1,670 230 243 751
HBase-Read 303 295 154 168 229
HBase-Insert 106 112 99 54 92

Figure 12 shows that for reads both modes scale with the
number of application threads. For writes, the queue mode
mode scales with the number of threads, whereas the inline
mode only scales for small request sizes.

E. Application results

Table III shows the throughput for Psearchy, Blast, IOR
and HBase. We choose these tests because they perform a
significant amount of I/O and allow us to observe differences at
the network protocol level. Tyche always performs better than
NBD and TSockets, even with a single NIC. For Psearchy and
IOR, the difference between Tyche and NBD is remarkable,
Tyche achieves more than 2x and 8x better throughput than
NBD with 1 and 6 NICs respectively. For Blast and HBase-
Read, the differences are smaller, but Tyche is still up 2x better
than NBD. For HBase-Insert, Tyche outperforms NBD by 7%
and 10% with 1 and 6 NICs, respectively. When comparing
with TSockets, the differences are smaller but still significant,
with more than 2x improvement for Psearchy and IOR. For
Blast, HBase-Read, and HBase-Insert, Tyche outperforms the
vanilla version by 36%, 22%, and 18%, respectively, when 6
NICs are used.

V. RELATED WORK

Regarding network storage protocols iSCSI and NBD are
built over TCP/IP and are widely used in Linux. In contrast,
Tyche uses its own Ethernet-based transport, which incurs less
overhead. HyperSCSI [10] modifies iSCSI to use raw Ethernet
instead of TCP/IP. It turns Ethernet into a usable storage
infrastructure by adding missing components, such as flow
control, segmentation, reassembly, encryption, access control
lists and security. Compared to HyperSCSI, Tyche is designed
to transparently use multiple NICs, it deals with NUMA and
synchronization issues, it uses RDMA-like operations that
reduce packet processing, and it employs a copy reduction
technique. All the techniques used in Tyche can eventually be
incorporated in HyperSCSI as well.

RDMA has been used extensively by protocols, such as
iSER (iSCSI Extension for RDMA) [11], SCSI RDMA Pro-
tocol (SRP), and RDMA-assisted iSCSI [12] which improve
the performance of iSCSI by taking advantage of RDMA-
operations. For instance, Burns et al. [13] implement an
extension iSCSI to support RDMA through iSER. Other pro-
tocols are Internet Wide Area RDMA Protocol (iWARP) and
RDMA over Converged Ethernet (RoCE) which are the two
commonly known RDMA technologies over Ethernet. The
former defines how to perform RDMA over TCP. The latter
defines how to perform RDMA over a Ethernet link layer.

SMB2 Remote Direct Memory Access (RDMA) Transport
Protocol of Microsoft is an example of network storage that
requires iWARP, Infiniband or RoCE protocols to provide
RDMA operations [14]. However, all these protocols focus
on providing RDMA capabilities by using hardware support.
The focus of Tyche is to use existing Ethernet and to explore
issues at the software interface between the host and the
NIC, which emerges as an important bottleneck for high-speed
communication in networked storage.

Regarding the copy reduction technique, several authors
proposed similar techniques [15], [16], [17], [18]. Typically,
they use a technique that avoids the copy between the kernel
and user space. For instance, Rizzo proposes to remove data-
copy costs by granting applications direct access to the packet
buffers [17]. Our approach avoids the copy at kernel space by
ensuring that Ethernet frames are prepared properly and then
interchanging pages between the Ethernet ring and the Tyche
queues, specifically targeting our storage protocol that transfers
multiples of 4 kB.

A lot of work has been done for NUMA-aware process
scheduling and memory management in the context of many-
core processors and systems. For instance, Moreaud et al. [19]
study NUMA effects on high-speed networking in multi-
core systems and show that placing a task on a node far
from the network interface leads to a performance drop, and
especially bandwidth. Their results show that NUMA effects
on throughput are asymmetric since only the target destination
buffer appears to need placement on a NUMA node close to
the interface. In our case, NUMA affects both sides, target
and initiator. Ren et al. [20] propose a system that integrates
an RDMA-capable protocol (iSER), multi-core NUMA tuning,
and an optimized back-end storage area network. They apply
NUMA affinity by using the numactl utility for binding a
dedicated target process to each logical NUMA node. They
use iSER that relies on hardware support to provide RDMA
capabilities. In contrast, Tyche provides RDMA-operations
without hardware support. They achieve an improvement of
up to 19% in throughput for write operations, whereas our
proposal achieves an improvement of up to 2x. Dumitru et
al. [21] also analyze, among other aspects, the impact of
NUMA affinity on NICs capable of throughput at the range
of 40 GBits/s, without, however, to propose a solution.

Several authors [22], [23], [24], [25] have studied tightly-
coupled NIC architectures and on-load software on Ethernet.
For example, the JNIC project replaces one of the four sockets
of a server multiprocessor server with a NIC [25]. By closely
attaching the NIC to CPU and memory, the NIC can be ac-
cessed using coherent memory as opposed to PCI transactions,
which reduces latency of accessing the NIC from the processor.
This approach requires extensive hardware support, whereas
Tyche uses general purpose Ethernet NICs.

The gmblock project is a block-level storage sharing system
over Myrinet which transfers data directly between the storage
device and the network, bypassing the CPU and main memory
bus of the storage server [26]. Although for sending request
data is sent directly from the storage device to the network,
when receiving, a copy operation is needed between the NIC
SRAM and the Lanai RAM. Tyche does not aim to by-pass
the target, but rather to optimize the communication path to



the target, allowing for storage functions, such as I/O caching
to be performed by the target.

Multipath TCP/IP [27] allows TCP to run over multiple
paths, i.e. NICs, transparently to applications by presenting a
single TCP interface. Although it can scale throughput with
the number of NICs, it still incurs high overheads. In addition,
its target is general purpose networking and is not optimized
for storage access.

VI. CONCLUSIONS

In this paper we present the design, implementation, and
evaluation of Tyche, a networked storage protocol that is
deployed directly on top of Ethernet and provides RDMA-like
operations without requiring hardware support from the net-
work interface. Tyche reduces overheads via a copy-reduction
technique, pre-allocation of memory, custom network queues
and structures, and storage-specific packet processing. In addi-
tion, our approach is able to transparently and simultaneously
use multiple NICs and to scale with the number of links
and cores via proper packet queue design, NUMA affinity
management, and reduced synchronization.

Our results show that Tyche achieves scalable throughput,
of up to 6.4 GB/s for reads and 6.7 GB/s for writes on
6x10Gbits/s network links, without requiring any hardware
support. This is 89% and 93% respectively of the peek thro-
ughput available with 6 NICs. Tyche performs about 10x better
than NBD for 6 NICs and by about 2x for 1 NIC. Compared to
TSockets, Tyche improves throughput more than 3x. We also
find out that, if not taken into account, NUMA affinity can
hurt throughput by almost 2x, especially for writes.

Future work needs to consider how Tyche can co-exist with
other types of network protocols over Ethernet, and how it
can support dynamic policies, e.g. for batching and switching
between the inline and queue modes of operation when issuing
requests. Overall, we believe that future storage nodes in data-
centres will use similar techniques to increase the degree of
storage consolidation and to improve data-centre efficiency.
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