
The Case for Sampling on Very Large File Systems
George Goldberg, Danny Harnik, Dmitry Sotnikov

IBM Research–Haifa, {georgeg, dannyh,dmitrys}@il.ibm.com

Abstract—Sampling has long been a prominent tool in statistics
and analytics, first and foremost when very large amounts of
data are involved. In the realm of very large file systems (and
hierarchical data stores in general), however, sampling has mostly
been ignored and for several good reasons. Mainly, running
sampling in such an environment introduces technical challenges
that make the entire sampling process non-beneficial. In this
work we demonstrate that there are cases for which sampling
is very worthwhile in very large file systems. We address this
topic in two aspect: (a) the technical side where we design and
implement solutions to efficient weighted sampling that is also
distributed, one-pass and addresses multiple efficiency aspects;
and (b) the usability aspect in which we demonstrate several
use-cases in which weighted sampling over large file systems is
extremely beneficial. In particular, we show use-cases regarding
estimation of compression ratios, testing and auditing and offline
collection of statistics on very large data stores.

I. INTRODUCTION

The use of sampling to obtain meaningful and accurate
statistics is abundant in many aspects of our lives and has been
methodically used for at least two centuries. Polls over large
populations, scientific experiments and physical measurements
all build open the power of random sampling to estimate
figures in cases where going over the entire space at hand is
simply too large or too expensive to be practical. In the realm
of storage, sampling has typically been used in data bases as
a means to expedite some of the analytics at hand.

In file systems, however, sampling has largely been avoided.
This is true also for extremely large instances where the shear
size of the file system begs to considering means for speeding
up the process of acquiring analytics on the data. It also holds
for other hierarchical heterogenous data stores, such as object
storage. This avoidance is not by chance as there are multiple
reasons and challenges that make sampling in this setting both
harder and less beneficial. In particular, the following issues
arise when attempting sampling based estimations:

• While sampling a random subset out of a flat space of
elements is straightforward (e.g. sampling a block out of a
volume), a file system does not allow true random access
to the data since the files lie in a complex hierarchical
structure and the access to the data is via a directory tree.

• The hierarchical structure of file systems or object storage
and the high variance in sizes of files, objects and direc-
tories, can cause a situation in which the bulk amount
of data in the system resides only in a small portion of

The research leading to these results is partially supported by the European
Communitys Seventh Framework Programme (FP7/2001-2013) under grant
agreement n 257019 - VISION Cloud Project.

the files. As a result, one has to scan the metadata of the
whole repository in order to account for all entirety of
the data. In a file system this amounts to a costly full
directory tree traversal.

• The cost of a full directory traversal on a large file system
is prohibitively high and in addition such a traverse
allows to collect accurate statistics on metadata, therefore,
leaving hardly any benefit in doing an estimation using
sampling.

The aforementioned issues create a situation by which it is
unclear that there is any point in using random sampling for
analytics in the setting of very large file systems.

A. Our Contributions

In this work we argue the case for using sampling as a mean
for achieving meaningful analytics on very large hierarchical
data stores and file systems in particular. Our contributions
address two main concerns in doing so.

1) The first is the technical aspect of sampling. Formalizing
the correct sampling distribution in such systems, devis-
ing and implementing algorithms that actually perform
this sampling with minimal overhead. We produce a
general interface that can be called during any traversal
of the metadata and produce a short list of sampled
files according to the desired distribution. Our design
addresses the challenges of running in a single pass and
in a multi-threaded distributed environment. These are
crucial features since the performance of the traverse is
highly influenced by running in a distributed manner.

2) The second concern is in identifying use-cases for which
sampling is actually beneficial. Our use-cases include
processes that require deep data inspection (such as
estimation of compression ratios), testing and auditing
and offline collection of statistics on very large file
systems.

We note that our framework is general and its usability
transcends far beyond the realm of file systems and is relevant
to almost any storage form, such as object stores, archives and
others. Yet, in this paper, we mostly focus on our implementa-
tion for the important use-case of very large scale file systems
(such as Network Attached Storage or a clustered file system).

B. Use Cases

a) Scope of the analytics:: The fact that we do sampling
limits the types of analytics that we can successfully support.
Still there is a large and useful scope of analysis that can
be achieved based on sampling. In general, we support any
measure that can be described as an average or sum over local978-1-4799-5671-5/14/$31.00 c⃝ 2014 IEEE

tests, where local means a function that can be computed at a
relatively small granularity of the data set, such as on single
files or on parts of files. Our guarantees are statistical and
assure that any phenomena that is noticeable in the file system
will be detected on the sample with very high probability (the
exact parameters are tied to the sample size). We describe
these concepts more formally in Appendix A.

b) The benefits of sampling: Random sampling is ben-
eficial in that it allows one to inspect far less data during
the analysis. That being said, there are settings where the
actual benefits are not always clear. As mentioned above, the
sampling process likely entails iterating all elements in the data
set (full directory tree traversal), and during such a pass many
of the statistics can be calculated with negligible overhead.
So, for example, in order to answer a query like “what is the
total size of jpeg images in the file system” a full traversal can
simply keep a counter and answer this query accurately. On
the other hand, there are other cases that make sampling very
attractive and these are the focus of our work. For example, if
the query involved requires to actually read the data in the files
from the disk, then collecting this data is far more strenuous
than running a traversal and may turn a feasible task into an
infeasible full data scan.

We describe several specific examples of the benefits of our
framework. These are just the tip of the iceberg in terms of
applications:

1) Estimating compression ratios: Compression for file
systems is gaining popularity and there are several such
offerings today of built-in compression for large scale file
systems (e.g. [22], [20], [15]). A tool for predicting the benefit
of using such compression on a (currently) uncompressed file
system would be highly beneficial. Since migration of a very
large file system into compressed form is prohibitively lengthy
time wise and taxing in terms of CPU usage (both during
compression and during de-compression), it is paramount to
understand how much there is to gain before deciding to
go forward with the migration. Moreover, accurate estima-
tion of this compression ratio can prove valuable financially
through tighter capacity planning of a compressed system.
Compression estimation via sampling was recently studied
in [11], but this work fell short of providing a practical
implementation for large scale file systems (but rather focused
on block interface or a given list of objects). In our work we
implement an efficient distributed traversal with sampling tool
that culminates by running a compression estimation based
on the chosen sample. The main appeal of this method is
the minimal amount of actual data that needs to be read
from disk for the estimation, yet it achieves sound accuracy
guarantees. The performance is directly tied to the time of
the traversal with a very small overhead for sampling and
a constant overhead of less than a minute required to read
the bits of the chosen sample files from disk and evaluate
compression on them. In Section IV we present accuracy
and performance tests of our implementation. For example,
we accurately estimate the compression ratio on 1.8TB by
reading only 320 MB of data while requiring only 3% the

running time of highly distributed exhaustive evaluation. Our
solution is currently being integrated as a customer evaluation
and sizing tool for a prominent compression product, and in
fact this application was the original motivation for this study.

2) Testing and auditing mechanisms: In the previous
example the bottleneck was mainly reading data from the disk
(and also compressing it). In other scenarios the amount of
data might not be excessive, yet the processing that it has
to undergo is very heavy. Examples are various analysis and
learning algorithms such as video processing, or clustering
algorithms. In such an environment minimizing the set of files
that require processing is a valuable optimization.

One example is for auditing that requires heavy computa-
tion. Sampling has always played a key role in auditing, and
for example, checking that TV content of certain types (e.g.,
advertisements) does not exceed a certain percentage of the
airing time may be difficult to achieve exhaustively and can
benefit greatly from sampling. Another area of relevance is in
testing the success of algorithms. For example, one use case
that we have explored is testing of speech to text algorithms.
Given several algorithms and a large data set, the choice of
the best algorithm is not clear and typically the only way
to verify the result of such a translation algorithm is for a
human being to listen and translate it. So the bottleneck here
is not the text to speech algorithm but rather the amount
of data that a human reviews. In this use case the files are
weighted according to their recording length (counted either
by time or by the number of recorded words) and the sample
allows a human reviewer to review a fixed number of recorded
time units and produce an estimation on the success rate of
a speech to text algorithm. Note that for the specific task of
testing success rate of algorithms, our estimation turn out to
be especially tight for highly successful algorithms. This is
since the variance of a very successful algorithm is very small
(see discussion in Section B).

3) Offline analysis of file system distributions:: The use
cases thus far consider situations in which the full directory
traversal was not the bottleneck in the system but rather it is
the data reading and processing which is the heaviest task. In
this use case we consider the benefits in situations where the
traversal is the heaviest link in the chain. There are several
methods to deal with analytics on such large directories, for
example by distribution of the traverse [17], or by doing
only a partial traverse [13] (an approach that may jeopardize
accuracy but works well in many cases). The shortcoming
of these approaches is that the queries at hand needs to be
defined before the traverse is run in order to collect the right
statistics during the traverse. Alternatively one can collect
all of the metadata for each of the millions of records and
query this metadata offline (e.g. by putting all of the metadata
in a separate database), but for very large systems this may
turn out to be an excessive overhead. Instead our mechanism
complements any fast traverse approach by creating a short
“sketch” of the data set, from which one can deduce numerous
statistics and queries after the traverse has finished. A traverse
of a very large system can take many hours and maybe days

and by analyzing it one can learn various properties such as
popular file types, libraries or file properties. In many cases,
based on this first analysis one would like to refine the query,
but this would require a new traversal to collect new statistics.
Using weighted sampling, one can collect a relatively short list
of sample files, that are weighted according to key parameters.
For example, according to file length or any other relevant
measure. Now statistics and measurements can be run on the
short list, providing provably accurate results, but without
requiring a further traversal of the data set.

We demonstrate this methodology by scanning a real life
data set of 17.5 million files, with 7.25 TB of data and
analyzing some of its properties offline, finally comparing
these results to the accurate full scan numbers. The appeal
is that maintaining even a relatively large list (say of 100,000
samples) is still orders of magnitude smaller than managing all
of the file system’s metadata, yet provides extremely accurate
estimations.

C. Related Work

Sampling has long been a central tool in statistics (see,
for example [14]). In the storage wold it has mostly been
employed in data bases. There are many works that attempt
to estimate query sizes using sampling in order to optimize
data bases operations. Some examples that consider uniform
sampling over data base elements are [9], [10], [8], [5], [3]. In
general, the interface provided by data base is much friendlier
to sampling distributions than that of file systems. It should be
noted though, that also in data bases sampling uniformly can
cause difficulties, as pointed out in [4], mainly because the
elements their are too fine grained and don’t correlate well
with the way data is stored in the back end.

In the context of file systems and hierarchical data structures
in general, sampling, and analytics in general become harder
to achieve. In fact, there is a trend to modify design of
file systems to support either a different structure to their
metadata handling [16],[19] (and thus achieve faster analytics
on metadata) or a different structure altogether [21].

Weighted random sampling was studied in [7] (see also
references within). While the one of the sampling forms used
here fits our framework, the underlying algorithms differ from
ours, and in particular use much more invocations of the
randomness function than our technique (see discussion in
Section III).

Analytics on very large file systems where studied in [13]
and in [17]. Both these works consider only analytics on
metadata of the files (as opposed to content, such as the
compression example). The first work tackles the long time to
do full directory traversal by doing a partial random traverse
on the tree (and thus cannot have accuracy guarantees on the
statistics). The second work improves the traversal speed by
smarter distribution. Note that our work is complementary to
both techniques, and can be applied on top of these faster
traverse.

Finally, compression estimation was studied in [6] and [11].
The first paper sampled parts of each file which amounts to

worst performance than our method and without accuracy
guarantees. The second paper lays the foundation for our
accuracy guarantees for compression, but do not give suitable
interface for working efficiently with file system.

II. ESTIMATION VIA SAMPLING - PRELIMINARIES

The main objective of this work is to support estimation
via sampling over a large data set. As described in the use-
cases section, there is ample motivation to reduce the size of
the data at hand which can reduce disk IOs, CPU and time to
obtain statistics (to name a few resources). However, randomly
sampling files in a file system carries an inherent difficulty
because data is typically accessed through a directory tree
(some file systems have other means of access to the data,
such as i-node traversal, but these too are subject to some of
the difficulties that will be described in the following section).
The problem with directory trees is that the majority of the files
can possibly reside in a single sub-directory, and finding this
sub-directory can require a full scan of the directory tree. Even
more so, a key observation is that naı̈ve random sampling of
files may end up in giving grossly inaccurate approximation.
This is due to the fact that file sizes can be very diverse.
Research (e.g. [6], [24]) has shown that in many large scale
file systems, small files account for a large number of the files
but only a small portion of total capacity (in some cases 99%
of the files accounted for less then 10% of the capacity). So
sampling randomly from the entire list of files may yield a
sample set with a disproportional number of small files that
actually have very little effect on the overall capacity. It is
therefore clear that files should be sampled according to their
capacity to ensure sound analytics. The natural approach in
this case is to sample files with probability according to their
length. Namely, a file of length 2 MB is twice as likely to be
chosen than a file of length 1 MB. However, there is a subtlety
here - this linearity in probability is for each choice of a file
in the sample set (and not for a single choice).

In the following we describe the distribution that we aim
for in our sampling - a distribution that allows us to prove
statements on the accuracy of the estimation. We complement
it with a model for generalizing the type of statistic for which
we can achieve accuracy guarantees.

A. Basic notation

Throughout the paper we consider a file system with N files
(without loss of generality, this could be elements in any type
of data set, such as objects in an object store, or columns in
a data base). Each file i ∈ {1, ..., N} is assigned a weight wi

and denote by

W =
N∑
i=1

wi

the total weight in the system. It is instructive to think of the
weight as the file size, but this can be generalized to numerous
different measures.

B. The sampling distribution

Our goal is to sample M files in the system with the
property that each such sample is taken uniformly at random
from all the files when adjusted according to the file’s weight
wi. For example if w1 = 1000 and w2 = 200 then each sample
is five times more likely to be the first file than second file.
Note, however, that this does not mean that the first file is five
times more likely to be part of the sample set, since this set
contains M points and the ratio of five only holds for a single
point out of the M . More precisely, the probability that a file
i appears in the sample set has distribution very close to the
binomial distribution with M trials and success probability
wi

W . Namely, file i gets value ki ∼ B(M, wi

W) (to be exact,
our algorithm outputs a multinomial distribution with M trials
and N categories with probabilities w1

W , · · · , wN

W , a distribution
which tends to the binomial distribution collection as N and
M grow). Note that the value ki is an integer (not only 0 and
1) so the ith file is assigned a random variable ki so that the
file i is not in the sample if ki = 0 and otherwise appears in
the sample ki times. As a result a single file can appear more
than once in the sample and this is very intuitive since in case
that a single file is so large that it’s capacity is equal, say, 1

2
of the total capacity, then we would like approximately half
of the sample points to belong to this huge file. We refer to
the distribution we are sampling as the weighted multinomial
distribution.

in Appendix A we give a more rigorous account of the
statistics that can be obtained via weighted sampling and what
are some guarantees that can be obtained.

III. THE SAMPLING METHOD

So far we have discussed the general framework, its ap-
plicability and defined the distribution on files that we aim to
sample. This section is devoted to the algorithms and methods
that we developed in order to actually carry out the sampling
part over a file system (or other data set). Since the distribution
is well defined and simple enough, selecting a random subset
of files from a given collection is a pretty straightforward
programming exercise. However, once we factor in the scale
of the data set and the interface to the files, then things become
less obvious and need to be designed more carefully. In this
respect our design and implementation attempt to optimize all
the factors involved in the process, although in some use-cases
this may be an overshoot since some of the resources that we
optimize for could be abundant and do not pose any issue. Still,
there are other cases, for example when the directory tree is in
the cache or metadata is managed in fast SSDs in which the
performance of the sampling tools may become a bottleneck if
not designed carefully (see Section IV-B for such an example).
Since our work aims to address as wide as possible scope,
we addressed all resources to the best of our ability. In the
following section we describe the interface we provide along
with a list of key requirements and considerations of the
sampling process.

A. The Interface and Key Considerations

The interface of the sampling process should interleave with
a full traversal of the data-set at hand (in our examples this
is a full directory tree traverse. We implement three processes
that can be called by any traverse of iterator over files:

1) Init sample: Initialize data structures (called once at the
beginning of the traverse).

2) Update sample: Called for each file during the traverse,
takes as input the file’s weight its id and any additional
metadata that is available. This process is thread safe
and can be called by multiple processes in parallel.

3) Post process: Finalize and output sample list.
In general, it is expected that the time to run the traversal

will dominate the time of the sampling process. However,
we attempt to make the overhead of the sampling process
as minimal as possible. The philosophy applies for the main
resources of memory and CPU utilization. Other note worthy
considerations include:

• Randomness - choosing a random distribution naturally
requires the use of random generation. While this is
not a heavy resource, we observe that it is a limiting
one when multiple processes are run simultaneously (see
Section III-B). Thus we attempt to use only as much
randomness as actually required.

• Multiprocess locks and communication - multiprocessing
is crucial enabler for improved directory traversals (see
[17])) and therefore supporting multiple threads is a
necessity. We want our support of multi-processing to
have as little impact as possible and avoid a noticeable
slow down due to synchronization of multiple processes.

• Cache awareness - another critical factor in the speed of a
traversal is the contents of its cache. As seen in Section IV
if the directory tree or parts of it are in cache this enables
tremendous speed-up. It is crucial that the sampling (or
analytics) component will refrain from extensive memory
usage to avoid evicting such useful data from cache.

B. The Core Technique

Since the sampling process is part of an iteration over file
and accept one file at a time, the first natural approach is to
make an independent decision on a per file basis of whether
the file should or should not be included in the sample (and
if yes, then how many times should it be in the sample). The
problem is that in order to generate a binomial distribution per
each file, one needs to flip a biased coin several times per file
(assuming the correct bias is known in advance). There are
several ways to approach this, but the bottom line is that the
number of coin flips (calls to the randomness function) needs
to be at least the total weight W of the file system. If the
weight is the length of a file, the best optimization would be
to count the length in chunks of size 4KB (typical page size
of modern file systems). So the number of randomness calls
ends up at around the number of 4KB chunks in the entire
file system. Such a large number of randomness calls may be
very taxing on the system (see Figure 2 in Section IV).

Instead we take a different approach, that will require
exactly M calls to the randomness function (recall that M
is the number of samples). We describe this core technique
now, under the assumption that W is known before hand. In
Section III-C we expand our implementation to the case that
W is not known in advance.

Our technique first does a pre-processing step that picks
the chosen random “positions” for the sample before hand.
During the traverse, we map our chosen points onto actual
files, as we encounter them. In a nutshell, the pre-processing
considers the entire file system as one flat sequential space
spanning the range between 1 and W and chooses M random
locations inside this range (simply by calling the randomness
function M times). When the actual traverse is run, a counter
is maintained of how much capacity has been encountered so
far (by all files seen up to this point of the traverse). When
a new file arrives, the counter is advanced according to the
file size, say, for example from point D to point D+w. Now
if any of the M pre-chosen sample points happened to reside
in the area spanned by this file, then this file is added to the
sample. If there was more than one sample point between D
and D+w then the file is added several times (according to the
number of such hits). Below is a pseudocode that implements
the technique.

CoreSample(M,W):
Setup:

1) Randomly pick M numbers between 1 to W .
Put them into an array Sample_Index

2) Sort the M numbers in Sample_Index
3) Maintain a counter D of data bytes scanned so

far. Initialize to 0 (should eventually reach W).
4) Maintain a counter k of sample points handled

so far. Initialize to 0 (should eventually reach
M)

Traverse: goes over all files in the system (any list
or order suffices). For each file i in the traverse:

1) Increment D by the wi (the size of the file)
2) If D > Sample Index[k] then

a. Add the file to the sample list
b. k++
c. If k = M then finish
d. Else goto 2

3) Else continue to the next file and goto 1

It should be stressed that while the random choices are made
before the traverse, the files are determined only during the
traversal, and indeed a different order of the traversal will yield
a different list of files.

C. Handling Unknown File System Size - One Pass Sampling

Our core technique (as well as the other approaches we
mentioned in Section III-B) assumes the knowledge of the
total size W of the file system before the process begins. This
is a reasonable assumption in many settings, since file systems
typically maintain counter of their current size (and number

of files) and this counter can be queried directly (for example
with the df command). However, this counters are kept only
for the root of the file system and count all files in the system,
while our analytics often would like to focus on a specific
sub-tree or family of files (e.g. files from a partial list of the
file types). In such cases, the only way to compute W is to
actually run the full traverse on the directory at hand, and
overhead which is unacceptable (since typically the traverse is
the heaviest part of the entire process).

In this section we describe our solution to running with
unknown size. It uses the CoreSample technique from Sec-
tion III-B as its basic building block and employs some
conventional methods from the realm of streaming algorithms.
The general process is outlined in the following pseudo-code:

Sample(M)
• Let S1 be an initial segment size with the guar-

antee that S1 < W
• Let Samp be a list of files in the current sample

First iteration:
1) Call CoreSample(M,S1) → Samp
2) Set S = S1

Main while loop (until end of traverse reached):
1) Call CoreSample(M,S) → Samp (merge with

existing list in Samp)
2) If reached traverse end then go to End
3) Else set S = 2 · S
4) Randomly dilute Samp by leave M random

points (out of 2M)
5) Goto 1

End:
Dilute Samp to M sample points.

The basic idea is to start with a preliminary size S which
should be no larger than the eventual size (one can start with
a small capacity, say, even 1 MB). One can run the core
technique with parameters S rather than W and receive M
sample points from the first S bytes that where encountered
during the traverse. One can now continue in the same manner
but set the bound S to higher than before. However, there
are now more than M sample points collected, but worst
yet, the first M points were chosen more densely than the
rest (assuming that the range did indeed grow). So before
continuing to gather sample points, one needs to dilute the
set of points chosen so far. It is possible to run this process
of diluting for every new chosen point in the set. However,
for simpler implementation, we do it in chunks that we call
segments. At each step, the new segment is equal in size to
the total of all segments seen thus far (to allow exponential
growth). Once a segment is finished, its sample points are
first merged with the previous set and then randomly diluted
by half.

Note that the above pseudocode is high level and in real
implementation there are additional details that need to be
handled carefully. One such central point is that it is unlikely

that files will fit exactly into segments and so whenever a file
fills up a segment it is split and its remainder would spill over
to the next segment. A split file may be chosen to the sample
set from two consecutive segments (or from none).

The dilution process takes a number of samples larger than
M and picks M random files to keep in the list. Notice that
we are careful in the algorithm to merge only lists that have
the same density to the samples, and thus simply picking a
random subset suffices to give a new sample set with the
correct distribution but with lower density. In practice we use
the “Reservoir sampling” technique [23] (a technique to pick
M samples in the same data structure without having to copy
all of the M chosen files to a new data structure).

Since the segment size doubles in every iteration, the
segments grow exponentially and the number of iterations
remains low. To be exact, our method will perform exactly⌈
log2

W
S1

⌉
+ 1 calls to the CoreSample procedure. When

including the dilution processes, the amount of calls to the ran-
domness function will be no more than 2M · (

⌈
log2

W
S1

⌉
+1).

Our tests show that running our one-pass algorithm without
prior knowledge of the overall size has very small overhead
when compared to running the core technique with known size
(see Section IV for evaluation).

D. Distributed Sampling - Running with Multiple Processes
Supporting multiple processes was done by means of stan-

dard locking mechanisms. To the CoreSample we added a
Mutex on the counters D and k. Since the operation at hand
is a few simple compare and advance operations, the lock is
very quickly released and has little effect on performance. A
supposedly more efficient design can hand out different sub-
segments to different processes and thus reduce the number of
mutex calls, but since the underlying operation is extremely
fast the simpler designed proved sufficient. The only heavier
operation is once segments are exhausted and a new segment
is generated (via a new call to CoreSample). In this case
the process that exhausted the segment is responsible for
generating the new segment and new Sample_Index list and
does not release the mutex until this operation is completed.

1) The Option for Parallel Execution: The above approach
for distribution proves adequate in many cases, but falls short
in some scenarios. One is when the data set being studied
lies on several mount points that are not accessible from
a single server. Another is when the systems scale-up to
high-performance computing scales and the distribution can
benefit greatly for multiple nodes running the traverse (as
opposed to multiple-processes on the same computer). A
recent study [17] on distributed traversal claims that there is
a major slowdown caused by the communication overhead for
synchronizing between the processes in a traverse running on
very high scale (on the order of 0.5 PB and higher). Instead
they devise a traverse that is mostly run in parallel with
much lower communication and synchronization requirements.
When using such a traverse, our sampling mechanism becomes
problematic since it is centralized and relies on communication
and locks.

To support such traverses and parallel sampling, we suggest
the following mechanism. Each node participating in the
traverse will run it separate sampling process starting with
a relatively small segment size (the run on each node can
be either multi-process or single thread). At the end of the
respective traverses, each node supplies a list of M sample
files for its respective files. Finally, as a post processing step,
all the lists are merged into a single representative sample
list (of length M). The problem is that unlike the merge and
dilute operations discussed in Section III-C, the merge here
takes lists that can account for very different total capacities
and hence the sample points for different nodes where sampled
with different densities.

More formally, our aim is to merge ℓ lists L1, · · · , Lℓ of M
points each representing different total weights W1, · · · ,Wℓ.
Our solution is to run a small process that picks randomly
how many of the M points will be taken out of each list
(according to a multinomial distribution on the lists with
respective probabilities W1

W , · · · , Wℓ

W) and then picking the
required number of points uniformly at random from within
each of the lists. This process results in a distribution which
is identical to that of the basic sampling algorithm.

IV. EVALUATION

A. The Test Environment and Data

We implemented our sampling all of the versions listed in
Section III in C and we hope to make this code public in
the near future. In addition, in order to support our evaluation
we implemented a distributed directory traversal (along the
lines of [2] with some memory optimizations for handling
large scale traverses) and a compression estimation tool (see
Section IV-C).

We ran our tests on a number of file systems listed below:
• Impressions FS: This synthetic file system consists of

approximately 4.9 million files and 1.86 TB of data.
We created it using the Impressions tools [1] with the
augmentation that we replaced dummy files with actual
content matching the file type (according to extension).
This was done in order to make our compression esti-
mation tests meaningful. The file system resides on an
enterprise mid range storage controller connected to the
test machine by fiber channel.

• Project Repository: This file system consists of real life
data from a shared projects repository of a large R&D
unit. Due to access control issues, we had access to 17.6
Million files constituting 7.8 TBs of data (out of a total
of 30TB in the entire repository). The data resides on a
clustered file system and is accessed via NFS. It is made
up of 3 different mount points of varying sizes.

• Compression Collection: This is a collection of 430 GBs
of data (in 21,500 files) from various data types used to
benchmark compression related products. Resides on a
clustered file system and accessed via NFS.

• Bloated Repository: In order to test our code on a much
larger scale we simulated a large file system by including

snapshots in the directory tree of part of the project
repository. This amounted to traversal of a file system
with 220 Million files and 93 TBs of data.

The performance measurements were carried out on a server
with a 4 core Intel Xeon CPU X5570 2.93GHz with 8GB of
RAM.

Till the end of this section we describe our evaluation
of the sampling method itself, and of two of the use-cases
(compression estimation and offline analysis).

B. Evaluating the Sampling Process

Our first test is to see the performance of our traverse and
sampling on the Impressions FS. We run it with increasing
number of threads and see a steady improvement in running
time that evens out at around 32 threads. Figure 1 shows
the results and emphasizes the dramatic improvement that the
traverse has when employing multi-threading.

Fig. 1. Running time of a traverse and sample on the Impressions FS as a
function of the number of threads.

Cache vs. no cache The running time in the previous test
was with a clean cache (we dropped the cache before each
execution). This is crucial for fair evaluation since we observed
that a far more dramatic improvement in the running time
occurs when the directory tree is in the machines cache.
Running times can drop to well below one minute as opposed
to 15 minutes at best with extensive multi-threading. While
this is out of our control when running a traverse at a third
party’s machine, it gives us an understanding of the fluctuating
results that we see in running times.

Running with the directory tree in cache gives very high
performance to the traverse and is an ideal setting to test
the overhead of our sampling tools on top of the traverse. In
Figure 2 we see the running times of the traverse as a stand
alone, versus the same traverse with our sampling mechanism
on top. We see that the overhead is very small and for almost
all points adds up to 10 second slow down. To cap this, we
also ran a test that simply adds a calls to the randomness
function for every 4 KB block in the file - a test that mimics
a simpler approach than ours but requires a linear amount of
randomness calls (see discussion in Section III-B). This graph
justifies our insistence of minimizing the randomness calls as
indeed, we witness a bottleneck in the ability to run intensive
multiple invocations of the randomness function.

Fig. 2. Comparing the running time of the traverse only vs. the traverse
with our sampling and vs. a randomness heavy sampling method. Ran on the
Impressions file system with directory tree in cache.

The effect of many segments. We next study the effect of
running with an unknown total capacity W (see Section III-C).
The effect was unnoticeable in most of the tests that we ran
(especially if the cache was turned off). We only managed to
see an effect when pushing the process to an extreme - we ran a
very fast test (on the Compression Collection, with cache) and
took a relatively large number of samples (1,000,000 sample
points). Figure 3 depicts the overhead in doing several segment
crosses throughout the traverse. As seen the effect is measured
in single seconds which become negligible in larger traverses.

Fig. 3. Running time on the Compression Set with cache enabled as a function
of the initial segment size with respect to the total size (namely S1

W
with 1

meaning that the total capacity was known in advance).

C. The Compression Estimation Evaluation

A central use-case for this study was compression ratio
estimation. For this we implemented a process that takes as
input a file sample list, and for each file occurrence in the
list picks a random compression chunk, reads and compresses
it to evaluate the chunk’s compressibility (if a file appearing
more than once in the list, then an additional chunk is chosen
and compressed for each occurrence). At the end the process
returns the average compression ratio on all of the chunks that
it compressed.

In Table I we see the clear benefits of running the estimation
process over a full scan of the data. The sampling based
estimation reads a mere 320MB of data from disk (irrespective

Data Set Total Capacity Read Exhaustive Sampling + Estimation
Capacity (GB) for Estimation Time (sec) Time (sec)

Impressions 1905 GB 320 MB 49248 1560
Compression 428 GB 320 MB 6032 42

TABLE I
COMPARISON OF EXHAUSTIVE RUN VS SAMPLING FOR COMPRESSION ESTIMATION. BOTH RAN WITH 32 THREADS.

of the entire file system size) and returns an estimation with
sound guarantees.

The running times in the table include both the time of
the traverse with sampling and the time to read and compress
that data in the samples. In Fig 4 we see just the time of the
compression estimation parts, without the traversal. This part
remains relatively constant, ranging from 4 minutes to less
than a minute (depending on the number of threads). In case
of a large traverse this is overhead is negligible, for a quick
traverse it may become the heavier part of the estimation.
Other than multi-threading, the best way to shorten this part
is to reduce the number of samples (at the cost of reduced
accuracy).

Fig. 4. Running time of the compression estimation part of the process
(without the traverse) with 10,000 samples.

We next evaluate the accuracy of the estimation. For this we
ran the estimation on the Impressions FS for 300 independent
times (with fresh random choices). The results (in Figure 5)
are very well centered around the actual compression ratio in
the form of a normal distribution. We see that the maximum
skew on 300 runs was 1.1% and the overwhelming majority
of the runs returned a far better estimation. In terms of
applicability, this is an excellent estimation, well enough to
make all necessary compression related decisions.

D. Evaluating the Offline Analysis Use-case

In this section we demonstrate some of the applicability
of our sampling mechanism as a tool for low memory and
resources offline analytics tool to understanding trends and
distributions within the file system. To this end, we ran our
traverse and sampling over the Project Repository and the
Bloated Repository, collecting a list of 100,000 samples from
each of them. Note that this is well below the overall number
of files in the repository. The traverse actually returned two
lists - one weighted according to file length (for capacity based
analytics) and the other with each file getting weight 1 (for
analytics on the number of files). Note that we collected the

Fig. 5. The histogram depicts how many tests out of 300 independent runs
fell in each skew range.

samples separately on each of the three mount points of this
file system and merged them using the method described in
Section III-D1.

A first test was to identify the popular file extensions
according to the capacity sample, and compare their estimated
capacities to ones that where exhaustively collected. The
results, are depicted in Figure 6.

Another test was to learn the compression ratios of each of
these file types separately. As long as a file type was popular
enough, we have enough sample points to provide guarantees
on the accuracy of the compression figure that we attach to it.
Examples of some of the results are in Figure 7.

Fig. 7. Compression ratios for various extension types in the Projects
Repository.

Figure 8 depicts the capacities of files for different depths
in the directory tree (this was run on one of the 3 mount
points of the Projects Repository file system). We see that
the estimation managed to get extremely accurate results with
100,000 sample points. We ran the same experiment also with
10,000 and 1000 sample points. Naturally, the skew in this
cases grew, but interestingly even for 1000 sample points all

Fig. 6. Capacities of popular file types in the Projects Repository according to the estimation and the actual numbers from an exhaustive evaluation.

Fig. 8. The distribution of capacity across directory tree depth. Exhaustive
vs. offline analysis on 100,000 samples.

Fig. 9. The skew of estimation of capacities per depth for different sample
sizes.

of the estimations where within 1% of the actual value. This
is shown in Figure 9

Finally we run a test over the Bloated Projects directory tree
(93TB, 220 Million files). The running time of the traverse
on this large set was over 70 hours. We managed to test

for numerous properties simple by looking at the file sample
list. Perhaps the most interesting was looking at snapshots
estimated sizes over time. All of the snapshots taken in the
past 2 weeks showed consistent size of the project repository
during this time. However, 2 snapshots taken over a year ago
show that the repository has grown by approximately 46% in
this time frame. See Figure 10 for details.

Fig. 10. Snapshots capacity evolution on the Bloated Repository file system.

V. CONCLUSIONS

In this work we explored applications of sampling based
estimations in the domain of file systems (and hierarchical
data stores in general). Employing the sampling methodology
in this realm brought new challenges that needed to be
addressed in order to make it practical for usage in very large
scale file systems. We view our tools as an easy entry point
for performing analytics in various settings and believe that
the applications presented in the paper are just the tip of
the iceberg in terms of usability of the weighted sampling
paradigm in hierarchical data stores.

REFERENCES

[1] N. Agrawal, A. Arpaci-Dusseau, and R. Arpaci-Dusseau. Generating
realistic impressions for file-system benchmarking. In 7th USENIX
Conference on File and Storage Technologies, (FAST ’09), pages 125–
138, 2009.

[2] B. Awerbuch and R. Gallager. A new distributed algorithm to find
breadth first search trees. IEEE Trans. Inf. Theor., 33(3):315–322, May
1987.

[3] M. Charikar, S. Chaudhuri, R. Motwani, and V. Narasayya. Towards
estimation error guarantees for distinct values. In Proceedings of the
Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, (PODS ’00), pages 268–279, 2000.

[4] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of block-level
sampling in statistics estimation. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 287–298, 2004.

[5] S. Chaudhuri, R. Motwani, and V. Narasayya. Random sampling for
histogram construction: How much is enough? In SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on Management
of Data, pages 436–447, 1998.

[6] C. Constantinescu and M. Lu. Quick Estimation of Data Compression
and De-duplication for Large Storage Systems. In Proceedings of the
2011 First International Conference on Data Compression, Communi-
cations and Processing, pages 98–102. IEEE, 2011.

[7] P. Efraimidis. Weighted random sampling over data streams. CoRR,
abs/1012.0256, 2010.

[8] P. Gibbons, Y. Matias, and V. Poosala. Fast incremental maintenance of
approximate histograms. In VLDB’97, Proceedings of 23rd International
Conference on Very Large Data Bases, August 25-29, 1997, Athens,
Greece, pages 466–475, 1997.

[9] P. Haas and A. Swami. Sequential sampling procedures for query size
estimation. In Proceedings of the 1992 ACM SIGMOD International
Conference on Management of Data, San Diego, California, June 2-5,
1992, pages 341–350, 1992.

[10] Peter J. Haas, Jeffrey F. Naughton, S. Seshadri, and Lynne Stokes.
Sampling-based estimation of the number of distinct values of an
attribute. In VLDB’95, Proceedings of 21th International Conference
on Very Large Data Bases, pages 311–322, 1995.

[11] D. Harnik, R. Kat, O. Margalit, D. Sotnikov, and A. Traeger. To Zip
or Not to Zip: Effective Resource Usage for Real-Time Compression.
In Proceedings of the 11th USENIX conference on File and Storage
Technologies (FAST 2013), pages 229–241. USENIX Association, 2013.

[12] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 301(58):13–
30, 1963.

[13] H. Huang, N. Zhang, W. Wang, G. Das, and A. Szalay. Just-in-time
analytics on large file systems. In 9th USENIX Conference on File and
Storage Technologies (FAST 2011), pages 217–230, 2011.

[14] J. Jiang. Large Sample Techniques for Statistics. Springer Texts in
Statistics. Springer, 2012.

[15] D. Kay. Oracle Solaris ZFS Storage Management. Technical Report
507914, Oracle Corporation, November 2011.

[16] J. Koren, A. Leung, Y. Zhang, C. Maltzahn, S. Ames, and E. Miller.
Searching and navigating petabyte-scale file systems based on facets. In
Proceedings of the 2nd International Petascale Data Storage Workshop
(PDSW ’07), pages 21–25, 2007.

[17] Jharrod LaFon, Satyajayant Misra, and Jon Bringhurst. On distributed
file tree walk of parallel file systems. In SC Conference on High
Performance Computing Networking, Storage and Analysis, SC ’12,
page 87, 2012.

[18] R.J. Larsen and M.L. Marx. An Introduction to Mathematical Statistics
and Its Applications. Student solutions manual. Prentice Hall PTR, 2011.

[19] A. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. Miller. Spyglass:
Fast, scalable metadata search for large-scale storage systems. In 7th
USENIX Conference on File and Storage Technologies, (FAST ’09),
pages 153–166, 2009.

[20] S. Moulton and C. Alvarez. NetApp Data Compression and Dedupli-
cation Deployment and Implementation Guide: Data ONTAP Operating
in Cluster-Mode. Technical Report TR-3966, NetApp, June 2012.

[21] Margo I. Seltzer and Nicholas Murphy. Hierarchical file systems are
dead. In Proceedings of HotOS’09: 12th Workshop on Hot Topics in
Operating Systems, 2009.

[22] R. Tretau, M. Miletic, S. Pemberton, T. Provost, and T. Setiawan.
Introduction to IBM Real-time Compression Appliances. Technical
Report SG24-7953-01, IBM, January 2012.

[23] Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans.
Math. Softw., 11(1):37–57, 1985.

[24] Brent Welch and Geoffrey Noer. Optimizing a hybrid ssd/hdd hpc
storage system based on file size distributions. In IEEE 29th Symposium
on Mass Storage Systems and Technologies, MSST 2013, pages 1–12,
2013.

APPENDIX

A. The statistics of interest

Weighted sampling is described above as our goal, but it is
in fact just a crucial stepping stone to achieve the real goal
which is analytics on big data. We next define a family of
functions on data that are suitable for estimation via sampling.

Definition 1. Let f(i, j) be a measure defined on a file i ∈
{1, · · · , N} of weight wi and position j ∈ {1, · · · , wi} and
let W =

∑N
i=1 wi. The weighted average of f is defined as

F =
1

W

N∑
i=1

wi∑
j=1

f(i, j)

Or in words, the statistic F is a sum of a function that can
be computed locally on files (of course this can be generalized
to a function over sets of files, or over any abstract element
in a data set). Some examples of this abstract notion follow:

• Query 1: what is the total capacity of files with type
’jpeg’? The weight wi is equal to the file length and
f(i, j) is set to 1 if the ith file is a jpeg image and set
to 0 otherwise (for all j).

• Query 2: What is the fraction of files with write permis-
sion? The weight of each file is constant wi = 1 and set
f(i, j) = 1 if the file is open for writes and 0 otherwise.

• Query 3: If each file is a television program, how much
of the time is advertisements? The weight wi is set to the
length of the file in seconds and f(i, j) = 1 if the jth

second in the ith file is an advertisement.
• Query 4: What is the potential benefit of running a

specific compression algorithm on all files in the file
system? The weight wi is equal to the file length. For
position j in file i define f(i, j) as the compression ration
of the compression “locality” of this location in the file
(for example, if the compression is done by independently
compressing aligned input chunks, then the locality of the
jth position is the aligned chunk that it belongs to, and
f(i, j) is the compression ratio of this block. See [11]
for an in depth discussion of such formalization).

B. Putting it together

The formalization described above is put into context when
using weighted sampling. Define the following method of
approximation:

Sampling based estimation:
1) Run the weighted sampling algorithm to obtain

a sample set S of M files in {1, · · · , N}
2) For each i ∈ S take choose ji uniformly at

random in {1, · · · , wi}
3) Output the estimation

F =
1

M

∑
i∈S

f(i, ji)

The estimation technique and method all come together
using the following theorem:

Theorem 1. Let F be a weighted average as in Definition 1
and F be the output of the sampling estimation method above
using set S taken from a weighted multinomial distribution
(see Section II-B). Suppose that there are constants a and b
such that a ≤ f(i, j) ≤ b then for every constant ε > 0 it
holds that

Prob[|F − F | > ε] < 2e
−2Mε2

(b−a)2

The proof is a direct result of the Hoeffding Inequality [12],
when considering the positions in the files as the basic random
variables at hand. The abstraction of looking at f(i, j) as a
measure for positions inside a file (rather than considering a
measured defined on files) is very helpful in simplifying the
analysis (even though for many of the interesting use-cases f
is only a function of its the file i and not the position j). The
formal proof is omitted.

a) Using Theorem 1: Note that Theorem 1 requires a
bound on the range of the function f and indeed if the variance
of f is excessive then the accuracy of the estimation cannot
be guaranteed. In applications is typically possible to consider
measures that are bounded between in the range [0, 1] (as
seen in all of the examples in Section A). Then the theorem
guarantees are of the following type: When taking 5000
samples for a function with f(i, j) ∈ [0, 1] it is guaranteed that
the estimation skew will exceed 0.028 with probability at most

Number of Confidence Hoeffding Poisson
Samples Level Skew (ε) Skew (ε)

5000 10−3 0.028 0.0048
5000 10−6 0.038 0.0076
10000 10−3 0.019 0.0033
10000 10−6 0.027 0.0052

TABLE II
COMPARISON BETWEEN USING THE HOEFFDING BOUND (THEOREM 1)

WITH b− a = 1 VS. A POISSON ESTIMATION FOR THE CASE THAT f(i, j)
IS A BERNOULI TRIAL WITH PROBABILITY p = 0.01. IT IS EVIDENT THAT

WHEN IT IS POSSIBLE TO USE THE POISSON ESTIMATION (BERNOULI
TRIALS WITH LOW PROBABILITY) THEN THE ACCURACY GUARANTEES

ARE MUCH BETTER THAN IN THE GENERAL CASE.

1
1000 and will skew by more than 0.038 only with probability
less than 1 in a million. In general the probability that an
estimation will skew by more than ε decays exponentially as
the number of samples M grows. The fact that ε is squared
means that in order to reduce the skew by a factor of k one
needs to increase the number of samples by k2 (e.g., halving
the skew requires 4 times as many samples).

A special interesting case is that all the values of f are 0
or 1, and that this occurs with low probability. For example,
the testing use-case (Section I-B2) expects a low probability
of errors (f(i, j) = 1) or else the method being tested is
very bad. In this case using Theorem 1 does not provide tight
enough accuracy guarantees (for example, guaranteeing a skew
of ±0.028 for an values inside 0.05 is just not useful. The
reason for this shortcoming is that the underlying Hoeffding
Inequality ignores the variance of the random variables at hand
and uses their range to give a worst case bound on the variance.
In this important case it is worthwhile to use an approximation
of the weighted average using the Poisson distribution - this
approximation is known as “the law of rare events” or “the
law of small numbers” (see for example in [18], chapter 4.2).

In Table II we give some numerical example of the accuracy
that can be guaranteed when using Theorem 1 and when using
a Poisson estimation with probability of error p = 0.01. As
seen the guarantees provided using this bound are much tighter
and make the method appealing in these ranges as well.

