
Virtualization-aware Access Control for Multitenant Filesystems

Giorgos Kappes, Andromachi Hatzieleftheriou and Stergios V. Anastasiadis
Department of Computer Science and Engineering, University of Ioannina, Greece

Email: {gkappes,ahatziel,stergios}@cs.uoi.gr

Abstract—In a virtualization environment that serves multiple
tenants, storage consolidation at the filesystem level is desirable
because it enables data sharing, administration efficiency, and
performance optimizations. The scalable deployment of filesys-
tems in such environments is challenging due to intermediate
translation layers required for networked file access or identity
management. First we present several security requirements in
multitenant filesystems. Then we introduce the design of the
Dike authorization architecture. It combines native access control
with tenant namespace isolation and compatibility to object-based
filesystems. We use a public cloud to experimentally evaluate a
prototype implementation of Dike that we developed. At several
thousand tenants, our prototype incurs limited performance over-
head up to 16%, unlike an existing solution whose multitenancy
overhead approaches 84% in some cases.

I. INTRODUCTION

Cloud infrastructures are increasingly used for a broad range
of computational needs in private and public organizations. We
call tenant an independent organization that is customer of the
networked services offered by a cloud provider [1]. Access
control over the resources of a multitenant environment is
a challenging problem because of the enormous number of
end users involved and the isolation of security administration
required across independent organizations. Authentication and
authorization have already been extensively studied in the
context of distributed systems [2]–[6]. However, a cloud en-
vironment introduces multitenancy characteristics that warrant
reconsideration of the assumptions and solution properties.

Service co-location in the datacenter offers opportunities
for improved storage concentration of application or system
files (e.g., shared documents, root images). Although virtual
disks are attractive for their versioning, isolation and migra-
tion properties, a file-based interface can additionally support
fine-grained controlled sharing, easy resource administration,
and file-level performance optimizations. Existing file-based
solutions face scalability limitations because they either lack
support for multiple tenants, rely on global-to-local identity
mappings for multitenancy, or have the guests and a centralized
filesystem (or proxy) sharing the same physical host [7]–[9].

For data and metadata scalability we rely on an object-
based, distributed filesystem to handle the storage require-
ments of guests belonging to different tenants. In the Dike
design that we introduce, each client mounts directly the
filesystem (instead of indirectly through a proxy server). The
filesystem natively manages the access control metadata of
each tenant and ensures that each tenant can only access its
own namespace. Controlled file sharing is relatively straight-
forward as a result of the file-based access to a common

filesystem with file-granularity access control. We provide
prototype implementation of the above approach in the Ceph
production-grade, distributed filesystem. We experimentally
quantify the limited performance overhead of our design.

Although file-based storage access has been advocated
to improve data sharing, manageability and performance in
virtualization environments, the access-control management
across the principals of different tenants by a cloud provider
remains a challenging problem [9]–[11]. We can summarize
our contributions as follows: (i) Description of access-control
requirements in consolidated storage. (ii) Architectural design
of multitenant access control for an object-based storage
backend. (iii) Prototype implementation of multitenancy in a
production-grade, object-based filesystem. (iv) Experimental
performance evaluation of multitenancy scalability and over-
head across different systems.

In the remaining document we motivate our work on file-
level storage consolidation (§II) and identify several system re-
quirements (§III). Then we describe our system design (§IV)
and prototype implementation (§V). We present our experi-
mentation environment and explain some representative exper-
imental results (§VI). We point out previous related research
in comparison to our work (§VII). Finally we summarize our
conclusions and plans for future research (§VIII).

II. MOTIVATION

Remote storage access through a file-based interface often
improves the performance of virtual machines in comparison
to block-based access [12]. Nevertheless, a file-based interface
is also criticized to compromise the storage robustness to client
bugs, and restrict the general benefits of I/O virtualization [13].

The block-based interface isolates a virtual disk into a
protection domain under full control by the guest owner [7].
On the other hand, a file-based interface provides the “killer”
advantage of configurable guest isolation and sharing support
at fine granularity [7]–[9], [14], [15]. The file-based interface
also facilitates semantics awareness, which strengthens the
consistency and fault isolation of filesystems, and enables
several performance optimizations. For instance, the treatment
of metadata as data by the block-based interface makes a
guest susceptible to corruption from system crashes, unless
all writes are treated as synchronous below the guest (e.g.,
with write-through caching) [12], [13], [16]. Also, filesys-
tem nesting through a block-based interface may lead to
performance degradation, e.g., in write-dominated or latency-
sensitive workloads [12], [13].

Wide compatibility across different backend storage systems
and frontend guest operating systems makes the block-based978-1-4799-5671-5/14/$31.00 © 2014 IEEE

interface a preferable choice [13]. Instead, several manage-
ability benefits are currently provided by both interfaces.
Versioning is supported at coarse granularity in virtual disks,
or fine granularity with individual files [7]. Both virtual
disks and distributed filesystems can support migration [17],
thin provisioning [12], [17], consistent snapshotting [18], and
disaster recovery through multi-site replication (e.g., GPFS,
GlusterFS, SnapMirror [9], [17]). Finally, a file-based interface
makes straightforward the support of content searchability
across different guests, e.g., for malware detection [7], [14].

Next we examine examples of virtualization environments in
which file-based storage consolidation makes sense for reasons
of (i) fine-granularity access control, (ii) storage efficiency, (iii)
data sharing, and (iv) administration flexibility.

Virtual Desktops The private cloud of an enterprise stores
the desktop filesystems of personal thin clients. Each desktop
root filesystem is stored as a separate directory with access
limited to a single client.

Shared Workspace The home directories of collaborating
users are maintained in a shared filesystem. Typical file
exchanges of unstructured data (e.g., documents, images) are
enabled through shared folders in a Dropbox-like manner.

Software-as-a-service A software-as-a-service provider
supports business customers with disjoint end users [1]. The
filesystem treats each business customer as a tenant with
separate application files in writable mode (e.g., databases),
but shared system files in read-only mode (e.g., libraries).

Software Repository A public cloud provides a shared
software repository that different groups of developers can fork
into separate branches. A group obtains writable access to its
own branch, and read-only access to branches of other groups.

III. SYSTEM REQUIREMENTS

We outline the general requirements of our system through
the goals, assumptions, system trust and threat model.

A. Goals and Assumptions

In the proposed access control, we set the following goals:
1) Isolation Each tenant is free to choose identities for its

users. Therefore we isolate the identity space and access
control of different tenants to prevent collisions.

2) Sharing Provide flexible access control to enable secure
file sharing within a tenant or among different tenants.

3) Efficiency Natively support multitenant access control
to achieve the required performance and scalability for
enormous numbers of users or files.

4) Backwards compatibility Leverage the architectural
characteristics of successful filesystems to ensure back-
wards compatibility with existing applications.

5) Manageability Maintenance support at the file level
allows the cloud provider to uniformly and flexibly
manage the storage resources of different tenants.

A client provides local service access to a principal (e.g.,
user or machine) over the network, and a server implements
service actions. We assume that networked data storage is ac-
cessible at file granularity to a large number of principals from

different tenants. For scalability and compatibility reasons, we
adopt the architecture of an object-based, distributed filesys-
tem. A collection of object servers (OSDs) securely store the
data and metadata in object form. Over the object servers, the
metadata servers (MDSs) partition the file namespace, indexes
and permissions to achieve locality and load balancing.

B. System Trust and Threat Model

A distributed filesystem protects the confidentiality and
integrity of stored data and metadata by restricting remote
accesses to authorized principals. The clients and servers
of the filesystem run on the nodes of a datacenter that is
physically operated and protected by an independent provider.
Multiple virtual nodes generally share a physical host. Secure
hardware is used to certify the integrity of the system software
stack of each node e.g., through a hash chain generated by a
Trusted Platform Module [19]. A central monitor builds up
the infrastructure trust with remote attestation.

Public keys or their hashes uniquely identify the tenants,
principals and services. Certificate is a cryptographically
signed statement of authenticity [2]. The private keys of the
entities are persistently stored in encrypted form, and only
appear in plaintext form at the volatile memory of authorized
nodes. The nodes securely communicate over symmetric keys,
which are dynamically agreed upon via public-key cryptogra-
phy or securely exchanged in encrypted form.

The provider has no malicious intent to compromise the
system security. However, there may be other reasons (e.g.,
poor practices) for which the provider is not trusted by some
applications. A tenant may externally apply techniques of
encryption, hashing and auditing to strengthen end-to-end con-
fidentiality, integrity and freshness [20]. We target filesystem
access control without any explicit attempt to provide solutions
for public-key distribution, denial of service, traffic analysis,
and general multitenant sharing of resources other than storage
(e.g., computation).

IV. SYSTEM DESIGN

Next we introduce the Dike architecture of multitenant
access control for networked storage shared at the file level.

A. Identity Management

Identity management refers to the representation and recog-
nition of entities as digital identities in a specific domain [21].
Existing systems often handle identities through a central-
ized or peer-to-peer structure, or by using global-to-local
mappings [5], [9], [22]. However, a multitenant environment
complicates the secure operation of a shared filesystem due
to the multiple independent organizations involved. Thus, we
follow a hierarchical management scheme due to the isolation
and scalability properties that it offers. Each tenant maintains
a private authentication service to locally manage the identities
of its principals. The authentication services of legitimate
tenants are registered with the filesystem. Requests from an
approved tenant can be processed by the filesystem according
to the access permissions of each file.

(5) Metadata ticket

(6) Data ticket

Authenticate

A
u
th

e
n
tic

a
te

(4
)

M
e

ta
d
a
ta

ti
ck

e
t

Tenant1
principals

Tenant

Authentication

Server

Clients
(2)

Connect

(7) Data ticket

TENANTS PROVIDER

(8) Data

(3
) R

e
q
u

e
s
t

Authenticate

MDS OSD OSD

Native

principals

Filesystem

Authentication

Server

Fig. 1: The Dike multitenant access-control system. In the
parentheses over dashed lines we enumerate the steps of file
access by a principal. The solid lines refer to the authentication
initialization of the system components.

B. Authentication

We partition the task of authentication among the provider
and the tenants. Each tenant uses a separate tenant authen-
tication service (TAS) to authenticate the local clients and
principals. Additionally, the provider operates a filesystem au-
thentication service (FAS) to authenticate the metadata servers,
data servers and tenant authentication servers of the system
(Fig. 1). The principals are distinguished into native filesystem
principals, who are trusted to manage the entire filesystem, and
tenant principals, who manage or use the tenant resources.

A client is initially authenticated by the TAS (Fig. 1). Each
tenant principal is authenticated (step 1) by the TAS, and
requests (2) filesystem access through the client. On behalf
of the principal, the client contacts (3) the TAS and receives
back (4) a metadata ticket to request (5) filesystem access
from the metadata server (MDS). The MDS uses a FAS-issued
certificate of TAS to validate the received metadata ticket.
Then, the MDS issues (6) to the client a data ticket to access
(7-8) a data server (OSD). The data ticket securely specifies
the principal and permissions of the authorized operation. The
above procedure is similar for accesses by filesystem principals
with the main difference that both the clients and principals
are directly authenticated by the FAS.

C. Authorization

The authorization policy of the filesystem is specified in
the permissions maintained by the MDS for each file. We
support two types of file access permissions, the Unix and
the Access Control List (ACL). The MDS isolates on distinct
data structures (e.g., access-control lists) the policies of a file
that apply to different tenants. It also separately stores the
policy for the native filesystem principals.

For administration purposes, the filesystem selectively
makes the metadata accessible to different entities in the form
of views. The filesystem administrator uses the filesystem
view to specify permissions for entire tenants or individual
principals. Instead a tenant administrator uses a tenant view to
configure the metadata that has been made accessible to the
respective tenant by the provider. A principal obtains filtered

Folder

Folder

Tenanti Tenanti

Tree Folder

ACLs

Tree File

ACLs

Tenanti Tenanti

Tree Folder

ACLs

Tree File

ACLs

Private File ACL

Tenantk

Fig. 2: Inheritance and common permissions in Dike with
tree file and folder permissions. We also show private file
permissions, which are limited to individual files.

access to a subset of the filesystem or tenant view according
to the applicable permissions.

Dike allows an access policy to specify a file as private
or shared across the principals of a single or multiple ten-
ants. Subsequently, cross-tenant accesses in Dike are natively
supported by the filesystem. In general-purpose public-key
cryptography, the certification hierarchy can have an arbitrary
number of levels. Instead, Dike only uses a two-level organi-
zation to let the TAS of each tenant be certified by the FAS.
Dike also differs from the multi-realm Kerberos protocol, in
which remote accesses require tickets by the local and remote
realm to be granted either directly, or hierarchically through a
common ancestor [3].

D. Inheritance and Common Permissions

Cloud storage systems generally handle an enormous num-
ber of files. Managing several permissions for each file in-
volves considerable space and time requirements. In Dike, we
support inheritance of access permissions as a convenience
to the user. In order to reduce the load of the object and
metadata servers, we also allow common permissions to be
shared among the different files of the same folder. From our
isolation goal it follows that we enforce the inheritance and
common permissions separately within each tenant.

Let the tree folder permissions refer to the permissions of
the folder itself, and the tree file permissions refer to the
permissions of the files directly contained in the folder. We col-
lectively call tree permissions the folder and file permissions
of the folder. By default the tree permissions are initialized
according to the environment of the principal (similar to the
Unix umask semantics). Inheritance trivially applies in this
case because all files and folders are created with the same
default settings, respectively.

As a second option, our design allows an authorized prin-
cipal to explicitly specify the tree folder permissions or tree
file permissions in a folder. Then, the modified permissions
are inherited into the files and folders of the subtree rooted
at the folder. For implementation simplicity, we allow the
tree permissions to be physically copied to the underlying
folders. Instead, the tree file permissions are common across
the children files without being separately copied to each child.

Finally, we can explicitly set the permissions of an individ-
ual file to private tree permissions. These are distinct from

the tree file permissions inherited from the parent folder. In
Fig. 2 we present an example of two folders and multiple files
adopting the tree file or private file permissions.

E. Security Analysis
A server securely receives from a client a fresh tamper-

proof ticket that specifies the authorized client and principal
of an access. According to the file permissions and the ticket-
specified identities, a principal is denied unapproved access
to the data and metadata of other principals at the same or a
different tenant.

It is possible that an attacker penetrates the client of a tenant
and impersonates oneself as a legitimate principal. Given
that the permissions of different tenants are stored separately,
cross-tenant policy violation is prohibited by design. Indeed,
the harm of such an attack is limited to the private or shared
files that are accessible by the compromised tenant. The
attacker cannot modify the system-wide access policy and
affect the principals of other tenants or the native principals
of the filesystem (except for files shared across them).

In the case that the account of a filesystem administrator is
compromised, an attacker may be able to gain complete access
to the permissions and data of the system. The implications
of such an attack can be limited, if the tenants apply external
protection techniques, such as encryption or hashing of the
stored data. Special protection measures can reasonably harden
external attacks. For instance, the provider may apply secure
virtualization at the network level. As another measure, the
provider can disable direct access of the filesystem or tenant
administrator from outside the datacenter.

V. SYSTEM PROTOTYPE

Next we describe our implementation of the Dike multi-
tenant access control over a distributed filesystem. The proto-
type implementation is based on Ceph, a flexible platform with
scalable management of metadata and extended attributes [18].

A. Outline of Ceph
There are four components in Ceph: the clients provide

access to the filesystem, the metadata servers (MDSs) manage
the namespace hierarchy, the object-storage devices (OSDs)
reliably store objects, and the monitor (MON) manages the
server cluster map [18]. A registered client shares a secret
key with the MON. When a principal requests a filesystem
mount, the respective client receives a session key after being
authenticated by the MON. With the session key, the client
securely requests the desired Ceph services from MON and
receives back an authenticating ticket for the MDSs and OSDs.

The MDS maintains the state of communication with a
client in an entry of a session map. Unless a session fails,
it remains active until the client unmounts the filesystem. At
first communication with an MDS, the client uses the ticket
to initiate a new session. The MDS receives a message of
type MClientSession from the client, initializes the session
state, and sends back a capability for the root directory. From
the capability the client derives an object identifier and the
placement group of OSDs that contain the object replicas.

EXTENDED ATTRIBUTES

MAP

INODES

UID

GID

MODE

...

XATTRS

...

Native User Permissions

ClientClientClient

ClientClientMDS

ClientClientMON

ClientClientOSD

OBJECT

POOLS

...

Permissions

Permissions

Permissions

TID1

TID2

...

TIDN

Auth

Fig. 3: Prototype implementation of the Dike multitenant
access-control system. Our solution is based on the extended
attributes of the Ceph filesystem.

B. Support for Multitenant Access Control

We expanded Ceph to natively provide multitenant access
control according to the Dike design (Fig. 3). Apart from
the added multitenancy support, our current prototype im-
plementation relies on the authentication and authorization
functionality of MON.

Session In a filesystem mount request to an MDS, a client
has to uniquely identify the accountable tenant. In our current
prototype, we derive a unique tenant identifier (TID) by
applying a cryptographic hash function (e.g., RIPEMD-160)
to the public key of the tenant. The client embeds the TID into
an expanded MClientSession request, and sends it to the MDS
over the secure channel based on the session key. The MDS
extracts the TID from the received message, and stores it in the
established session. The secure session between the filesystem
and an authenticated client can only serve the actions permitted
to the principals of the identified tenant.

Permissions Our current implementation only supports
Unix-like permissions for users and groups, but it makes
straightforward to add access-control lists in a future version.
Based on the supplied TID, a client obtains tenant view of
the filesystem for access by a principal of the tenant. The
permissions of the tenant view are stored in the extended
attributes of the filesystem. For global configuration settings,
we also support the filesystem view, which enables full access
permissions to the administrator of the entire filesystem. The
respective permissions are stored in the regular inode fields.

Separately for each tenant, a folder stores two types of
permissions: the tree folder permissions, which control the
access of the folder, and the tree file permissions, which
control the access of the files contained in the folder. We
allow a collection of files to share the permissions specified in
the tree file permissions of their parent folder. Alternatively,
a principal can explicitly set the access permissions of a
particular file by creating a new entry of permissions for the
respective tenant.

A file capability is only sent to a client whose tenant is
permitted access to the file. In order to enforce the access
policy, we expanded the returned capability of Ceph to include
the tenant identifier and the respective file ownership metadata.
A client cannot directly read or write the access control

information stored in the extended attributes of a file. Instead,
only the filesystem is allowed to access the extended attributes
on behalf of authorized client requests.

Development We developed the Dike prototype by adding
2023 commented C++ lines into Ceph v0.61.4 (Cuttlefish).
The new functionality was implemented in the client and
metadata server of the Ceph filesystem. We extended the
CInode class of Ceph with eight new operations to set and
retrieve the permissions of tenants and individual principals.
We also modified all the Ceph filesystem functions related to
permissions handling, including the inode constructor.

VI. PERFORMANCE EVALUATION

We experimentally examine the scalability of Dike along
several parameters with respect to Ceph and other systems.

A. Experimentation Environment
Our testbed consists of EC2 instances from the US East

region of the Amazon Web Services (AWS). We use up to
3 instances of type ”m1.large” (4x64bit cores, 15GB RAM)
as fileservers and 32 instances of type ”t1.micro” (1x64bit
core, 615MB RAM) as microbenchmark clients. All instances
run Red Hat Enterprise Linux Server r6.4 with Linux v3.9.3.
On the three fileservers we alternatively run three servers of
Ceph, Dike, GlusterFS, and HekaFS with replication factor 3
(for GlusterFS and HekaFS see §VI-B). GlusterFS and HekaFS
manage both data and metadata on all three fileservers. Instead,
Ceph and Dike run an OSD instance on each fileserver, but
also run the MDS and MON on two of the fileservers.

We measure the metadata performance using the mdtest
v1.9.1 from LLNL. This is an MPI-based microbenchmark
running over a parallel filesystem. Each spawned MPI task
iteratively creates, stats and removes a number of files/folders.
We found 12 processes per client to maximize the throughput
in the local cluster, and 5 processes to maximize the through-
put of an AWS client node. We repeated the experiments as
needed to constrain the 95% confidence-interval half-length of
throughput within 5% of the average value.

B. Experimentation Results
In Fig 4a we run up to 32 mdtest clients in the AWS testbed.

The clients equally divide the creation of 48,000 files, and each
client equally divides the respective number of files among its
processes. In Dike we alternatively create 1k or 5k private
folders. We enable the access permissions of each folder for
a single tenant, which respectively leads to 1,000 (Dike-1k)
and 5,000 distinct tenants (Dike-5k). An increasing number of
clients tends to improve the total throughput of both systems
(except for a slight drop in remove from 16 to 32 client). At 1
client, Ceph serves the file create at 81op/s, Dike-1k at 78op/s
and Dike-5k at 80op/s. The overhead of Dike is similarly
limited in remove and stat. Even at 32 clients, Dike-1k only
reduces the throughput of Ceph by 0-12%, while increase of
the tenants to 5k adds 2% extra overhead.

GlusterFS is an open-source, distributed filesystem from
RedHat. It supports translator layers for the addition or re-
moval of features. HekaFS is a cloud filesystem implemented

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

Ceph
Dike-1k
Dike-5k

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

C
reate

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

R
em

ove

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

 1

 10

 100

 1000

 10000

 100000

Stat

T
h

ro
u

g
h

p
u

t
(o

p
/s

)

 1 Client 16 Clients 32 Clients

mdtest / AWS

Ceph vs Dike

(a) Tenant Scalability

 0

 20

 40

 60

 80

 100

create

O
v
e
rh

e
a
d

 (
%

)

 File operations Folder operations

mdtest / AWS

32 Clients

HekaFS-1k
HekaFS-5k
Dike-1k
Dike-5k

 0

 20

 40

 60

 80

 100

rem
ove

O
v
e
rh

e
a
d

 (
%

)

 File operations Folder operations

mdtest / AWS

32 Clients

 0

 20

 40

 60

 80

 100

stat

O
v
e
rh

e
a
d

 (
%

)

 File operations Folder operations

mdtest / AWS

32 Clients

 0

 20

 40

 60

 80

 100

create

O
v
e
rh

e
a
d

 (
%

)

 File operations Folder operations

mdtest / AWS

32 Clients

 0

 20

 40

 60

 80

 100

rem
ove

O
v
e
rh

e
a
d

 (
%

)

 File operations Folder operations

mdtest / AWS

32 Clients

 0

 20

 40

 60

 80

 100

stat

O
v
e
rh

e
a
d

 (
%

)

 File operations Folder operations

mdtest / AWS

32 Clients

(b) Multitenancy Overhead

Fig. 4: (a) We use mdtest to compare the scalability of Dike
and Ceph across different numbers of tenants. (b) We compare
the overhead of multitenancy support in Dike over Ceph to that
of HekaFS over GlusterFS using private folders.

as a set of translators over GlusterFS. In order to isolate
the identity space of different tenants, HekaFS uses a map
file to translate the local user identities of the tenants to
globally-unique identities [9]. However, identity mapping was
previously criticized as cause for limited scalability [22]. Also,
HekaFS appears to strictly store the files of different tenants
on distinct private folders, which makes it unclear whether it
currently supports secure file sharing between tenants [9].

In Fig. 4b we measure the throughput decrease (denoted as
overhead) in file and folder operations incurred by Dike over
Ceph and HekaFS over GlusterFS. In AWS, we use 32 clients
to run mdtest in a filesystem configured with 1,000 or 5,000
tenants and private folders per tenant. The overhead of file and
folder create operations approaches 12-16% in Dike-1k, and
14-15% in Dike-5k. On the contrary, the overhead of HekaFS
over GlusterFS in file and folder stat operations approaches
49% with 1k tenants, and 84% with 5k tenants. In stat, the
overhead of Dike (0-2%) remains nearly up to two orders of
magnitude below that of HekaFS (49-84%).

In summary, Dike adds multitenancy support over Ceph at
limited performance overhead up to 16%, unlike HekaFS that
incurs overhead over GlusterFS up to 84% in our experiments.

VII. RELATED WORK

All the principals of a distributed system are often registered
into a central directory (e.g., Kerberos [3]). Secure data
transfer between clients and storage through an object-based
interface is addressed in the Network-Attached Secure Disk
model [4]. Plutus applies cryptographic storage to support
secure file sharing over an untrusted server [23]. The extended
capability of the Maat protocol securely authorizes I/O for any
number of principals or files at a fixed size through Merkle
hash trees [6]. However, the above research does not directly
address the multitenancy of consolidated cloud storage.

Multitenancy isolation without sharing support was offered
by running separate filesystem virtual machines per tenant,
or shielding the filesystem processes of different tenants [24].

File-based storage virtualization is enabled by Ventana through
versioning and access-control lists (ACLs), but without tenant
isolation [7]. VirtFS uses a network protocol to connect a host-
based fileserver to multiple local guests without isolating their
respective principals [8]. The scalability of Ventana and VirtFS
is limited by the centralized NFS-like server running at the
host. Instead we advocate the networked access of a scalable
distributed filesystem (e.g., Ceph) directly by the guests.

The Manila File Shares Service is an OpenStack project
under development for coordinated access to shared or dis-
tributed filesystems in cloud infrastructures [11]. The ar-
chitecture securely connects guests to a pluggable storage
backend through a logical private network, a hypervisor-based
paravirtual filesystem, or a storage gateway at the host. Dike
is complementary by adding multitenancy support to Ceph for
natively isolating the different tenants at the storage backend.

Secure Logical Isolation for Multi-tenancy (SLIM) has
recently been proposed to address end-to-end tenant isolation
in cloud storage; it relies on intermediate software layers (e.g.,
gateway, gatekeeper, guard) to separate privileges in informa-
tion access and processing by different cloud tenants [10]. The
data-protection-as-a-service architecture introduces the secure
data capsule as an encrypted data unit packaged with security
policy, and it confines applications within mutually-isolated
secure execution environments [15]. We also target secure
storage in the datacenter, but with multitenancy support at the
access-control metadata of object-based fileservers.

VIII. CONCLUSIONS

We consider the security requirements of scalable filesys-
tems used by virtualization environments. Then we introduce
the Dike system design to natively support multitenant access
control. With a prototype implementation of Dike over a
production-grade filesystem (Ceph) we experimentally demon-
strate a limited multitenancy overhead up to 16% in config-
urations with several thousand tenants. Our plans for future
work include integration of Dike into a trusted virtualization
platform in the datacenter, further experimentation with I/O-
intensive applications at large scale over different object-based
filesystems, and consideration of weaker trust assumptions.

ACKNOWLEDGMENT

This research was supported in part by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Thales. Investing in
knowledge society through the European Social Fund (Project
“Cloud9”). Credit provided by AWS in Education Grant award
to access the Amazon Web Services is gratefully acknowl-
edged.

REFERENCES

[1] M. L. Badger, T. Grance, R. Patt-Corner, and J. M. Voas, “Cloud com-
puting synopsis and recommendations,” National Institute of Standards
and Technology, Tech. Rep. NIST SP - 800-146, May 2012.

[2] E. Wobber, M. Abadi, M. Burrows, and B. Lampson, “Authentication in
the Taos operating system,” ACM Trans. Comput. Syst., vol. 12, no. 1,
pp. 3–32, Feb. 1994.

[3] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service for
computer networks,” IEEE Communications Magazine, vol. 32, no. 9,
pp. 33–38, Sep. 1994.

[4] G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, E. M. Feinberg,
H. Gobioff, C. Lee, B. Ozceri, E. Riedel, D. Rochberg, and J. Zelenka,
“File server scaling with network-attached secure disks,” in ACM SIG-
METRICS Conf., Seattle, WA, 1997, pp. 272–284.

[5] M. Kaminsky, G. Savvides, D. Mazières, and M. F. Kaashoek, “De-
centralized user authenication in a global file system,” in ACM Symp
Operating Systems Principles, Bolton Landing, NY, Oct. 2003, pp. 60–
73.

[6] A. W. Leung, E. L. Miller, and S. Jones, “Scalable Security for Petascale
Parallel File Systems,” in ACM/IEEE Intl Conf High Performance
Computing, Networking, Storage and Analysis (SC), Nov. 2007, pp.
16:1–16:12.

[7] B. Pfaff, T. Garfinkel, and M. Rosenblum, “Virtualization Aware File
Systems: Getting Beyond the Limitations of Virtual Disks,” in USENIX
Symp. Networked Systems Design Implementation, San Jose, CA, 2006,
pp. 353–366.

[8] V. Jujjuri, E. V. Hensbergen, and A. Liguori, “VirtFS: Virtualization
aware File System pass-through,” in Ottawa Linux Symp., 2010.

[9] J. Darcy, “Building a cloud file system,” USENIX; login:, vol. 36, no. 3,
pp. 14–21, Jun. 2011, (see also http://hekafs.org).

[10] M. Factor, D. Hadas, A. Hamama, N. Har’el, E. K. Kolodner, A. Kurmus,
A. Shulman-Peleg, and A. Sornioti, “Secure logical isolation for multi-
tenancy in cloud storage,” in IEEE Intl. Conf. Massive Storage Systems
and Technology, Long Beach, CA, May 2013.

[11] https://wiki.openstack.org/wiki/Manila.
[12] D. Le, H. Huang, and H. Wang, “Understanding performance implica-

tions of nested file systems in a virtualized environment,” in USENIX
Conf. File and Storage Technologies, San Jose, CA, Feb. 2012, pp. 87–
100.

[13] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok, “Virtual machine
workloads: The case for new benchmarks for NAS,” in USENIX Conf.
File and Storage Technologies, San Jose, CA, Feb. 2013, pp. 307–320.

[14] D. T. Meyer, J. Wires, N. C. Hutchinson, and A. Warfield, “Namespace
Management in Virtual Desktops,” USENIX; login:, vol. 36, no. 1, pp.
6–11, Feb. 2011.

[15] D. Song, E. Shi, I. Fischer, and U. Shankar, “Cloud data protection for
the masses,” Computer, vol. 45, no. 1, pp. 39–45, Jan. 2012.

[16] R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala,
and M. Zhao, “Write policies for host-side flash caches,” in USENIX
Conf. File and Storage Technologies, San Jose, CA, Feb. 2013, pp. 45–
58.

[17] J. K. Edwards, D. Ellard, C. Everhart, R. Fair, E. Hamilton, A. Kahn,
A. Kanevsky, J. Lentini, A. Prakash, K. A. Smith, and E. Zayas,
“FlexVol: flexible, efficient file volume virtualization in WAFL,” in
USENIX Annual Technical Conf., Boston, MA, Jun. 2008, pp. 129–142.

[18] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A Scalable, High-Performance Distributed File System,” in
USENIX Symp. Operating Systems Design Implementation, Seattle, WA,
Nov. 2006, pp. 307–320.

[19] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping Trust in
Commodity Computers,” in IEEE Symp. on Security and Privacy, May
2010, pp. 414–429.

[20] A. Juels and A. Oprea, “New Approaches to Security and Availability
for Cloud Data,” Comm. ACM, vol. 56, no. 2, pp. 64–73, Feb. 2013.

[21] A. Jøsan, M. A. Zomai, and S. Suriadi, “Usability and privacy in identity
management architectures,” in Australasian Inf. Sec. Workshop: Privacy
Enhancing Technologies, Ballarat, Australia, Jan. 2007, pp. 143–152.

[22] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’ Agnello, A. Frohner,
K. Lorentey, and F. Spataro, “From gridmap-file to VOMS: managing
authorization in a grid environment,” Future Generation Computer
Systems (Elsevier), vol. 21, pp. 549–558, 2005.

[23] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and K. Fu, “Plutus:
Scalable secure file sharing on untrusted storage,” in USENIX Conf. File
and Storage Technologies, San Francisco, CA, 2003, pp. 29–42.

[24] A. Kurmus, M. Gupta, R. Pletka, C. Cachin, and R. Haas, “A Com-
parison of Secure Multi-tenancy Architectures for Filesystem Storage
Clouds,” in ACM/IFIP/USENIX Intl Middleware Conf., Lisboa, Portugal,
Dec. 2011, pp. 460–479.

