
Exploiting Parallelism in I/O Scheduling for Access Conflict Minimization in
Flash-based Solid State Drives

Congming Gao∗, Liang Shi∗§, Mengying Zhao†, Chun Jason Xue†, Kaijie Wu∗, and Edwin H.-M. Sha∗
∗College of Computer Science, Chongqing University, Chongqing, China

† Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong
Email: {albertgaocm, shi.liang.hk}@gmail.com, mengyzhao2-c@my.cityu.edu.hk,

jasonxue@cityu.edu.hk, {kaijie, edwinsha}@gmail.com

Abstract—Solid state drives (SSDs) have been widely de-
ployed in personal computers, data centers, and cloud storages.
In order to improve performance, SSDs are usually constructed
with a number of channels with each channel connecting to
a number of NAND flash chips. Despite the rich parallelism
offered by multiple channels and multiple chips per channel,
recent studies show that the utilization of flash chips (i.e.
the number of flash chips being accessed simultaneously) is
seriously low. Our study shows that the low chip utilization
is caused by the access conflict among I/O requests. In this
work, we propose Parallel Issue Queuing (PIQ), a novel I/O
scheduler at the host system, to minimize the access conflicts
between I/O requests. The proposed PIQ schedules I/O requests
without conflicts into the same batch and I/O requests with
conflicts into different batches. Hence the multiple I/O requests
in one batch can be fulfilled simultaneously by exploiting the
rich parallelism of SSD. And because PIQ is implemented
at the host side, it can take advantage of rich resource at
host system such as main memory and CPU, which makes
the overhead negligible. Extensive experimental results show
that PIQ delivers significant performance improvement to the
applications that have heavy access conflicts.

I. INTRODUCTION

Solid state drives (SSDs) are widely deployed in personal

computers, data centers, and cloud storages given its well-

identified advantages, such as shock resistent, high random

access performance, low power consumption, and light-

weight form factors [1][2]. In order to improve performance,

SSDs are usually constructed with a number of channels

with each channel connecting to a number of NAND flash

chips [1][6]. Both the number of channels and the number of

chips per channel are increasing in the last decade thanks to

the advance in integration technologies. The rich parallelism

offered by multiple channels and multiple chips per channel,

however, has not been fully exploited. Figure 1 shows the

evaluation result of chip utilization using a typical SSD

with 8 channels and 8 chips per channel organization. 15

carefully selected MSR Cambridge traces from servers [14]

are used in the experiments since they are always intensive

applications. The detailed experiment settings are presented

in Section V. As shown in Figure 1, the chip utilizations of

§Liang Shi is corresponding author: shi.liang.hk@gmail.com.

978-1-4799-5671-514$31.00 c©2014 IEEE

0

10

20

30

40

50

60

N
um

be
r o

f U
til

ize
d

Ch
ip

s

Figure 1. Chip utilization on a typical SSD with 8 channels and 8 chips
per channel organization.

the various benchmarks are mostly below 20%.

Recently many works have been proposed to improve the

utilization of the rich parallelism from different perspectives.

Jung et al. [9] and Hu et al. [7][8] show that data allocation

schemes in the SSD controller are very important in exploit-

ing the parallelism. Agrawal et al. [1] and Dirik et al. [6]

evaluate different types of SSD organizations to investigate

the impact on performance cast by the number of channels

and the number of chips per channel. These works show

that with a better SSD organization and/or controller design,

the chip utilization can be improved significantly. Another

important factor that prevents better utilization is the I/O

access conflicts. The access conflicts among successive I/O

requests naturally prevent the multiple chips in an SSD to

be fully accessed in parallel. On recognizing the problem,

Jung et al. [11] and Chen et al. [5] propose works to reduce

read access conflicts. These works are implemented in the

SSD controller, i.e., by moving the queue in the hardware

interface and buffer cache in the controller to the beneath

of FTL. However, these works only aim at improving read

performance by considering only read and read conflicts,

i.e., multiple read requests issued to a single chip in a short

interval, while there are also read and write conflicts, and

write and write conflicts.

In this work, we will propose a novel host side I/O

scheduler, Parallel Issue Queuing (PIQ), to improve the

exploitation of the rich parallelism in SSD. PIQ take into

account all type of conflicts, i.e., read and write conflicts,

read and read conflicts, and write and write conflicts. The

0

20

40

60

80

100

Pe
ce

nt
ag

es
 o

f C
on

fli
ct

io
ns

 (
%

)

Read Requests Write Requests

(a) Access Conflicts

0

5

10

15

20

25

La
te

cn
y

In
cr

ea
se

s (
 X

 T
im

es
)

Read Latency Write Latency

(b) Performance Degradation

Figure 2. Access Conflict and Performance Impact: (a) The percentages of conflict read and write requests to the total I/O requests; (b) The performance
degradation induced from access conflicts.

key challenge in designing PIQ is the detection of all these

kinds of access conflicts among successive I/O requests

from the host side. SSDs are different from traditional

storage media, as there is a translation layer in the SSD

controller that hides the data location information of I/O

requests. In this work, a logical block number (LBN) based

conflict detection approach is proposed to expose the conflict

information to the host side. LBN represents the logical

address of data used by the host systems, which is used

in the determining of the location of data. With the knowl-

edge of conflicts, the proposed PIQ separates I/O requests

according to the conflicts between them: the I/O requests

without conflicts will be put into one batch, while the I/O

requests with conflicts will be put into different batches. The

requests in the same batch can be fulfilled simultaneously

by exploiting the rich parallelism of SSD. Also because PIQ

is implemented at the host side, it can take advantage of

rich resource available at the host system, such as the main

memory and CPU of the system. This effectively makes the

implementation overhead negligible.

To the best of our knowledge, this work is the first in

proposing I/O scheduler at the host side to reduce access

conflicts. Extensive experimental results show that PIQ is

able to improve the access performance by 19% and 47% for

read requests and write requests, respectively, compared to

state-of-the-art techniques. This work achieves the following

contributions:

• Verified that the various kinds of access conflicts at the

host systems, including read and read, read and write,

and write and write conflicts, are the key reason that

prevents the rich parallelism from being fully exploited;

• Proposed an LBN based conflict detection approach

to identify the access conflicts among successive I/O

requests at the host side;

• Proposed a host-level conflicts-reduction I/O scheduler

to improve both read and write performance;

• An efficient implementation of PIQ is presented with

negligible overhead. Since PIQ is implemented at host

system, it does not introduce any change to current SSD

design. Experimental results show that PIQ is effective

in reducing access conflicts and exploiting parallelism

of SSDs for performance improvement.

The rest of the paper is organized as follows. Section

II presents the problem in the parallelism exploration of

SSDs. Section III presents the background and related works.

In Section IV, access conflict detection approach and the

access parallelism exploration I/O scheduler are proposed.

Experiments are presented in Section V. Finally, Section VI

summarizes the paper.

II. PROBLEM STATEMENT

Recent studies show that the rich parallelism of SSDs

cannot be easily exploited, and the utilization of parallelism

in SSDs is seriously low [10], [15]. One of the key issues for

low chip utilization is the access conflicts among successive

I/O requests. Access conflicts happen when several I/O

requests access a same flash chip in a short time interval.

These requests cannot be fulfilled simultaneously, which

results in a low chip utilization. The types of conflicts

include read and read conflicts, read and write conflicts, and

write and write conflicts.

In order to reveal the impact of access conflict at the host

side, we evaluate the percentages of conflict requests and

performance impact induced by access conflicts for different

applications. The detailed experiment settings can be found

in Section V. Figure 2(a) shows the percentages of conflict

read and write requests. It can be observed from Figure 2(a)

that the access conflicts among requests commonly exist

in applications. For example, for USR 0, 53.0% of read

requests are conflicted, and for SRC2 2, 81.4% of write

requests are conflicted. Secondly, we also observe that the

percentages of conflicted write requests vary significantly

among applications, while the percentages of conflicted read

requests are roughly in the same range. On average, 35.2%

of read requests, and 36.2% of write requests are conflict

requests.

Conflict requests directly induce performance degradation.

The performance degradation is presented in Figure 2(b),

which has a matching pattern with Figure 2(a). The ratio

of increased response time over the un-impacted response

time is used as the metric. Similarly, the first observation

shows that read and write response time are both increased,

and on average by 6.5 times and 10.1 times, respectively.

The second observation shows that the latency increase,

especially for write, varies significantly among applications.

For example, there are 11.6 times increase in PRXY 0’s read

response time, and 18.3 times increase in SRC2 2’s write

response time, as well as only 1-3 times increase in PRN 1,

PROJ 1, and STG 0’s read response time, and PRXY 0,

and USR 0’s write response time. The reason behind the

varying results is mainly due to different amount of access

conflicts among the I/O requests of these applications. We

can then conclude that access conflicts commonly exist in

various applications running on SSDs, and the applications

with stronger access conflicts will see more significant

performance degradation.

III. BACKGROUND AND RELATED WORK

In this section, NAND flash memory based SSD is pre-

sented with its organization and features. Then, the related

works are presented, including parallelism exploration and

the I/O scheduler for SSDs.

A. Solid State Drives

SSDs are constructed with NAND flash memory chips

organized in channels, where an SSD controller is used to

manage the storage array. In this section, the organization

of SSDs is first presented. Then, the controller of SSDs is

introduced.

1) Parallel Organization: An SSD is composed of mul-

tiple channels, and each channel is connected to multiple

NAND flash memory chips. Each flash chip is further

composed of multiple dies, each die is composed of multi-

ple planes, and each plane contains multiple flash blocks

and two register caches. Figure 3 shows an example of

the organization of SSDs with 4 channels, 2 chips per

channel, 2 dies per chip, and 2 planes per die. This is

the four level parallel architecture of SSDs, which can be

exploited for performance improvement. The relationship

among these four levels have been well studied in previous

works [7][8][9]. The die and plane level parallelism is called

internal parallelism of SSDs, which is directly exploited by

the SSD controller, and is hidden from up level system. In

this work, the die and plane level parallelism of SSDs is

not taken into consideration for two reasons: First, the die

and plane level parallels require advance command support,

which is not widely supported by most of SSDs. Second,

the data location of SSDs is constantly changing between

dies and planes in a flash chip by GC and WL [1][7][8].

2) Controller Design: The controller of SSDs is a key

component in the design of SSDs, which needs to cover

all issues of flash based SSDs. First, flash memory has

many distinct characteristics, such as inability of in-place-

update, limited lifetime, and slow write operations. All

these issues are handled by the SSD controller. In addition,

the management of the multiple chips organized in SSDs

Ho
st

 In
te

rf
ac

e

FTL

Fl
as

h
Co

nt
ro

lle
r

Chip 3 Chip 7

SSD Controller

Multiplexed Interface

Pl
an

e
0

Data Alloc

Wear
Leveling

GC

Die 0 Die 1

Pl
an

e
1

Pl
an

e
2

Pl
an

e
3

Chip 0 Chip 4

Chip 1 Chip 5

Chip 2 Chip 6

Figure 3. Architecture of SSD with four levels: Channels, Chips, Dies
and Planes

is also implemented in the SSD controller. As shown in

Figure 3, there are several components implemented in the

SSD controller, including flash translation layer (FTL), data

allocation (DA), garbage collection (GC), and wear leveling

(WL).

Since flash memory is not able to conduct in-place-update,

FTL is designed to maintain a mapping between logical

address and physical address. When data are updated, the

updated mapping is recorded for future accesses. DA is

designed to manage the flash array of SSDs and decides

the distribution of the data, which is highly correlated

with the access conflict of requests. Previous works have

evaluated different types of data allocation schemes, and

found that the four levels of parallelism have different effects

in the exploration of parallelism [7][8][9][20]. GC is used

to collect invalid data during data updates since the updated

data are written to a new place. The last component is wear

leveling (WL), which is used to extend the lifetime of SSDs.

B. Related Work

1) Exploration of Parallelism: Since there are rich par-

allelism in the organization of SSDs, several proposals

have been proposed to exploit the parallelism of SSDs

[4][9][7][8][10][20]. Chen et al. [4] first evaluated and

showed that the parallelism of SSDs is very important for

performance improvement. They stated that with the intro-

duction of parallelism, the performance of write operations

had no relationship with their patterns (random/sequential),

and even better than read operations. Based on this idea,

Chen et al.[3] proposed to use SSDs as write buffers of

hard disk drives. Jung et al.[9] and Hu et al. [7][8] showed

that allocation schemes of SSDs were very important in

the exploration of parallelism. They studied the differences

among the four level parallelism and found that these four

levels have different priorities in the exploration of access

latency and system throughput. Seol et al. [18] and Park et al.

[17] proposed to exploit the multi-channels of SSDs from the

view of write buffers to improve the write performance. Both

of them did not exploit the internal parallelism of SSDs.

Jung et al.[9], Hu et al. [7][8], and Shin et al. [20] proposed

to exploit different levels of parallels to improve the write

performance. Jung et al. [10] showed that random read

performance of SSDs was the worst compared with other

patterns. They inferred that bad random read performance is

induced when a large number of read requests are conflict

requests. However, none of these works consider access

conflict reduction.

Jung et al. [11] proposed a read resource contention aware

approach, physical address queuing (PAQ) under FTL, to

issue more I/O requests to the SSDs. PAQ was implemented

in the SSD controller, which required hardware modification.

PAQ does not work for the conflicts at the host systems.

Chen et al. [5] first proposed a buffer cache management

approach for SSDs to solve the read conflict problem by

exploiting the read parallelism of SSDs. They proposed to

store more data for the most conflict chips in the buffer

cache. However, these works are only able to solve the

conflict problem when the conflicts have already taken place,

which induce limited performance improvement. In addition,

none of these approaches target conflict write requests. In

this work, an I/O scheduler at host systems is proposed to

exploit the rich parallelism of SSDs to reduce both conflict

read and write requests before they are issued to SSDs.

2) Scheduler for Solid State Drives: Traditional I/O

schedulers for HDD include NOOP, Deadline, Anticipate,

and Completely Fair Queuing (CFQ) [21]. However, none

of them work efficiently on SSDs [12]. Kim at el. [12] first

proposed an I/O scheduler for SSDs with the awareness

of read/write interferences. They proposed to bundle write

requests and schedule read requests first to reduce the impact

of slow write operations on read performance. Dunn et

al. [13] proposed another write scheduler, which exploits

the block locality to improve the write performance. This

approach is able to improve the garbage collection efficiency

since requests with data in the same blocks are issued

together. Park et al. [16] and Shen et al. [19] proposed two

schedulers to achieve fairness among multi-tasks on SSDs.

FIOS [16] scheduled requests with the awareness of read

and write interference of SSDs, and FlashFQ [19] scheduled

requests with the awareness of the internal parallelism for

different applications. However, none of these works are

proposed to solve the access conflict problem.

Jung et al. [11] proposed the first work in read parallelism

optimization. They have evaluated that random reads are the

worst access pattern of SSDs. With the understanding that

read parallelism can be exploited by the physical address

of SSDs, a physical address queue based scheduler, PAQ,

is proposed. However, PAQ requires hardware modification

and only works in the SSD controller. In addition, they did

not solve the write conflict issue. In this work, we propose

a host-side I/O scheduler called PIQ to improve both read

and write performance by minimizing all types of access

conflicts, i.e., read and read, read and write, and write and

write conflicts. Since the proposed PIQ is implemented at the

host side, it can take advantage of the rich resource available

at the host system, such as main memory and CPU, thereby

minimizing its implementation overhead. In addition, it can

be used towards all existing SSDs as it does not require any

change to be made in SSD design, which is a significant

advantage over existing controller-level techniques.

IV. PARALLEL ISSUE QUEUING FOR PARALLELISM

EXPLORATION

Motivated by low chip utilization of SSDs and high access

conflicts, Parallel Issue Queuing (PIQ) in the host systems

is proposed to reduce access conflicts and improve the

performance of SSDs. Figure 4 shows the SSD based storage

systems with PIQ implemented in the host systems, where

FTL, DA, GC and WL are four most important components

of an SSD controller, and multiple flash chips are equipped

in multiple channels as the storage device. Host systems

communicate with SSD devices through the host interface.

Based on this organization, the key challenge in the design of

PIQ is the detection of access conflicts. As shown in Figure

3, the internal architecture of SSDs is hidden by the SSD

controller. The access conflict information is not exposed to

the I/O scheduler. To solve this problem, a host side access

conflict detection approach is first proposed, which is based

on the understanding of the data allocation scheme of SSD

controller and the logical address number of I/O requests.

Then, based on the detected access conflicts, PIQ reduces

the conflicts by smartly scheduling I/O requests. The basic

idea of PIQ is to separate I/O requests with conflicts into

different scheduling batches based on the detected access

conflicts. Then, the requests in each batch can be processed

in parallel. Finally, an efficient implementation of PIQ is

presented in this section.

FTL DA WL GCC
on

tr
ol

le
r

St
or

ag
e

Host Systems
(FIFO,NOOP,PIQ)

H
os

t

CHIP0 CHIP1 CHIP2 CHIP3

Host Interface Logic

Figure 4. Organization of SSD based storage systems, where PIQ is
implemented in host systems.

A. Access Conflict Detection

Access conflict is highly correlated with the issue time of

I/O requests and location of data. If the issue time interval

between requests is small enough, and the accessed data

exists in the same flash chip, these accesses will conflict. In

order to detect access conflict, the location of data should

be first determined. The basic idea in the determining of

data location is to construct the relationship between I/O

request’s logical block number (LBN) and data locations

in the SSDs. Note that the location of the data indicates

the flash chip number, where the accessed data is stored.

Even though WL and GC will constantly move data among

SSDs, most of the state-of-art WL and GC approaches only

move data within a chip [1][7][8]. In this case, WL or GC

does not impact the location of data at the chip level. Based

on this observation, we propose an access conflict detection

approach.

1) Issue Time Interval: Since the proposed approach

focuses on the design of an I/O scheduler, all the issue time

intervals among the outstanding I/O requests and waiting

requests in the I/O scheduling queue have the potential in

access conflict. Based on this observation, outstanding I/O

requests and waiting requests in the I/O scheduling queue

are taken into account during access conflict detection.

2) Data Locations: Location of data is highly correlated

with two factors, data allocation scheme and I/O request’s

LBN. Recently, data allocation scheme has been widely stud-

ied [8][7][9][20], where location of the data is determined

based on LBN. If LBN is given, the location of data can be

computed based on the allocation scheme. In this work, we

use location vector to represent the data location of requests,

where the number of bits in the vector equals the number

of flash chips in the SSDs. Initially, location vector is set

with all zeros. When data are stored in one flash chip, the

corresponding bits of a location vector of a request are set.

We use the following settings to generate the location vector:

• The number of chips in the SSDs is NC and the size

of flash page is Page Size in bytes;

• I/O requests are defined with (Ri, LBN, Sector Nu
mber, T), where Ri is the request type, such as read

or write requests, LBN is the logical block number

that the request is to access, Sector Number is the

accessed data size in term of the number of sectors,

SS is the sector size in bytes, and T is the time when

the I/O request is added to the I/O scheduler queue.

Based on these settings, the set bits of the location vector

of a request in the SSDs can be determined, which are from

chip first to chip last, as follows.

chip first =
(⌊LBN × SS

Page Size

⌋)
%NC ;

chip last =
(⌈ (LBN + Sector Number)× SS

Page Size

⌉− 1
)
%NC ;

(1)

Then, based on chip first, chip last, and NC , the lo-

cation vector is generated. Let’s illustrate with an ex-

ample. Assuming NC=8, SS=4KB, a read request is

(Ri, LBN, Sector Number, T) = (r, 14854, 2, 0.02332),
and BS=4KB, we can derive that, chip first = 6 and

chip last = 7, which means that data of the read request are

stored in two chips, Chip 6 and Chip 7. Then the location

vector of this request, V (Ri), is (00000011) = 3. Note that

after GC, WL, and data updates, the location vector remains

the same because these operations only take place within a

chip.

3) Conflict Detection: Based on the location vectors of

I/O requests, the access conflict can be detected among the

waiting and outstanding requests in the I/O queue. If the

data of two requests in the outstanding and waiting queue

are located in the same flash chip, these two requests are

determined as conflict requests. For example, if the location

vectors of requests Ri and Rj are V (Ri) and V (Rj), the

conflict of these two requests can be detected as follows:

Conflict = V (Ri)&V (Rj); (2)

If Conflict == 0, these two requests do not conflict.

Otherwise, they conflict.

Figure 5 shows an example of conflict detection. As

shown in Figure 5, an SSD is constructed with four channels,

where each channel is equipped with 2 chips. The data

allocation scheme is channel first and chip second [1]. In

the pending queue, there are five I/O requests. Based on

the allocation scheme and I/O request’s LBN, the location

vectors of each request are computed and recorded. Then,

based on the conflict detection of Formula 2, we can identify

the conflict requests. For example, requests 1 and 3 conflict

at Chip 5 (12 & 6=4), requests 2 and 4 conflict at Chip 1

(64 & 96=64), and requests 3 and 5 conflict at Chip 6 (6 &

3=2).

CH0

Chip0 Chip1 Chip2 Chip3

Chip4 Chip5 Chip6 Chip7

1
4
2

2
9
1

3
13
2

4
17
2

5
38
2

12 64 6 96 3

Pending Queue

CH3CH2CH1

Request ID
Logical Block Number

Request Size
Location Vector

Figure 5. Access Conflict of I/O Requests.

B. Parallel Issue Queuing (PIQ)

In this section, PIQ is proposed to exploit the parallelism

of SSDs for access conflict minimization. The basic idea of

PIQ is to separate I/O requests into batches, where there is

no conflict in each batch.

1) Request Separation: Based on the types of requests,

access conflicts can be classified into three types, read and

write conflicts (RWC), read and read conflicts (RRC), and

write and write conflicts (WWC). Based on this classifica-

tion, separating schemes are proposed to solve these three

types of conflicts. There are three separating schemes as

follows:

• Read and Write Separation (RWS): Read and write

requests are separated into different batches to avoid

RWC. Write operations are much slower than read op-

erations in flash memory, prioritizing the scheduling of

read operations has benefit in reducing RWC between

read and write requests;

• Read and Read Separation (RRS): read requests are

separated into different batches to avoid RRC between

read requests;

• Write and Write Separation (WWS): write requests are

separated into different batches to avoid WWC between

write requests.

2) Request Batches: Once the request separation schemes

are decided, request batches are proposed to group requests

without conflicts into batches. Batch location vectors is used

to record the data locations of all the requests in each batch.

Initially, batch location vector is set to 0. When one request

is added to the pending queue, the conflict is detected by

checking the batch vector with the entering I/O request.

Similar to the request conflict detection, the location vector

of the request is checked with the batch location vector as

follows.

Conflict = V (Bi)&V (Ri); (3)

where Bi is the checked batch and Ri is entering request.

When Conflict is 0, Ri is added to the batch, and the batch

vector is updated as follows:

V (Bi) = V (Bi)|V (Ri); (4)

Otherwise, a new batch is created. Since PIQ takes outstand-

ing requests and waiting requests in the scheduling queue

into account, when new requests are added to the scheduling

queue, they are checked and added to the corresponding

batch. With this approach, all the conflicts in one batch

are avoided before the requests being issued to the SSDs.

Based on the proposed approach, request fairness may be

a problem since a request can be delayed for a long time.

The worst case happens when one request is over-passed by

the other requests which do not conflict with the outstanding

requests. However, since only the requests in the I/O queue

are processed, and the requests are processed based on

the creation order of batches, the fairness problem has

little impact to the performance. Note that dependencies

between I/O requests are avoided when they are added to the

scheduling queue using traditional approaches. All requests

processed in the I/O queue have no dependency with each

other.

Figures 6 and 7 show examples of the comparison of

NOOP and PIQ. In this example, we assume there are six

I/O requests in the pending queue (three read requests (R0,

R1, R2) and three write requests (W0, W1, W2)), with each

accessing 2 flash pages. These six I/O requests are added

to the pending queue in the First In First Out (FIFO) order,

from left to right. The SSD is organized with four flash chips

with one chip per channel. The data location of the six I/O

requests are marked in the four chips and the location vectors

of these requests are produced.

In Figure 6, we assume that NOOP is used as the I/O

scheduler. Then, I/O requests are scheduled in the order

of FIFO. We find that all six I/O requests conflict. In this

case, these six I/O requests are processed sequentially, which

requires three read and three write cycles to service these

requests.

In Figure 7, RWS, RRS, and WWS are applied to the

pending queue to separate the I/O requests into different

batches. In the first step, RWS is applied, where read and

write requests are separated to avoid RWC. Second, RRS

and WWS are applied. In this case, read and write requests

are separated into different batches. Take R0, R1 and R2 as

an example, where V(R0) = 3, V(R1) = 6, and V(R2) = 12.

Initially, there are no batches in the I/O queue. When R0

is added, a read batch is created, and the batch vector B0

is initialized with 3. When R1 is added to the queue, R1

is checked with B0, where B0&R1 = 2. These two requests

have conflict (RRC). In this case, a new read batch is created,

and the batch vector B1 is initialized with 6. When R2 is

added to the queue, R2 is checked with B0, where B0&R2 =

0. These two requests are not conflict. Then, R2 is added to

B0, and location vector of B0 is updated based on Formula

4 to 15. Finally, PIQ issues the I/O requests in batches,

where all the batches are processed in the creation order.

We find that with PIQ, only two read and two write cycles

are required to service these requests. In order to avoid the

starvation of write requests, once the read batches in the

current queue are serviced, the write batches are serviced.

R0 R0

R1 R1

W0 W0

R2 R2

W1 W1

Chip0 Chip1 Chip2 Chip3

Pending Queue

Tim
e Flow

W2 W2

FIFO

R0
3

R1
6

W0
12

R2
12

W1
6

W2
3

Request ID
Location Vector

Figure 6. NOOP: requests are issued in FIFO order.

C. Implementation

In this section, we present the implementation of PIQ in

I/O scheduler. Two mechanisms are implemented, conflict

detection and batch creation. To do so, data location vector,

R0 R0R2R2

R1 R1

W0 W0 W2 W2

W1 W1

Chip0 Chip1 Chip2 Chip3

Pending Queue

R0
3

R1
6

W0
12

R2
12

W1
6

W2
3

R0
3

R1
6

R2
12

W0
12

W1
6

W2
3

Conflict Detection

R1
6

W1
6

R0
15

R2
W0
15

W2

Tim
e Flow

Request ID
Location Vector

Read Write
Separation

Request Batch

Batch Vector

Figure 7. PIQ: RWS, RRS, and WWS are applied to the queue to separate
the I/O requests into different batches based on the detected conflicts.

batch location vector and batch list are maintained. Data

location vector is created based on the location of the data

as shown in Section IV-A. Batch location vector is used to

record the data location of all requests in a batch, which is

created based on the separating schemes as shown in Section

IV-B. For the batch list, it is used to maintain the batches,

where all requests in a batch can be serviced in parallel, and

batches are issued in the order of creation time.

Algorithm 1 shows the implementation of PIQ. Conflict

detection is implemented by applying the location vector,

which indicates the data location of the request. As shown in

Algorithm 1, once an I/O request is added to the scheduling

queue, V (Req) is produced based on Formula 1 (Line 1).

Then, based on the types of the requests, they are added

to different batch lists, read batch list or write batch list

(Lines 2-6). This step is implemented to realize the read and

write request separations. Then, batches are created based

on conflict detection. Initially, the batch list is empty. In

this case, a new batch is created, and the batch vector is

initialized (Lines 18-22). When the batch list is not empty,

conflict is checked between the batch vector and location

vector of the entering I/O request (Line 9). If there is no

conflict, the I/O request is added to the batch, and the batch

vector is updated (Lines 10-14). Otherwise, the next batch

is checked (Line 15). If the I/O request conflicts with all

the batches in the batch list, a new batch is created, and its

location vector is initialized (Line 18-22).

Overhead analysis: The implementation of PIQ needs

to maintain batch location vectors and a batch list in the

I/O queue. The batch location vector size is determined by

the number of flash chips in the SSDs. In this case, the

size of each batch location vector is NC bits. We assume

that the queue length of I/O scheduler is Npiq , then the

Algorithm 1 PIQ: Parallel Issue Queuing

Input:
Req – I/O Request;

1: V (Req) is produced by Formula 1;

2: if Req == READ then
3: Batch List = Read Batch List;
4: else
5: Batch List = Write Batch List;
6: end if
7: Batch = Batch List.Head;

8: while Batch do
9: Conflict = V (Batch) & V (Req);

10: if Conflict == 0 then
11: Add to Batch(Batch, Req);

12: V (Batch) = V (Batch) | V (Req);
13: Break;

14: else
15: Batch = Batch.next;
16: end if
17: end while
18: if Batch == NULL then
19: Create New Batch(Batch, Req);

20: V (Batch) = V (Req);
21: Add to Batch List(Batch List, Batch);

22: end if
23: Issue Batch List.Head;

maximal size of storage required by the batch location

vectors is Npiq×NC bits. This storage overhead is negligible

for an I/O queue. In addition, there are two batch lists

maintained in the I/O queue, which has negligible cost. For

the computation overhead of PIQ, there are only MOD, OR
and AND operations, which also have negligible cost.

V. EXPERIMENT AND ANALYSIS

In this section, we first present the experimental methodol-

ogy. Then, the experimental results of the proposed approach

are presented with the analysis of performance, access con-

flict relaxation, and the improved chip utilization of SSDs.

For validation, we implemented five related schemes to

show the effectiveness of the proposed approaches.

• The first scheme is “NOOP”, which represents the tradi-

tional I/O scheduler implemented in operating systems.

NOOP is proposed to service requests in FIFO order,

where dependencies between requests have already

resolved;

• The second scheme is “RWS”, which is implemented

based on NOOP, where RWC are detected and applied

in the separation of read and write requests. Read

requests are processed with a higher priority. Note that

in order to avoid the starvation of write requests, only

pending read requests have higher priorities than write

requests. This scheme is similar to the approaches in

[12][13];

• The third scheme is “PIQ R”, which is implemented

over “RWS”, where RRC are detected and applied

with the separation of read requests into batches. This

scheme is implemented to show the effect of the

proposed approach on the read performance;

• The fourth scheme is “PIQ W”, which is implemented

over “RWS”, where WWC are detected and applied

with the separation of write requests into batches.

This scheme is implemented to show the effect of the

proposed approach on the write performance;

• The fifth scheme is “PIQ”, which is implemented with

“PIQ R” and “PIQ W”, where RWC, RRC, and WWC

are detected and applied with the separation of I/O

requests into batches.

Among these five schemes, “NOOP” and “RWS” are the

most related works with PIQ implemented in the I/O

scheduling queue of host systems. Note that FlashFQ and

FIOS are not compared with the proposed work since they

are proposed to achieve fairness between applications, which

will be our further work.

A. Experiment Setup

In this paper, we use a trace drive simulator, SSD-

sim [7][8], to verify the proposed framework. SSDsim has

been widely applied in the exploration of parallelism of

SSDs. In this work, the proposed approach is implemented

in the I/O queue of the host systems to schedule I/O requests.

In this study, we modeled a 128GB SSD, which is

configured with 8 channels with each channel equipped with

8 chips. Each flash block consists of 64 pages with a page

size of 2KB. Page mapping scheme is implemented as the

default FTL mapping scheme. Greedy garbage collection

scheme and dynamic wear leveling scheme is implemented.

The over-provisioning ratio is set to 10% of the SSD, which

complies with the setting in [1][7][8]. For the data allocation

scheme, the most widely used channel first, chip second

scheme is applied since they have the best performance

in term of the parallelism of SSD [1]. We use 64 as

the default queue length for I/O scheduling queue. The

experiment settings represent a typical modern SSD. In the

experiment results, we vary the length of I/O queue to

gain further insight into how the proposed approach behaves

under various interfaces and SSDs.

The workloads studied in this work include a set of

carefully selected MSR Cambridge traces from servers [14]

based on the identified conflicts. These traces are widely

used in previous works in the studies of SSD performance

[9][8][7]. Table I shows the characteristics of traces eval-

uated in the experiments, where the conflicts and utilized

chips are collected with NOOP as the I/O scheduler. Read

I/Os and Write I/Os represent the number of read and write

requests in the traces. Totally, the number of read and

write I/Os are 500000, which is a common number used in

previous work. In addition, there are other 500000 I/Os for

warming up the device. Read Conflicts and Write Conflicts

represent the number of read and write requests enrolled in

conflict. The last collum represents the average number of

utilized chips for different applications. Initially, the SSD is

warmed up with all the data used by the traces and the other

space is filled up with random data.

B. Experimental Results

1) Performance Evaluation: In this section, we present

the performance comparison among NOOP, RWS, PIQ R,

PIQ W, and PIQ. In Figure 8, Y -axis represents the average

execution latency of read and write requests normalized to

NOOP.

RWS: As shown in Figure 8, RWS, which prioritizes the

process of read requests, has little performance improvement

for most applications. In order to understand the reason

for performance improvement, the percentages of prioritized

read requests are presented in Figure 9. As shown in Figure

9, the percentages of prioritized read requests for most

applications are within 5%. However, for HM 0, PRXY 0,

and SRC1 2, there are more than 5% of read requests

prioritized, which induces improved read performance. The

prioritized read requests would induce slight write perfor-

mance degradation as shown in Figure 8(b).

0

5

10

15

20

25

Pe
rc
en

ta
ge

of
Pr
io
rit
ize

d
Re

ad
(%

)

Figure 9. Percentages of prioritized read requests comparison between
NOOP and RWS.

PIQ R: PIQ R is proposed to detect the conflict read

requests and exploit the read parallelism for performance

improvement. As shown in Figure 8(a), the read latency is

reduced significantly for most applications (13 out of 15).

For example, for SRC2 0, the read latency is reduced by

31.2%. In order to reveal the reason for the improvement of

read performance, normalized average request waiting time

for read requests induced by access conflicts is collected

and shown in Figure 10(a). Read request waiting time is

produced when a read request conflicts with the requests

ahead of it. As shown Figure 10(a), the average request

waiting time induced by access conflicts of SRC2 0 are

reduced by 37.1%. However, we also find that PROJ 1 has

little read performance improvement. As shown in Figure

10(a), we find that the average read request waiting time of

PROJ 1 is reduced slightly. In Figure 12, the chip utilization

of SSDs is presented to show the reason of read performance

Table I
TRACE CHARACTERISTICS.

Applications Read I/Os Write I/Os Read Conflicts Write Conflicts Chips Utilizations

HM 0 129066 370933 43512 128117 9.076
HM 1 484454 15445 178104 4690 15.592
PRN 0 75305 424694 29616 188458 10.698
PRN 1 346001 153995 95643 47896 12.221
PROJ 1 486780 13219 191133 5138 19.892
PROJ 3 419058 80930 127710 30810 14.349
PROJ 4 465194 34806 157480 10554 10.543
PRXY 0 15385 484614 5140 48992 4.179

RSRCH 0 49400 450596 19112 153581 11.76
SRC1 2 71500 428498 15334 232312 18.269
SRC2 0 97924 402069 25343 128229 10.38
SRC2 2 19469 480530 12765 391383 24.965
STG 0 197403 302594 33406 197403 12.342

WDEV 0 99000 400992 40044 108946 11.222
USR 0 148822 351165 78940 15450 10.733

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

Re
ad

 L
at

en
cy

NOOP RWS PIQ_R PIQ

(a) Read Latency Comparison

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
ai

liz
ed

 W
rit

e
La

te
nc

y

NOOP RWS PIQ_W PIQ

(b) Write Latency Comparison

Figure 8. Performance comparison among NOOP, RWS, PIQ R, PIQ W, and PIQ.

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

Re
ad

 W
ai

t T
im

e

NOOP RWS PIQ_R PIQ

(a) Normalized Average Read Request Waiting Time

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

ize
d

W
rit

e
W

ai
t T

im
e

NOOP RWS PIQ_R PIQ

(b) Normalized Average Write Request Waiting Time

Figure 10. Average request waiting time comparison among NOOP, RWS, PIQ R, PIQ W, and PIQ.

improvement. We can find that PROJ 1 achieves little chip

utilization improvement with PIQ R. The reason is that the

conflict read requests of PROJ 1 cannot be processed in

parallel. On average, the read latency, the average request

waiting time and chip utilization are improved by 19.6%,

21.0%, and 14.7%, respectively. Based on these results, we

conclude that PIQ R works for read intensive applications

with a large number of conflict read requests, and the conflict

read requests can be processed in parallel.

PIQ W: PIQ W is proposed to detect the conflict write

requests and exploit the write parallelism for performance

improvement. As shown in Figure 8(b), the write latency is

reduced significantly for most applications (13 out of 15).

For example, for SRC1 2, the write latency is reduced by

43.5%. In order to reveal the reason for the improvement

of write performance, normalized average request waiting

time for write requests is collected and shown in Figure

10(b). Write request waiting time is induced when a write

request conflicts with other requests ahead of it. As shown

Figure 10(b), the average request waiting time induced by

write conflicts of SRC1 2 is reduced by 39.6%. How-

ever, we also find that USR 0 has little write performance

improvement. The reason for USR 0 can be found from

Figure 10(b), where the average write request waiting time

is reduced slightly. In Figure 12, the chip utilization of

SSDs is presented to show the reason of write performance

improvement. On average, the write latency, the average

request waiting time and chip utilization are improved by

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or
m
al
ize

d
W
rit
e
La
te
nc
y

1 2 4 8 16 32 64 128 256 512

(a) Read Latency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or
m
al
ize

d
Re

ad
La
te
nc
y

1 2 4 8 16 32 64 128 256 512

(b) Write Latency

Figure 11. Sensitive Studies with Varying Queue Length from 1 to 512.

47.0%, 48.4%, and 11.9%, respectively. Based on these

results, we conclude that PIQ W works for write intensive

applications with a large number of write conflicts, and the

conflict write requests can be processed in parallel.

PIQ: PIQ is proposed to take RRS and WWS into consid-

eration for performance improvement. As shown in Figure

8, PIQ achieves read and write performance improvement

similar to PIQ R and PIQ W, respectively. The read latency

is reduced by 19.7%, the write latency is reduced by 47.0%,

the average read request waiting time are reduced by 22.5%,

the average write request waiting time are reduced by 48.4%,

and the chip utilization is increased by 24.2%, compared

with RWS, on average. Based on these results, we conclude

that PIQ works effectively for I/O intensive applications and

shows significant performance improvement.

2) Sensitivty Studies: In this subsection, we vary the I/O

queue length to show the effect of PIQ. I/O queue length is

varied from 1 to 512. The number of chips and channels

are configured with 8 chips per channel and 8 channels

connected to the SSD controller.

Figure 11 shows the experiment results on the read

and write latency improvement with the varying of queue

length. Several observations can be concluded from these

experiment results. First, the increases of the length of I/O

queue have significant improvement on the performance.

For example, from 1 to 512, the read and write latency is

improved by 19% and 37% on average, respectively. The

reason is that with the increases of I/O queue length, more

I/O requests can be processed in parallel. Second, when

the depth of I/O queue is increased to a threshold, the

performance improvement is diminished. For example, when

queue length increases from 1 to 32, the read latency is

reduced by 18%. However, when it is increased from 32 to

512, the read latency is only reduced by 1%. The write la-

tency reduction has the similar characteristics. The reason is

that when the queue length is large enough, the opportunities

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 C
 h

ip
 U

til
iz

at
io

n

NOOP RWS PIQ_R PIQ_W PIQ

Figure 12. Normalized chip utilization of NOOP, RWS, PIQ R, PIQ W, and PIQ.

in the exploration of parallelism are diminished. Third, write

latency has more benefit in the increases of queue length.

As shown in Figure 11, the average read latency and write

latency improvement is 19.7% and 47.0%, on average. The

reason is that read requests are prone to access conflicts,

especially when they conflict with write requests.

VI. CONCLUSIONS

In this paper, we have proposed an I/O scheduler, PIQ,

for NAND flash-based SSDs. PIQ is designed to reduce

the access conflicts of SSDs through the exploration of the

parallelism of SSDs. Unlike previous works that focus on

the studies of the parallelism of SSDs or separation of read

and write requests to reduce the read and write interferences,

PIQ is implemented in the host systems. It takes all three

types of access conflicts into consideration and exploits the

parallelism of SSDs to reduce the access conflicts. This

is accomplished through the access conflict detection and

requests separation. An efficient implementation of PIQ with

negligible overhead is proposed. Experimental results show

that PIQ achieves performance improvement by 15.6% and

28.6% for read and write latency, on average.

VII. ACKNOWLEDGMENT

This work is partially supported by National 863 Program

2013AA013202, Chongqing cstc2012ggC40005.

REFERENCES

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,
and R. Panigrahy. Design tradeoffs for ssd performance. In ATC’08,
pages 57–70, 2008.

[2] A. Birrell, M. Isard, C. Thacker, and T. Wobber. A design for high-
performance flash disks. SIGOPS Oper. Syst. Rev., pages 88–93, 2007.

[3] F. Chen and D. Koufaty. Hystor: Making the best use of solid state
drives in high performance storage systems. In ICS’11, 2011.

[4] F. Chen, R. Lee, and X. Zhang. Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed
data processing. In HPCA’11, pages 266–277, 2011.

[5] Z. Chen, N. Xiao, and F. Liu. Sac: rethinking the cache replacement
policy for ssd-based storage systems. In SYSTOR’12, pages 13:1–
13:12, 2012.

[6] C. Dirik and B. Jacob. The performance of pc solid-state disks (ssds)
as a function of bandwidth, concurrency, device architecture, and
system organization. ISCA’09, pages 279–289, 2009.

[7] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren. Exploring
and exploiting the multilevel parallelism inside ssds for improved
performance and endurance. IEEE Transactions on Computers,
62(6):1141–1155, 2013.

[8] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. Performance
impact and interplay of ssd parallelism through advanced commands,
allocation strategy and data granularity. In ICS’11, pages 96–107,
2011.

[9] M. Jung and M. Kandemir. An evaluation of different page allocation
strategies on high-speed ssds. In FAST’12, pages 9–9, 2012.

[10] M. Jung and M. Kandemir. Revisiting widely held ssd expectations
and rethinking system-level implications. In SIGMETRICS’13, pages
203–216, 2013.

[11] M. Jung, E. H. Wilson, III, and M. Kandemir. Physically addressed
queueing (paq): improving parallelism in solid state disks. In ISCA’12,
pages 404–415, 2012.

[12] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh. Disk
schedulers for solid state drivers. In EMSOFT’09, pages 295–304,
2009.

[13] D. Marcus and R. A. L. Narasimha. A new i/o scheduler for solid
state devices. In Technical Report TAMU-ECE-2009- 02, Dept. of
Electrical and Computer Engineering, Texas A&M Univ., Apr. 2009.

[14] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Row-
stron. Migrating server storage to SSDs: analysis of tradeoffs. In
EuroSys 2009.

[15] C. Park, E. Seo, J.-Y. Shin, S. Maeng, and J. Lee. Exploiting internal
parallelism of flash-based ssds. Computer Architecture Letters,
9(1):9–12, 2010.

[16] S. Park and K. Shen. Fios: A fair, efficient flash i/o scheduler. In
FAST’12, pages 13–13, 2012.

[17] S. K. Park, Y. Park, G. Shim, and K. H. Park. Cave: Channel-aware
buffer management scheme for solid state disk. In SAC’11, pages
346–353, 2011.

[18] J. Seol, H. Shim, J. Kim, and S. Maeng. A buffer replacement
algorithm exploiting multi-chip parallelism in solid state disks. In
CASES’09, pages 137–146, 2009.

[19] K. Shen and S. Park. Flashfq: A fair queueing i/o scheduler for flash-
based ssds. In ATC’13, pages 67–78, 2013.

[20] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng, and
F.-H. Hsu. Ftl design exploration in reconfigurable high-performance
ssd for server applications. In ICS’09, pages 338–349, 2009.

[21] A. S. Tanenbaum and A. Tannenbaum. Modern operating systems,
volume 2. Prentice hall Englewood Cliffs, 1992.

