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Abstract—With the rapid development of new types of non-
volatile memory (NVM), one of these technologies may replace
DRAM as the main memory in the near future. Some drawbacks
of DRAM, such as data loss due to power failure or a system
crash can be remedied by NVM’s non-volatile nature. In the
meantime, solid state drives (SSDs) are becoming widely deployed
as storage devices for faster random access speed compared with
traditional hard disk drives (HDDs). For applications demanding
higher reliability and better performance, using NVM as the
main memory and SSDs as storage devices becomes a promising
architecture.

Although SSDs have better performance than HDDs, SSDs
cannot support in-place updates (i.e., an erase operation has to
be performed before a page can be updated) and suffer from a
low endurance problem that each unit will wear out after certain
number of erase operations. In an NVM based main memory,
any updated pages called dirty pages can be kept longer without
the urgent need to be flushed to SSDs. This difference opens
an opportunity to design new cache policies that help extend
the lifespan of SSDs by wisely choosing cache eviction victims
to decrease storage write traffic. However, it is very challenging
to design a policy that can also increase the cache hit ratio for
better system performance.

Most existing DRAM-based cache policies have mainly con-
centrated on the recency or frequency status of a page. On the
other hand, most existing NVM-based cache policies have mainly
focused on the dirty or clean status of a page. In this paper,
by extending the concept of the Adaptive Replacement Cache
(ARC), we propose a Hierarchical Adaptive Replacement Cache
(H-ARC) policy that considers all four factors of a page’s status:
dirty, clean, recency, and frequency. Specifically, at the higher
level, H-ARC adaptively splits the whole cache space into a dirty-
page cache and a clean-page cache. At the lower level, inside the
dirty-page cache and the clean-page cache, H-ARC splits them
into a recency-page cache and a frequency-page cache separately.
During the page eviction process, all parts of the cache will be
balanced towards to their desired sizes.

I. INTRODUCTION

Dynamic random-access memory (DRAM) is the most

common technology used for the main memory. Despite

DRAM’s advantages of high endurance and fast read/write

access speed, DRAM suffers from data loss in the event

of power failure or a system crash. To solve this problem,

combining DRAM’s fast access speed and Flash’s persistence

together, non-volatile DIMMs [1] provide reliable main mem-

ory systems. In addition, new types of non-volatile memory

(NVM), such as phase change memory (PCM), Memristor and

SST-RAM, have rapidly developed into possible candidates for

the main memory in future computer systems. These emerging

NVM technologies may offer other advantages in addition

to their non-volatile nature. For examples, compared with

DRAM, Memristor and PCM can achieve higher density, and

Memristor and STT-RAM can have faster read accesses and

lower energy consumption [5] [6].

Compared with traditional hard disk drives (HDDs), flash-

based solid state drives (SSDs) can achieve much faster

random access speed and have been widely deployed in small

devices such as cameras, cellular phones as well as computer

storage devices. Among them, Figure 1 is the architecture that

we have adopted throughout this paper. We assume a computer

system has a CPU at the top, NVM as the main memory and

SSDs as storage devices [7].

SSDs support read/write by pages. A page can only be

written to a free page (i.e., a page from a block which is

erased), because SSDs do not support in-place updates. Due

to the slow speed of erase operation, which takes around

2 ms, the alternative way of writing to an existing page

is writing to a free page and marking the original page

as invalid. Then a garbage collection mechanism will be

triggered periodically or on-demand to reclaim those invalid

pages. However, under current technologies, SSDs still suffer

from the low endurance problem, especially for MLC flash

based SSDs, whose expected erase count is around 1K before

wearing out. Secondly, SSDs’ write speed (around 200 μs)

is much slower than read speed (around 25 μs). Thus, our

focus is designing a smart cache policy that: (1) decreases

the write traffic from the main memory to storage to extend

SSDs’ lifespan and shorten SSDs’ write processing time; and

(2) maintains or even increases the main memory’s cache hit

ratio for better system performance.

Many existing cache schemes on DRAM-based main mem-

ory system mainly concentrate on improving cache read hit

ratio for clean pages, because dirty pages (newly written or

updated pages) will be flushed back to storage quite frequently

for the sake of reliability. With NVM as the main memory,

cached dirty pages will not be lost in the occurrence of power

failure or a system crash. As a result, the frequency of dirty

page synchronization from memory to storage can be reduced

dramatically without jeopardizing data consistency [9]. This

difference opens an opportunity for manipulating cached dirty

pages to decrease write traffic. On the other hand, some space

in memory has to be reserved for the read cache (clean pages)978-1-4799-5671-5/14/$31.00 c© 2014 IEEE
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if system performance is critical for certain applications.

Throughout this paper, dirty pages are cached memory pages

which have been modified or newly written to memory, but not

yet written to the storage device (synchronized). Clean pages

are memory pages which have copies of the same data in the

storage device.

Due to the limited capacity of main memory, only a certain

number of pages can be cached. When the memory is full,

a victim page has to be evicted to reclaim space for each

newly inserted page. To decrease storage write traffic, one

approach is to hold dirty pages at memory as long as possible

to delay eviction. As a result, the cache should store as many

dirty pages as possible. However, this decision might hurt

cache hit ratio, especially cache read hit ratio. Thus, it is

challenging to decide the proper cache size for dirty pages

under various workload. To solve this problem, an intelligent

mechanism should be designed to dynamically split the cache

for dirty pages and clean pages. Note that we will always

cache a write to reduce the access time of writes. Write

request hits on a dirty page will reduce the write traffic to

storage. Read request hits on either a clean or dirty page will

improve the performance of reads. Therefore, the overall hit

ratio is important. Assuming we get perfect cache sizes for

dirty pages and clean pages, when the cache is full, it is still

non-trivial to decide which victim page should be evicted.

Thus, another intelligent mechanism should be designed to

help make eviction decisions.

One of the proposed cache policies trying to increase cache

hit ratio, named Adaptive Replacement Cache (ARC) [10],

faces the similar challenge: under unpredictable workload,

how to decide the proper cache sizes for recently used pages

and frequently used pages. To deal with the challenge, they

seek help from history by maintaining two ghost caches:

one for the recency cache and the other for the frequency

cache. The recency cache stores pages being referenced once

recently and the frequency cache stores pages being referenced

at least twice recently. A ghost cache is a data structure

storing only the page numbers of recent evicted pages. Each

cache can grow or shrink along with the workload’s tendency

towards recency or frequency. For example, if a ghost cache

hit happens in the recency ghost cache, the size of the recency

cache will be enlarged, and the size of frequency cache will

be shrunk accordingly. Through evaluation, the learning rule

behind ARC is proved quite effective and increases cache

hit ratio significantly. However, ARC mainly tries to increase

cache hit ratio and has not considered how to decrease storage

write traffic.

To deal with the above-mentioned challenges, in this paper,

by using the learning process of ARC in a hierarchical manner,

we propose a Hierarchical Adaptive Cache Replacement (H-

ARC) policy that considers all four factors of a page’s status:

dirty, clean, recency, and frequency. The desired cache sizes

for dirty pages and clean pages are first determined at a higher

level. Their sizes will be dynamically adjusted based on a

similar mechanism as ARC. At the next level, to decide which

page to evict, we propose to adopt ARC twice: one for cached

clean pages and the other for cached dirty pages. All these

cache sizes will be balanced along with the incoming workload

and no tuning parameters are needed. For example, if H-ARC

detects that the current workload is write intensive, it will

enlarge the portion for dirty pages. In addition, if it detects

frequency inside the dirty page cache is more popular than

recency, the portion for frequency will be enlarged.

Specifically, in the first ARC-like strategy process, we split

the whole cache into a dirty page cache portion and a clean

page cache portion. If a cache hit happens in the corresponding

ghost cache of the dirty page cache (resp. the clean page

cache), which is actually a real cache miss, we will enlarge

the desired dirty page cache size (resp. the desired clean page

cache size). Note that due to fixed total cache size, the other

cache’s size will be reduced accordingly. To keep dirty pages

in the cache longer, we prioritize the desired dirty page cache

by enlarging it much faster than the desired clean page cache.

Once the desired size for dirty pages (or clean pages) is

decided, the ARC-like strategy is applied again based on

receny and frequency inside the dirty page cache and the clean

page cache. We will enlarge the desired real cache size - the

dirty recency cache or the dirty frequency cache (resp. the

clean recency cache or the clean frequency cache), if the cache

hit happens in its corresponding ghost cache. The dirty recency

cache stores pages that are dirty and referenced once recently

and the dirty frequency cache stores pages that are dirty and

referenced at least twice recently. Similarly, the clean recency

cache and the clean frequency cache are defined. Different

from the size changing of the dirty page cache and the clean

page cache, we treat the dirty frequency cache and the dirty

recency cache (or the clean frequency cache and the clean

recency cache) equally by enlarging or shrinking them in

symmetric steps. When the cache is full, we will evict a page

from a real cache so that all the cache sizes will be balanced

towards their desired sizes.

The rest of the paper is organized as follows. In the next

section we will discuss related work on cache policies and



the differences between theirs and ours. Section III gives a

detailed description of our proposed cache policy along with

some discussion about system crash recovery. In Section IV,

we evaluate the effectiveness of our scheme through various

traces and discuss the experimental results. Some conclusions

are offered in Section V.

II. RELATED WORK

A. Non-volatile Memory

Due to flash memory’s merits of small size, light weight,

low power consumption, high shock resistance, and fast ran-

dom read performance, it has already become the primary

non-volatile data storage medium for mobile devices, such as

cellular phones, digital cameras and sensor devices [17], [20].

Recently, the popularity of flash memory has also extended

from embedded devices to laptops, PCs and enterprise-class

servers with flash-based SSDs being widely considered as

a replacement for magnetic disks. However, average flash

memory has 100x read latency of DRAM’s and 1000x write

latency of DRAM’s without mentioning flash memory’s most

time consuming operation - erase. In addition, even with

the help of proposed wear leveling and garbage collection

mechanisms [17], [18], [19], [20], [21], [22], [23], [24], flash

memory still has a quite short expected lifetime before it

wears out. Therefore, it is unlikely to be a replacement for

DRAM as main memory although recently Micron Technology

has announced a flash memory based board that can directly

connect to DDR3 [25].

With the rapid development of new types of non-volatile

memory, these emerging technologies have become promising

main memory replacements for DRAM. Phase-change mem-

ory (also known as PCM or PRAM), is one of the most promis-

ing new type non-volatile memory. PCM exploits the unique

behavior of chalcogenide glass to switch the material between

two states. The state of a PCM device is changed by heating.

Different heat-time profiles are used to switch from one phase

to another. PCM can give higher scalability and storage density

than DRAM. A larger memory can significantly reduce page

faults and disk I/O requests. Since PCM is non-volatile in

contrast to DRAM, using PCM as the primary memory will

have additional capabilities, such as fast wakeup, low overhead

checkpointing and restart for HPC applications. Clearly, a

PCM-based memory hierarchy can present density, scalability,

and even power saving advantages. In general, PCM still

has 5 to 10 times higher latency than DRAM. To overcome

PCM’s speed deficiency, different system architectures have

been designed to integrate PCM into current system without

performance degrading [5], [26], [27], [28], [29], [30], [31].

As another front runner of new type non-volatile memory,

STT-RAM explores spin-transfer torque technology [32]. Its

operation is based on magnetic properties of special materials

whose magnetic orientation can be controlled and sensed using

electrical signals. The Memristor, short for memory resistor -

is another class of electrical circuit and a strong non-volatile

memory competitor under fast development by HP [33].

B. Cache Policies

Most existing work on DRAM-based main memory systems

mainly concentrates on improving cache read hit ratio since

dirty pages will be flushed back to storage quite frequently.

Belady’s optimal page replacement policy leads to the optimal

cache hit ratio [34]. This algorithm always discards pages

that will not be needed for the longest time in the future.

However, since precisely predicting the future access patterns

is impossible, Belady’s algorithm is not practical. All cache

policies try to improve their cache hit ratio towards Belady’s.

To predict a page’s future access pattern, recency and fre-

quency are two valuable indicators. Some of the existing work,

such as Least Recently Used (LRU) and Least Frequently

Used (LFU) [35], only consider one factor and overlook

the other one. As an improvement, Adaptive Replacement

Cache (ARC) [10] splits the whole cache into two smaller

real caches: one recency cache storing pages being referenced

once recently and one frequency cache storing pages being

referenced at least twice recently. In addition, two ghost caches

are maintained, one for each real cache. A ghost cache is a data

structure storing only the metadata of recent evicted pages.

A ghost cache hit indicates perhaps this type of real cache

needs to be enlarged. This is considered as a learning process.

Each real cache can grow or shrink along with the workload’s

tendency to recency or frequency based on the ghost cache

hits.

Several existing studies on cache policies for NVM-based

main memory systems, similar to the architecture we adopt,

focus on decreasing storage write traffic to extend the lifetime

of SSDs. For example, Park et al. propose a Clean First

LRU (CFLRU) algorithm which splits the whole cache into

a working region and a clean-first region [36]. The clean-

first region is one portion of the cache near the end of LRU

position. Clean pages will be evicted first from the clean-first

region following an LRU order. Dirty pages will be evicted if

no clean page is left in the clean-first region. CFLRU does not

bring frequency into consideration and needs to predefine the

size of the clean-first region. However, if the size is set too

large, cache hit ratio may be hurt because of early eviction of

hot clean pages. On the other hand, if the size is set too small,

dirty pages may be evicted too early. Qiu et al. propose a cache

policy in NVMFS [9] which splits the whole cache into two

smaller caches - a dirty page cache and a clean page cache.

Each cache will grow and shrink based on page hits and no

ghost cache is maintained. It also overlooks frequency. Jung et
al. enhanced LRU algorithm with an add-on page replacement

strategy, called Write Sequence Reordering (LRU-WSR). They

give dirty pages a second chance before evicting from cache

to decrease write traffic. For each dirty page, they add a bit to

denote whether it’s a hot page or a cold page. Initially, they

assume all the dirty pages are hot. If the current eviction victim

is dirty and hot, they mark it as a cold page and migrate it to

the MRU position. If the current eviction victim is dirty and

cold, or is clean, they evict it right away. If a cache hit happens

to a dirty page, it will remain hot or change from cold to hot.



The potential issue behind LRU-WSR is whether giving all

the dirty pages a second chance is the best choice. For some

cold dirty pages, giving a second chance means evicting some

hot clean pages, which will hurt the hit ratio.

Different from using NVM as the main memory, some

cache studies have investigated how to decrease flash page

writes using NVM inside SSDs. Here, NVM works mainly

as a write buffer and no read request is cached. Jo et al.
propose Flash Aware Buffer management (FAB) that clusters

pages in the same block and evict the pages in a block with

the largest number [37]. If there is a tie, evict the largest

recently used cluster. However, FAB only considers cluster

size and overlooks recency. Kang et al. propose a Coldest and

Largest Cluster (CLC) algorithm which combines FAB and

LRU. CLC maintains two lists of clustered pages (sequential

pages): (1) the size-independent cluster list sorted in LRU

fashion to explore temporal locality for hot clusters; (2) the

size-dependent cluster list sorted by cluster size to explore

spatial locality for cold clusters [38]. Initially, CLC inserts

pages in the size-independent list. When the size-independent

list is full, CLC moves clusters from the LRU position of the

size-independent to the size-dependent list. When the size-

dependent list is full, CLC evicts the largest cluster from its

tail. Wu et al. propose a Block-Page Adaptive Cache (BPAC)

inherited CLC approach [39]. BPAC’s difference is that it

adaptively adjusts the size of each list based on the workload.

III. OUR PROPOSED APPROACH: HIERARCHICAL-ARC

A. Approach Overview

We use the learning process of ARC in a hierarchical

manner in the proposed H-ARC to consider a page’s four

different types of status: dirty, clean, recency and frequency.

The desired cache sizes for dirty pages and clean pages are first

determined at a higher level. These sizes will be dynamically

adjusted based on a similar mechanism of ARC. At the next

level, the dirty page cache and the clean page cache will

be maintained by a separated ARC scheme individually. Our

focus is on how these three ARC mechanisms interact with

each other to reduce write traffic to SSD and to increase the

hit ratio for both reads and writes.

Similar to ARC, we define two types of caches: a real

cache storing metadata and data of a page and a ghost cache

storing only metadata of a page. A corresponding ghost cache

is maintained to each type of real caches for the purpose of

adaptively changing its size. We split the whole cache into

two cache regions: one for dirty pages denoted by D and the

other for clean pages denoted by C. Then, inside each region,

we split it into a frequency region and a recency region. As

a result, four real caches will coexist: a dirty recency cache

denoted by D1i, and a dirty frequency cache D2i for the dirty

page cache region, a clean recency cache C1i and a clean

frequency cache C2i for the clean page cache region.

Another four ghost caches are maintained, namely D1o,

D2o, C1o, C2o which are corresponding to real caches D1i,

D2i, C1i, C2i respectively. Our cache name notation follows

these intuitions: D means dirty, C means clean, subscript 1

means reference of one time, which captures recency, subscript

2 means reference of at least two times, which captures

frequency, subscript i means the cached pages are actually

in cache, subscript o means the cached pages are actually

out of cache and are ghosts. A ghost cache only stores the

page identifier (page number) of recent evicted pages from its

corresponding real cache. The size of each cache is the number

of pages stored in it. If we define the maximum physical cache

size (i.e., memory size) to be L, then the sum of all the real

caches can never be larger than L and the sum of all the real

caches and ghost caches can never be larger than 2 ∗ L.

For the purpose of adaptively changing cache sizes of dirty

pages and clean pages, a learning process similar to ARC is

implemented. In this scheme, we conceptually group D1i (C1i)

and D2i (C2i) as the real cache for dirty pages denoted by Di

(clean pages denoted by Ci). Similarly their corresponding two

ghost caches are grouped together denoted by Do and Co. The

details of the cache size adjustment can be found later.

Initially, all the real caches and ghost caches are empty. For

every read or write request r from the workload, one and only

one of the three cases will happen:

• Real cache hit.

• Real cache miss, but ghost cache hit.

• Both real and ghost cache misses.

B. Real Cache Hit

If a page request r is a read request and a cache hit in C1i

or C2i, this page is referenced at least twice and remains a

clean page, so we migrate it from its original location in either

C1i or C2i to the most recently used (MRU) position in C2i.

Similarly, if the request r is a read request and a cache hit in

D1i or D2i, this page is referenced at least twice and remains

a dirty page, so we migrate it from its original location either

in D1i or D2i to the MRU position in D2i.

If the request r is a write request and a cache hit in C1i or

C2i, this page is referenced at least twice and changed from a

clean page to a dirty page, so we migrate it from its original

location to the MRU position in D2i. If the request r is a write

request and a cache hit in D1i or D2i, this page is referenced

at least twice and remains a dirty page, so we migrate it from

its original location to the MRU position in D2i. Note that

when we count reference times, we consider both reads and

writes.

C. Real Cache Miss, Ghost Cache Hit

For the real cache miss and ghost cache hit case, three steps

will happen:

• Adjustment of the desired sizes of the real caches in

order to capture the current workload’s tendency to writes

versus reads and frequency versus recency.

• If the cache is full, a page will be evicted from a real

cache such that all the real caches sizes will be balanced

towards their desired sizes.

• Insert the new page into its corresponding real cache.

First, we will modify the cache sizes adaptively in a

hierarchical manner. At the higher level, targeting the whole



cache, we need to decide the desired size for Di denoted as

D̂i and the desired size for Ci denoted as Ĉi. Here, we use

an integer P to represent the size of Ĉi. Again, we use L
to denote the physical memory size as used in Section III.A.

Thus,

Ĉi = P (1)

D̂i = L− P (2)

At the lower level, targeting the dirty page region (the clean

page region), we need to decide the desired size for D1i

denoted as D̂1i and D2i denoted as D̂2i (the desired size for

C1i denoted as Ĉ1i and C2i denoted as Ĉ2i). Here, we use

two fractions PC and PD to denote the desired proportion for

Ĉ1i and D̂1i inside Ci and Di respectively. The reason we use

fractions instead of integers is a fraction can be more precise

in regarding to describe the desired sizes since Ĉi and D̂i are

changed dynamically. Note that throughout this paper, if an

integer result is needed, we will take the floor function of the

equation. The equations are shown below:

Ĉ1i = PC ∗ Ĉi (3)

Ĉ2i = Ĉi − Ĉ1i (4)

D̂1i = PD ∗ D̂i (5)

D̂2i = D̂i − D̂1i (6)

At the higher level, if a ghost page hit happens in Co, it

means previously we should not have evicted this clean page

out of cache. To remedy this, we will enlarge Ĉi. Every time

there is a ghost hit at Co, Ĉi (or P ) will be increased by 1.

According to Equation (2), D̂i will be decreased by the same

amount. Note that P can never be larger than L. The equation

of P adjustment is shown below:

P = min{P + 1, L} (7)

On the other hand, if a ghost hit happens in Do, it means

previously we should not have evicted this dirty page out of

cache. To remedy this, we will enlarge Di. In order to save

write traffic and keep dirty pages in the cache longer, different

from the increment of Ĉi, we enlarge D̂i much faster. If the

size of Co is smaller than Do, D̂i will be increased by two.

If the size of Co is greater than or equal to Do, D̂i will be

increased by two times the quotient of the cache sizes of Co

and Do. Thus, the smaller the size of Do is, the larger the

increment is. According to Equation (1), Ĉi will be decreased

by the same amount. Again, the combined size of Ci and Di

can never be larger than L and P cannot be smaller than 0.

The equation of P adjustment is shown below:

P =

{
max{P − 2, 0} if |Co| < |Do|
max{P − 2 ∗ |Co|

|Do| , 0} if |Co| ≥ |Do| (8)

After the higher level adjustment, in the lower level (inside

the dirty page region or the clean page region), if a ghost page

hit happens in C1o or D1o, it means previously we should not

have evicted this recency page out of cache. To remedy this,

we will enlarge the proportion for Ĉ1i or D̂1i by increasing PC

or PD accordingly. Similarly, if a ghost page hit happens in

C2o or D2o, it means previously we should not have evicted

this frequency page out of cache. To remedy this, we will

enlarge the proportion for Ĉ2i or D̂2i by decreasing PC or

PD accordingly. Here, different from the higher level dirty

and clean region size adjustment, the adjustment of frequency

and recency cache size is symmetric since we have no clear

preference. After the adjustment of PC or PD, Ĉ1i, Ĉ2i, D̂1i

and D̂2i will be recalculated through Equations (3)-(6). The

equations of PC and PD adjustments are shown below:

• If the ghost page hit happens in C1o, we will enlarge the

proportion for Ĉ1i, so PC will be increased:

PC =

{
min{PC + 1

P , 1} if |C2o| < |C1o|
min{PC +

|C2o|
|C1o|
P , 1} if |C2o| ≥ |C1o|

(9)

• If the ghost page hit happens in C2o, we will enlarge the

proportion for Ĉ2i, so PC will be decreased:

PC =

{
max{PC − 1

P , 0} if |C1o| < |C2o|
max{PC −

|C1o|
|C2o|
P , 0} if |C1o| ≥ |C2o|

(10)

• If the ghost page hit happens in D1o, we will enlarge the

proportion for D̂1i, so PD will be increased:

PD =

{
min{PD + 1

L−P , 1} if |D2o| < |D1o|
min{PD +

|D2o|
|D1o|
L−P , 1} if |D2o| ≥ |D1o|

(11)

• If the ghost page hit happens in D2o, we will enlarge the

proportion for D̂2i, so PD will be decreased:

PD =

{
max{PD − 1

L−P , 0} if |D1o| < |D2o|
max{PD −

|D1o|
|D2o|
L−P , 0} if |D1o| ≥ |D2o|

(12)

After all the desired cache size adjustments, we call the

Eviction&Balance (EB) algorithm to evict a real page if the

real caches are full. Note that if the real caches are not full,

all the ghost caches will be empty since a ghost page will be

generated only after a real page eviction. The EB algorithm

will be introduced in Subsection III.E.

Finally, we will insert the page into the MRU position of

C2i if it’s a read request and D2i if it’s a write request. Clearly,

the hit ghost page will be deleted.

D. Both Real and Ghost Cache Misses

The last case is a request r misses in both real caches and

ghost caches. When the real caches are not full, we can simply

insert the page into the MRU position of C1i if r is a read

request, or into the MRU position of D1i if r is a write request.



When the real caches are full, we need to evict a real page

out of cache to reclaim space for the new page insertion. At

the same time, we try to equalize the size of D and C, which

are towards L for both of them. In addition, inside D we try

to equalize the size of D1 and D2, and the same way for C.

Specifically, D includes D1i, D2i, D1o and D2o. C includes

C1i, C2i, C1o and C2o. D1 includes D1i and D1o. D2 includes

D2i and D2o. C1 includes C1i and C1o. C2 includes C2i and

C2o. The reason of this equalization is that we want to avoid

”cache starvation”. ”Cache starvation” can happen in H-ARC

if one real cache size and its corresponding ghost cache size

are both very large. Because the sum of all the cache sizes

are fixed, the other real cache size must be very small as well

as its corresponding ghost cache size. In this situation, the

side with the smaller ghost cache size has difficulty growing

bigger in a short duration, even if the current workload favors

it, since fewer ghost cache hits can happen.

To achieve the goal of equalization, we will check the size

of C. If the size of C is greater than L, which means it

already takes more than half of the total cache space including

both real and ghost caches, then we will evict from this side.

Otherwise, we will evict from D. Assuming we decide to evict

from C, inside C, we will check the size of C1. If the size of

C1 is greater than L/2, which means it already takes half of

the total cache space for C, we will evict from C1. Otherwise,

we will evict from C2. The eviction process in D is similar

to the process in C.

When we actually perform an eviction from a region, e.g.

C1, we will evict the LRU page in C1o and call EB algorithm

to identify and evict a real page. The reason for evicting a

ghost page out first is when the EB algorithm evicts a real

page, this page needs to be inserted into its corresponding

ghost cache. However, if C1o is empty, we have no choice but

to evict the LRU page in C1i.

Finally, after a real page eviction, a free slot is reclaimed

and we can insert the new page into the MRU position of C1i

if r is a read request, or into the MRU position of D1i if r is

a write request.

E. Eviction&Balance (EB) Algorthim

In the last two cases, a new page needs to be inserted into

the real cache. In case the real caches are full, we need to evict

a page out of cache to reclaim space for this new page. We

design an Eviction&Balance (EB) algorithm to identify a real

page to be evicted and to balance the real cache sizes towards

their desired sizes. With the defined P , PD and PC , we can

easily calculate the desired size of Ci, Di, C1i, C2i, D1i, D2i

though Equations (1)-(6). After obtaining all the desired sizes,

we compare them with the current size of each real cache. We

will evict from one real cache that is larger than its desired

size.

Specifically, at the higher level, if the size of Ci is larger

than or equal to Ĉi and the request r is in Do, we will evict

a page from Ci. Otherwise, we will evict a page from Di.

At the lower level assuming we are evicting from Ci, if the

size of C1i is larger than Ĉ1i, we will evict the LRU page out

from C1i and insert its page number into the MRU position in

C1o. Otherwise, we will evict the LRU page out from C2i and

insert its page number into the MRU position in C2o. Similar

operation will happen in Di if we need to evict a page out

from this side.

F. System Consistency and Crash Recovery

System crashes are inevitable, hence it is always an impor-

tant issue in designing a consistent system that can recover

quickly. Since H-ARC chooses to delay dirty page synchro-

nization, the chance of many dirty pages staying in the cache

after system crashes will be high. Here, we propose two simple

solutions facing two different kinds of system failures.

When facing system crashes or unexpected power failures,

we have to reboot the whole system. In order to make sure

the system is consistent, all the dirty pages will be flushed

back through the following steps. The boot code needs to be

modified such that the page table will be well retained in NVM

regardless of the crashes. Then, identify all the cached dirty

pages from the page table, and synchronize them to the storage

immediately. Finally, reinitialize the page table and continue

the regular booting process.

When facing hardware failures, the dirty pages in NVM

may not be recoverable. To mitigate the risk of losing data,

we add a timer to each dirty page, such that a dirty page must

be flushed back after certain time elapses. For example, after

a page is updated for one hour, it will be forced written to the

storage and become a clean page. In H-ARC, this page will

be migrated from D1i to C1i, or from D2i to C2i.

Trace Name Total Requests Unique Pages Read/Write Ratio
mds 0 11,921,428 741,522 1:2.56
wdev 0 2,368,194 128,870 1:3.73
web 0 7,129,953 1,724,201 1:0.76
fio zipf 524,411 291,812 1:0.25
fio pareto 524,345 331,137 1:0.25
File server 1,417,814 406,214 1:0.35

TABLE I
A SUMMARY OF TRACES USED IN THIS PAPER.

IV. EVALUATION

In this section, we evaluate our proposed cache policy along

with several existing ones as listed below (detailed algorithm

description can be found in Section II.B):

• MIN: Belady MIN, optimal offline cache policy.

• LRU: Least Recently Used cache policy.

• CFLRU: Clean First LRU cache policy. 10% of the cache

space near the LRU position is allocated as the clean-first

region, same configuration as used in [4].

• ARC: Adaptive Replacement Cache policy.

• LRU-WSR: Least Recently Used-Writes Sequence Re-

ordering cache policy.

• H-ARC: Our proposed Hierarchical Adaptive Replace-

ment Cache.
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Fig. 2. Storage write count in pages from the main memory to storage devices.

A. Experimental Setup
To evaluate H-ARC, we implement it along with the com-

parison cache policies on Sim-ideal [12] simulator. Sim-ideal

accepts a trace file and a config file as inputs. It loads the trace

file into an internal data structure (queue) and processes trace
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Fig. 3. Cache hit ratio of both reads and writes.

requests one by one from the queue according to the timestamp

of each request. Moreover, the simulator core includes defined

cache size, page size, etc. according to a given config file. For

the experiments, we configure the size of a memory page to
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Fig. 4. Cache hit ratio of trace mds 0 under cache size of 16K pages. The
read cache hit ratio and the write cache hit are separated.

be 4 KB.

We use two types of traces to evaluate our scheme. The

first type is MSR Cambridge traces shared from SNIA [14]

and provided by Narayanan et al. [15]. MSR Cambridge traces

consist of 36 volumes containing 179 disks from 13 Microsoft

enterprise servers with different purposes for one week. These

traces are classified into 13 categories based on server types.

Each category consists of 2 or 3 traces. These traces represent

data accesses from a typical enterprise data center. For space

efficiency, we show the results of the first volume of traces

from 3 categories since the traces in the same category are

similar. All the selected traces are write intensive.

The second type is synthetic workload generated by two

popular benchmarks: fio [2] and Filebench [3]. Since MSR

Cambridge traces are block I/O traces that have been seen by

storage, in order to see the effect of traces that are seen by the

main memory, we have to generate them ourselves. To achieve

this goal, for fio and Filebench, we enable directI/O option.

directI/O enables the read/write requests bypass the main

memory and go to storage devices directly. Then we collect

the traces using Linux blktrace. In this way, even we collect

the traces from the storage layer, their actual access pattern is

close to accessing the main memory. For fio benchmark, we

configure it with 80% read requests and 20% write requests

and use two different types of distribution: zipf and pareto.

For Filebench, we select a popular model - file server. Table

2 describes these traces in detail.

B. Result Analysis: Storage Write Traffic

Figure 2 shows the storage write count from the main

memory (NVM) to storage (SSDs) for different cache policies

under various cache sizes. The x axis denotes the cache size,

which is the maximum number of real pages the cache can

store. The y axis denotes the storage write count, which is in

the number of pages written to storage.
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Fig. 5. Cache hit ratio of trace fio zipf under cache size of 32K pages. The
read cache hit ratio and the write cache hit are separated.

We compare five different types of cache policies. Among

them, LRU and ARC concentrate on improving cache hit ratio,

and CFLRU and LRU-WSR concentrate on decreasing storage

write count. H-ARC is our proposed cache policy.

From Figure 2, across six traces, one observation is that for

each cache policy, the bigger cache size, the less storage write

count. For example, in trace fio pareto as shown in Figure 2(e),

the storage write count of H-ARC under cache size of 64K

pages is only 26.9% of the amount under cache size of 1K

pages. The reason is two fold: (1) with larger cache size, pages

can be held in the cache for longer time without the need to be

evicted; (2) with larger cache size, better page eviction choices

can be made to increase cache hit ratio and decrease the write

count.

Another observation is, when the cache size is small, e.g.,

1K pages to 8K pages, across the six traces, the differences of

storage write count among these cache policies are small. The

reason is due to the limited cache space, it’s difficult for these

cache policies to capture enough information to make better

choices. In fact, under small cache sizes, all cache policies

perform similarly to the LRU algorithm. Even so, on average

H-ARC still performs better than all the other compared cache

policies.

On the other hand, when the cache size is big, e.g., 16K

pages to 64K pages, the differences of storage write count

among these cache policies are quite clear. In fact, H-ARC

decreases storage write traffic dramatically. For the extreme

cases in traces fio zipf and fio pareto, under cache size of 128K

pages, H-ARC has no write count, which means all the dirty

pages are kept in the cache and no dirty page is evicted. For

the three write intensive traces, which are mds 0, wdev 0 and

web 0, under cache size of 16K, on average H-ARC decreases

storage write to 73.8%, 74.4%, 80.8% and 76.2% compared

with LRU, CFLRU, ARC and LRU-WSR respectively. Under

cache size of 32K, on average H-ARC decreases storage write

to 68.0%, 71.1%, 82.5% and 82.3% compared with LRU,



CFLRU, ARC and LRU-WSR. Under cache size of 64K, on

average H-ARC decreases storage write to 53.2%, 57.2%,

56.2% and 69.9% compared with LRU, CFLRU, ARC and

LRU-WSR. For the three read intensive traces, which are fio

zipf, fio pareto and file server, under cache size of 32K, on

average H-ARC decreases storage write to 80.9%, 82.8%,

83.7% and 87.1% compared with LRU, CFLRU, ARC and

LRU-WSR. Under cache size of 64K, on average H-ARC

decreases storage write to 63.6%, 66.8%, 65.6% and 73.9%

compared with LRU, CFLRU, ARC and LRU-WSR. Under

cache size of 128K, on average H-ARC decreases storage write

by 43.4%, 49.0%, 47.3% and 62.1% compared with LRU,

CFLRU, ARC and LRU-WSR respectively.

C. Result Analysis: Cache Hit Ratio

In this paper, the cache hit ratio (in percentage) is the total

hit ratio including both reads and writes. The cache hit ratios

of these schemes are shown in Figure 3. All the caches are

cold started. Note that for a better distinguishable comparison

between these schemes, y-axis (hit ratio) of some figures does

not start from 0.

MIN is the optimal offline cache policy, which gives the

highest cache hit ratio. Among online ones, across the six

traces, on average H-ARC and ARC are the two cache policies

achieving the highest cache hit ratio. Both of them consider a

page’s status of frequency and recency, which can detect a hot

page versus a cold page better compared with cache policies

only consider recency. For LRU, CFLRU and LRU-WSR, their

cache hit ratios are almost overlapped, because all of them are

based on LRU, which only consider recency.

For some cases, H-ARC has much higher cache hit ratio

than ARC which targets maximization of cache hit ratio. To

show the reason, we plot a detailed cache hit ratio splitting

reads and writes for the case of trace mds 0 under cache size

of 16K pages. As shown in Figure 4, the read hit ratio of H-

ARC is slightly lower than the read hit ratio of ARC. However,

since we favor dirty pages more, and mds 0 is a write intensive

trace, the write hit ratio of H-ARC is much higher than the

write hit ratio of ARC. Thus, the overall hit ratio of H-ARC is

higher than ARC. On the other hand, for read intensive traces

(e.g. fio zipf), on average ARC achieves a little higher hit ratio

than H-ARC as shown in Figure 5.

V. CONCLUSION

In this paper, we propose a new cache policy for computer

systems using NVM as the main memory and SSDs as storage

devices. To explore the merit of non-volatile nature of NVM

and extend the lifespan of SSDs, we split the cache into four

smaller caches and balance them to their desired size according

to a page’s status: dirty, clean, frequency, recency. Through

various evaluation experiments, the results show our proposed

cache policy H-ARC decreases write count significantly and

maintains or even increases cache hit ratio compared with

previous work.
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