
CR5M: A Mirroring-Powered

Channel-RAID5 Architecture for An SSD

Yu Wang

Computer & Information School

Hefei University of Technology

Hefei, Anhui, China

yuwang0810@gmail.com

Wei Wang, Tao Xie

Computer Science Department

San Diego State University

San Diego, California, USA

wang@rohan.sdsu.edu,

txie@mail.sdsu.edu

Wen Pan, Yanyan Gao, Yiming Ouyang

Computer & Information School

Hefei University of Technology

 Hefei, Anhui, China

{wenwen412, littlek.gao}@gmail.com

comoyym@hfut.edu.cn

Abstract— Manufacturers are continuously pushing NAND

flash memory into smaller geometries and enforce each cell to

store multiple bits in order to largely reduce its cost.

Unfortunately, these scaling down techniques inherently degrade

the endurance and reliability of flash memory. As a result,

permanent errors such as block or die failures could occur with a

higher possibility. While most transient errors like programming

errors can be fixed by an ECC (error correction code) scheme,

rectifying permanent errors requires a data redundancy

mechanism like RAID (redundant array of independent disks) in

a single SSD where multiple channels work in parallel. To

enhance the reliability of a solid-state drive (SSD) while

maintaining its performance, we first implement several common

RAID structures in the channel level of a single SSD to

understand their impact on an SSD’s performance. Next, we

propose a new data redundancy architecture called CR5M

(Channel-RAID5 with Mirroring), which can be applied to one

SSD for mission-critical applications. CR5M utilizes hidden

mirror chips to accelerate the performance of small writes.

Finally, we conduct extensive simulations using real-world traces

and synthetic benchmarks on a validated simulator to evaluate

CR5M. Experimental results demonstrate that compared with

CR5 (Channel-RAID5) CR5M decreases mean response time by

up to 25.8%. Besides, it reduces the average writes per channel

by up to 23.6%.

Keywords—flash memory; solid-state disk; SSD; RAID5

I. INTRODUCTION

NAND flash memory based solid state drives (hereafter,
SSDs) possess some attractive properties such as low energy
consumption, high shock resistance, and small physical size
compared to traditional hard disk drives (HDDs). Thanks to the
development of manufacturing process, the price of SSDs in
terms of GB/$ has been rapidly decreased, which makes them
an alternative to HDDs in portable and mobile computing
devices such as laptops and tablets [1][6][9]. Increasing flash
capacity density is an effective way to reduce its cost.
Typically, there are two methods to densify a flash chip. One is
to shrink flash memory cell into smaller geometries (e.g., from
45 nm to 20 nm). The other is to push each cell to store more
bits (e.g., from SLC to MLC) [4][5]. Unfortunately, both
methods have significant side effects on flash endurance and
reliability [5][7]. For example, a typical SLC (single-level cell)
can tolerate ~100k P/E (program/erase) cycles with a 1-bit

ECC capacity per 512 bytes, whereas a 2-bit MLC (multi-level
cell) can only survive ~10k P/E cycles with a more-than-4-bit
ECC capacity per 512 bytes [3]. The decreasing endurance and
reliability exert continuous pressures on maintaining data
integrity and availability in SSDs [4][5][8].

A reliability-degraded SSD tends to generate more errors.
There are two types of errors: transient (or soft) errors and
permanent (or hard) errors. Typical transient errors include
programming error and read error [4]. Block or die errors are
categorized to permanent errors. Although an ECC scheme can
correct both types of errors, when the number of errors exceeds
its capacity a data loss will occur. Thus, a data redundant
mechanism is demanded to protect data under permanent
errors. A well-known such mechanism is the RAID (redundant
arrays of independent disks) [22] organization, which has
successfully been implemented in HDD arrays, SSD arrays,
and hybrid arrays [11][12][13][15][16]. Essentially, it trades
capacity loss for data reliability. RAID-5, one of the most
widely used RAID organizations, distributes parities along with
data and can tolerate a single disk failure [2].

Usually, a RAID architecture is applied in server-class
applications where multiple HDDs or SSDs are organized in
one array. Still, there are many cases where only one SSD can
be deployed due to space and energy constraints yet data
reliability is critical [23][25]. For example, a wireless
healthcare system collects community and clinical health data
and monitors patient vital signs in real time [23]. It requires a
high level of data reliability as data sampled from mobile and
dynamic environments are most likely irreproducible [23].
Another example is a mobile military application, which uses
mobile devices to carry out intelligence and tactical operations
where data loss could impact national security [25].

The internal structure of an SSD exhibits a hierarchical
architecture. An SSD consists of multiple channels with each
one having one or multiple chips [1]. Each channel can work in
parallel just like an independent disk does. The multi-channel
structure provides us with an opportunity to implement various
RAID formats into a single SSD to form a channel-RAID (CR)
architecture such as CR1 (Channel-RAID1), CR4 (Channel-
RAID4), and CR5 (Channel-RAID5) [6][17][18]. However,
simply transplanting a RAID structure at the channel level
faces several challenges. Take RAID5 for example. Firstly,

978-1-4799-5671-5/14/$31.00©2014 IEEE

frequent parity updates largely burden the endurance of an SSD
whose P/E cycles are already limited [3]. Besides, they could
noticeably shorten an SSD’s longevity because some chips that
receive a larger number of writes will wear out more quickly
than others. Secondly, the parity updates increase an SSD’s
write amplification, which leads to a poorer SSD performance.

To solve these challenges, in this paper we first implement
several widely known RAID structures in the channel level of a
single SSD like CR1 (Channel-RAID1), CR4 (Channel-
RAID4), and CR5 (Channel-RAID5) to fully understand their
impacts on performance and reliability. Next, we propose a
mirroring-powered channel-RAID5 (CR5M) architecture,
which can be applied to one SSD for mission-critical
applications. CR5M organizes multiple channels of an SSD in
a RAID5-like manner where each channel acts as an
independent disk. Each channel has one or more identical
chips. In addition, a hidden mirroring chip is added to each
channel. RAID5 offers a good balance between storage
efficiency and I/O performance. However, its performance
suffers when it serves small random writes/updates dominant
workloads [2]. The reason behind this is that RAID5 has to
perform more additional read operations, as more stripes have
to calculate a new parity. Moreover, small random
writes/updates increase data copying overhead during garbage
collection operations so that an SSD’s performance and
reliability will be further deceased. Therefore, CR5M attaches
an extra chip that serves as a mirroring device under each
channel of an SSD to mitigate the problems of RAID5. When a
small random write/update request arrives, CR5M first
dispatches it to its destination channel. And then, CR5M
concurrently writes it onto a particular data chip and the
mirroring chip without updating the parity if both chips are
ready to serve. Clearly, the newly written data is protected by
mirroring, whereas other data in the same stripe are still
protected by the present parity. The parity will be finally
updated when the mirroring chip is not ready to serve a new
update or its available capacity reaches a predefined threshold.
In this way, the overall performance can be boosted by
postponing parity updates due to small random writes/updates.

SSDs employ FTL (flash translation layer) to map a logical
block address to a physical flash address [19][20]. The FTL
hides the internal flash memory organization, IO operations,
and data placement from the operating system. We implement
CR1, CR4, CR5, and CR5M architectures within a page-
mapping FTL presented in a validated SSD simulator SSDsim
[6] without introducing an extra hardware cost. Our
experimental results demonstrate that in terms of mean
response time CR5M outperforms CR5 by up to 25.8%.
Compared with CR4, CR5M can achieve a performance gain
up to 33.4%. Besides, CR5M reduces the average writes per
channel in a range of 4.5% to 23.6% compared with CR5.

The rest of the paper is organized as follows. Related work
and motivation will be presented in Section II. In Section III, a
discussion of how a channel-RAID5 organization is employed
in a single SSD will be first provided, and then the
implementation of CR5M is presented. The performance and
reliability of CR5M is evaluated using a validated simulator
under real-world and synthetic traces in Section IV. Section V
concludes this paper.

II. RELATED WORK AND MOTIVATION

A. SSD Basics

Due to the absence of moving parts, HDD’s long seek time
and rotational latency are avoided by SSDs. The flash memory
part of an SSD is composed by an array of identical chips.
Several chips share a channel, which connects them to the flash
controller. All chips within one channel have separate chip
enable and read/busy control signals [3]. Each chip consists of
multiple dies and each die has its own internal ready/busy
signal. Further, each die contains multiple planes with each
having thousands of blocks and one or two data/cache register
as an I/O buffer. Each block typically has 64 or 128 pages. The
size of one page normally varies from 2 KB to 16 KB [2]. Each
page contains a spare area used for error correction and
metadata. There are three basic operations in flash: read, write,
and erase. While read and write are performed at page-level,
erase can be carried out only at block-level. Each block must
be erased before it can be written, which is a characteristic
known as erase-before-write. An erase operation is a time-
consuming operation compared with read and write. Each
block can only sustain a limited number of erase operations.
The erase-before-write is hidden by using an out-of-place
update method: first, the update data is written to an erased
page; next, the page that contains the old data is invalidated;
finally, the virtual-to-physical address mapping table is
modified to reflect this change [1].

Recently, manufacturers are aggressively pushing flash
memory into smaller geometries to further decrease the cost
per gigabyte. At the same time, flash memory are moving to
store more bits per cell to further increase the storage density.
Compared with SLC, MLC and triple-level cell (TLC) has
become the dominant form of NAND flash and constitutes
about 90% of the flash parts shipped. However, these
technologies negatively impact the endurance and reliability of
flash memory [4]
program/erase (P/E) cycles, whereas a 2-bit MLC can only

-40 nm technology
generations. The available P/E cycles will further decrease in
the future as flash cells keep scaling down in size and each cell
stores more than 2 bits. As a result, SSDs wear out more
quickly, especially for write-intensive applications.

B. Flash Memory Errors

In addition to a reduced longevity, the manufacturing
process scaling technology also leads to a degraded SSD
reliability. As each bit cell gets smaller, fewer electrons can be
trapped in the floating gate, which result in more errors [4]. At
the same time, manufacturers are moving past two-bit MLC to
three-bit TLC to further increase storage density [5]. However,
as the number of bits stored per cell increases, bit values are
represented by smaller voltage ranges. A smaller voltage range
generates an uncertainty in the value stored. Consequently, the
flash raw bit error rate (RBER) increases [5].

 Normally, there are two types of flash errors: transient
errors and permanent errors. Transient errors can be further
classified into four groups from the controller’s point of view:
erase error, programming interference error, retention error,
and read error [4]. Ideally, all transient errors would be
corrected by an ECC algorithm. In reality, the ECC scheme

Host

Interface
SSD Controller

D0

D12

D3

D15

D6

P7

P3

D18

Chip 0 Chip 1 Chip 2 Chip 3

D1

P4

D4

D16

P2

D19

D9

D12

Chip 4 Chip 5 Chip 6 Chip 7

D2

D13

P1

D20

D7

P5

D10

D12

Chip 8 Chip 10 Chip 11

P0

D14

D5

D17

D8

P6

D11

D12

Chip 12 Chip 13 Chip 14 Chip 15

Channel 0 Channel 1 Channel 2 Channel 3

Stripe mapping table

Stripe 0 Ch0:C0:D0 Ch1:C4:D1 Ch2:C8:D2 Ch3:C12:P0

: Pairty Data

: User DataD

P
Stripe 1 Ch0:C1:D3 Ch1:C5:D4 Ch3:C13:D5 Ch2:C9:P1

Chip 9

Fig. 1. The architecture of CR5 SSD.

only protects against a range of errors. Typically, ECC can
detect two bit errors and correct one bit error per 256 to 512
bytes [4]. Errors beyond that range may be unrecoverable. On
the other hand, permanent errors include word line errors, and
block or chip errors. However, ECC schemes are incapable of
correcting these permanent errors. Thus, in this circumstance a
data redundancy mechanism like RAID5 has to be utilized to
protect data. Apparently, a data redundancy scheme trades
capacity for an improved performance and reliability.

C. Motivation

SSDs are increasingly used in RAID arrays to replace or
cooperate with traditional HDDs. These SSD arrays or SSD-
HDD hybrid arrays focus on enhancing the RAID controller
including parity updating schemes and wear-leveling
algorithms in order to improve the performance and lifetime of
the arrays [8][9][10][12][13][14][18][24]. Im and Shin
proposed a scheme using the partial parity technique to reduce
the number of read operations required to calculate a parity [8].
Similarly, Lee et al. developed a new technique called FRA
(Flash aware Redundancy Array). In this technique, parity
updates are postponed so that they are not included in the
critical path of read and write operations [10]. To enhance the
reliability of an SSD array, Kadav et al. presented Diff-RAID,
a new RAID variant that distributes parity unevenly across
SSDs to create age disparities within arrays [9].

However, the traditional multi-device RAID structure is
impractical to portable and mobile computing devices where
only a single SSD can be deployed. Fortunately, as Hu et al.
pointed out, an SSD contains inherent internal parallelism at
multiple levels [6][15]. This provides an opportunity to migrate
a RAID structure into a single SSD. After a study on the
parallelism of different levels within an SSD, we argue that
implementing a RAID architecture in the channel level is most
appropriate because channel level can improve performance
more effectively than all the other levels (e.g., chip level, plane
level). The high data reliability requirements imposed by
mission-critical mobile applications as well as our
investigations on the internal structure of an SSD motivate us

to develop a channel-RAID architecture to improve the
performance and reliability of a single SSD.

III. THE CR5M ARCHITECTURE

In this section, we first introduce how the RAID5
organization is implemented within a single SSD. Next, the
design and implementation of CR5M architecture are
presented.

A. Architecture of CR5

An SSD provides a multi-level parallelism (e.g., channel,
chip, and die level). Hu et al. [6] suggested that an optimal
priority order of parallelism in a single SSD should be:
channel-level, die-level, plane-level, and chip-level.
Considering the fact that flash memory chip is the smallest
replaceable unit in SSD and multiple chips are grouped
together by sharing one channel, we implement the RAID
architecture on the channel level. Fig. 1 shows an example of a
four-channel SSD with each channel consisting of four chips.
When channel-RAID5 is adopted user data will be written in a
stripe unit. In the above example, a stripe contains 3 pieces of
user data and 1 parity data. For example, user data D0 ~ D2 and
parity P0 comprise stripe 0. More generally, the stripe index j of
data Di can be calculated as j = ⌊i / (N - 1)⌋ while i is the index
of Di and N is the number of channels. The parity of the stripe j,

Pj, is equal to Dj ∙ (N-1)  Dj ∙ (N-1)+1 ⋅⋅⋅  Dj ∙ N - 1 where  is the
exclusive-OR (XOR) operation. The striping size of CR5 is
adjusted to (N – 1) page size. The reason of choosing (N-1)-
page striping size is two-fold. Firstly, a page is the smallest
granularity of read/write operation so that one-page size user
data simplifies the read/write operations within CR5 SSD and
its data management. Secondly, for multi-page requests each of
them can be divided into multiple one-page requests, which can
fully utilize parallelism by distributing these requests into
different channels.

Semi-Dynamic Allocation Scheme. Traditionally, the
layout of each stripe in RAID5 structure is fixed, which is also
referred to as static allocation scheme. The static allocation
scheme is efficient because computing the address of each

1. Input: N, j, i, type(request)

2. Output: channel_addr, chip_addr, page_addr

3. IF type(request) == parity write THEN

4. channel_addr = (N – 1) – (j % N);

5. ELSE IF type(request) == user data write THEN

6. parity_channel = (N – 1) – (j % N);

7. channel_addr = i % (N – 1);

8. IF (channel_addr >= parity_channel) THEN

9. channel_addr++;

10. END IF

11. END IF

12. chip_addr = find_next_available(channel_addr);

13. page_addr = find_next_available(chip_addr);

Fig. 3. The SDA algorithm.

piece of data (i.e., user data and parity) is simple. In SSD, each
channel consists of multiple chips. These chips share data and
command buses and can be used in an interleaving way. The
overall performance of an SSD can be noticeably improved if
the interleaving is fully utilized [6]. Instead of using static
allocation scheme, in CR5 we adopt a flexible allocation
scheme called semi-dynamic allocation (SDA) to fully utilize
interleaving between chips, which under the same channel.
There are two steps in the SDA scheme. First, SDA calculates
the channel address of each request using a predefined equation
(i.e., static allocation). User data and parity are treated in a
different way (see Fig. 3). Next, the chip address and page
address is dynamically allocated by detecting the availability of
each chip on the channel address, which is determined by step
1. Fig. 3 illustrates the SDA algorithm. N, j, and i represent the
number of channels, stripe index, and data index within one
stripe, respectively.

When a request arrives, the SSD controller first splits it into
multiple one-page size sub-requests. And then they are grouped
according to the stripe number of the data they accessed. There
are two types of write. One is full-stripe write, which handles a
group of sub-requests across the whole stripe. Its parity data
can be directly computed. The other one is partial-stripe write.

It contains sub-requests that only access a part of a stripe. To
calculate its parity several pre-read operations must be
performed. Usually, two alternative methods are used for
updating parity data in a partial-stripe request: RMW (Read-
Modify-Write) and RCW (Read-Reconstruct-Write). RMW
reads the old data of the updates and its associated parity. Thus,
the number of pre-read operations of RMW equals to the
number of updates plus one (i.e., parity read). RCW, on the
contrary, reads the rest part of the stripe (i.e., the data that are
not going to be updated), so the number of pre-read operations
of RCW is equal to the number of data pages in a stripe minus
the number of updated pages. To reducing the overhead of the
pre-read operations, the method whose pre-read operation
number is less will be selected. If they are equal, RCW is
adopted because it does not depend on the parity information
so that the probability of data errors becomes lower [2].

Limitation of CR5 SSD. There are several limitations to
this approach. First, the chip in which the parity page resides is
more prone to wear out for it has to be written more frequently.
This leads to a decreased lifetime of an SSD. Second,
additional read operations must be applied in partial-stripe
requests to calculate new parity whether RCW or RMW is
employed. The additional read operations can significantly
increase the mean response time of storage system, especially
when the majority writes are random small updates.
Furthermore, during RCW or RMW procedure the parity data
cannot be written until all the read operations are carried out,
leaving open a window of vulnerability. Hence, the CR5
architecture is not suitable for flash based SSDs.

B. Architecture of CR5M

A CR5M is proposed to combat the shortcomings in
traditional RAID5 organization. The key feature of CR5M is
that an extra chip is introduced to each channel, which is
transparent to users and does not contribute for the total SSD
capacity. These chips serve as a mirroring chip. However, they
only store mirroring data for small random updates in partial
stripe. Fig. 2 shows an example architecture of CR5M SSD.

Host Interface SSD Controller

D0

D12

D3

D15

D3'

D6

P7

D6'

P3

D18

Chip 0 Chip 1 Chip 2 Chip 3

D1

P4

D4

D16

P2

D19

P2'

D9

D12

Chip 5 Chip 6 Chip 7 Chip 8

D2

D13

P1

D20

D7

P5

D10

D12

Chip 10 Chip 12 Chip 13

P0

D14

D5

D17

D8

P6

D11

D12

Chip 15 Chip 16 Chip 17 Chip 18

Channel 0 Channel 1 Channel 2 Channel 3

Stripe mapping table

Stripe 0 Ch0:C0:D0 Ch1:C5:D1 Ch2:C10:D2 Ch3:C15:P0

: User DataD

Stripe 1 Ch0:C1:D3' Ch1:C6:D4 Ch3:C16:D5 Ch2:C11:P1

Chip 11

D3'

D6'

160

161

162

PPN

120

121

122

Mirroring

Chip

PPN

80

81

82

PPN

40

41

42

PPN

0

1

2

Chip 4
PPN

D4

D19

Chip 9 Chip 19Chip 14

Mirroring

Chip

Mirroring

Chip

Mirroring

Chip

: Pairty DataP

: Invalided DataD

Fig. 2. The architecture of CR5M SSD.

Get request

Write

Mirror chip

busy?

No

Yes

Partial-stripe

request?

Pre-read count

of RMW < RCW?

No

Full-stipe

write

Yes

RCW

No

Read

The data has

a mirror?

Mirror chip

idle?

Yes

Yes

Read the

data from

PPN

No

Yes

No

RMW

Expired Data

Reclaim

Read the

data from

MPPN

MW

Fig. 5. The workflow of CR5M SSD.

There are 5 chips on each channel. The last one is the mirroring
chip (e.g., chips 4, 9, 14, and 19). In addition to RMW and
RCW, CR5M provides another special procedure called
mirroring write (MW), which can only be invoked in a partial
stripe update. MW concurrently writes both the original update
and a copy of it onto its destination chip and the mirroring chip,
respectively. As chips on the same channel can work in an
interleaving way, the overhead of an MW operation is
equivalent to a write operation.

Let us using an example shown in Fig. 2 to clarify how the
CR5M and MW operation works. Assuming the entire SSD is
idle at this point and a partial stripe update that contains only
one page data D3’ arrives. As the MW operation is triggered
two identical pieces of D3’ are written onto chip 1 and
mirroring chip (i.e., chip 4) simultaneously. Different to the
conventional data and parity updating procedure, MW will not
invalid the old data D3 on chip 1 and calculate the new parity
for this stripe. To reclaim the obsolete data and parity an
expired data reclaim process will be carried out when MW is
disabled. There are two scenarios that MW will be disabled.
The first one is at the time when the available capacity of
mirroring chip is lower than a predefined threshold. The second
one is the time when the mirroring chip is busy. As the
mirroring data and obsolete data coexist in CR5M a revised
mapping table is applied.

In the revised mapping table, an additional data area called
mirroring address (MA) is appended to each entry. Its value
tells the existence of mirroring data for current entry. If an
entry does not have a mirroring data the value of MA area is
NULL. Otherwise, an address will be stored in MA, which
point to a mirroring table containing two areas. The first area is
EPPN (expired physical page number), which records the
physical page address for the obsolete data. The second area
stores the physical address of mirroring data. It is called MPPN
(mirroring physical page number). Fig. 4 shows an example of
mapping table in CR5M. User data D3’ experienced an MW
operation. The new data is stored in a page with physical
address 42. MA area of D3’ is not NULL and points to the first
entry of mirroring table. From the mirroring table, CR5M can
find the old data and a duplication of D3’ at physical page
address 40 and 160, respectively. After expired data reclaim the
MA will be set to NULL and the corresponding entry in
mirroring table will be deleted.

The CR5M increases performance and reliability in two
aspects. First, the mean response time of a partial stripe update
is reduced as additional reads and parity calculation are
eliminated. Actually, these reads and parity computation are
postponed to expired data reclaim process. The delay of reads
can reduce the overall mean response time especially in non

data-intensive applications. Moreover, this delay is also helpful
to reduce the number of parity calculation because only the
latest version of frequently updated stripes is used for parity
computation. Second, CR5M stores a duplication for partial
stripe updates, leading to an improved read performance
because request can be still served from the duplication if the
original data is not available. Third, both the old data and
updates are stored in CR5M. Hence, any one-channel data
failures can be easily recovered. Furthermore, the duplication
in mirroring chip implicitly increases the reliability of data in
partial stripe updates before new parity is updated.

CR5M increases performance at the cost of one-chip
capacity loss per channel. Assume that a CR5M consists of 4
channels with each having 5 chips. Storage efficiency per
channel is 4/5. Considering an N-channel parity-encoded SSD,
CR5M’s storage efficiency would be (N-1)/N. Hence, a channel
that has a larger number of chips would get a better storage
efficiency.

Fig. 5 shows how write and read operations are carried out
in CR5M SSD.

1) Write Policy

a) Full-stripe write will be applied if data size is bigger

than one stripe. In case of full-stripe write no read operation

will be performed and parity data is directly computed.

b) When request data size is smaller than one stripe a

partial-stripe write will be carried out. In this scenario, CR5M

will first check the status of mirroring chips on the channels

where updates are going to be written. If the corresponding

mirroring chips are idle, MW process is triggered. Otherwise,

either RMW or RCW process will be proformed. For example,

let us consider the case that D6 in stripe 2 is going to be

updated. The update of D6 is D6’ (see Fig. 4). Assume that the

mirroring chip on channel 0 is available. Hence, the MW

process is applied. The D6’ is first written onto chip 2 and

mirroring chip (i.e., chip 4) concurrently (see Fig. 2). And

then, its PPN 82 on chip 2 is recorded in the mapping table

PPNLPN MA

42D3'

640D2 Null

240D4 Null

82D6'

MPPNEPPN

16040

16180

Revised mapping table Mirroring table

1046D7 Null

322P2 Null

PPNLPN MA

42D3'

640D2 Null

240D4 Null

82D6' Null

MPPNEPPN

16040

16180

Revised mapping table Mirroring table

1050D7' Null

328P2' Null

(a) (b)
Fig. 4. (a) Revised mapping table in CR5M and (b) mapping table after

an expired data reclaim process.

and the address of corresponding mirroring table entry is set in

the MA area. In mirroring table, the address of mirroring data

is recorded in MPPN and the address of out-of-date D6, 80, is

recorded in EPPN. The new parity of stripe 2 will not be

calculated in this procedure. Hence, the other pieces of data on

this stripe can still be protected by D6 and the old pairty. D6’

and its mirroring data are protected by each other.

c) In RMW or RCW scenario, the one whose read

operation number is less will be adopted. As a new parity will

be calculated an expired data reclaim operation will be

invoked to reclaim the out-of-date data (i.e., data processed by

MW operation) in this stripe. Fig. 4b illustrates the mapping

table change after an expired data reclaim process for stripe 2.

Assuming that D7 is to be updated. And then D6’ and D8 will

be first read out to compute new parity for the stripe. Next, the

new pairty P2’ and D7’ are written followed by updating

corresponding entry in mapping table. In this stripe, D6’ was

updated by MW. Thus, after the expired data reclaim process

the MA area of D6’ is set to NULL and the associated entry in

mirroring table is released. All the released pages are marked

as invalided and they will be reclaimed in garbage collection.

d) Another scenario that the expired data reclaim

operation will be invoked is that the available capacity in

mirroing chip is lower than a predefined threshold. Typically,

2% of total capacity is overprovisioned for bad block

replacement and garbage colletion [14]. In this research, the

threshold is set as 2% of total chip capacity.

2) Read Policy
The mirroring chips also contribute to the read performance

improvement because read requests can be sent to either the
data chip or the mirroring chip if the piece of data resides on
both chips. For instance, when a read request on D3’ arrives
and D3’ has a copy on PPN 160 in chip 4, this read can be sent
to chip 4 if chip 1 is busy or it can also be sent to chip 1 if chip
4 is not available.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of CR5M, an SSD simulator
is implemented. Rather than developing a new simulator, our
simulator is built based on a validated SSD simulator named
SSDsim [6][17]. SSDsim is an event-driven, modularly
structured, and highly accurate simulator for SSD. We extend
the SSDSim by modifying several function modules including
the trace file pre-processor, read request handler, write request
handler, mapping table, allocation algorithm, and buffer
management to support a handful of channel-level RAID
architectures such as channel-RAID1 (CR1), channel-RAID4
(CR4), channel-RAID5 (CR5), and channel-level RAID5 with
mirroring (CR5M). The simulator extracts requests from a
trace file. Next, the requests are split to multiple sub-requests,
which are distributed to multiple chips later. In the case of a
write request, the simulator will generate several read/write
sub-requests to update its corresponding parity. Only after all
the sub-requests of a request are finished, the simulator marks
the request as completed.

TABLE I. THE CHARACTERISTICS OF TRACES.

Trace

Name

Write

Ratio

(%)

Ave.Size

(KB)

Access

Rate

(req/sec.)

Duration

(mins.)

Financial1 77.88 3.46 129 515

Radius9 88.46 6.8 57 35.2

ATTO 47.45 23.1 792.4 2.5

Build 45.71 6.5 372 15

Exchange 46.43 12.5 166 15

TABLE II. THE FIXED EXPERIMENT PARAMETERS.

Parameters Values

Page read 20 μs

Page write 200 μs

Block erase 1.5 ms

Transfer one byte 25 ns

Page size 2 KB

Pages per block 64

Blocks per plane 2048

Planes per die 4

Dies per chip 4

TABLE III. THE VARIED EXPERIMENT PARAMETERS.

Conf.
Pure

SSD
CR1

CR4 &

CR5
CR5M

SSD1 4cl-6cp 8cl-6cp 4cl-6cp 4cl-7cp

SSD2 6cl-4cp 12cl-4cp 6cl-4cp 6cl-5cp

SSD3 8cl-3cp 16cl-3cp 8cl-3cp 8cl-4cp

Four real-world traces and a benchmark are selected to
evaluate the performance of pure SDD, CR1, CR4, CR5, and
the proposed CR5M SSD. The five traces and their
characteristics are summarized in Table I. The selection of
traces has been done so that different types of workloads are
included. ATTO is a benchmark gathered from a PC with an
NTFS file system by DiskMon [26][27]. ATTO generates the
same amount of I/O requests irrespective of storage capacity
and most of the random requests are the accesses to small
number of sectors. The Build trace [28] was collected from the
Microsoft Build Server production traces, which has roughly
the same amount of read/write requests. The Exchange trace
[28] was collected over a period a 24 hours at Microsoft
Exchange Server using the event tracing for Windows
framework. The access rate of Exchange is much smaller than
that of Build. Financial1 [29] is an I/O trace from OLTP
application running at a financial institution. The Radius trace
[28] was collected for Radius authentication server. The
Financial1 and Radius are write-dominant traces.

Table II illustrates the flash configuration used in
experiments, whereas Table III shows the different number of
channels and chips used for simulation. Three different sets of
configurations, SSD1, SSD2, and SSD3 are studied. In these
three sets of configurations the number of channels varies from

Fig. 6. Performance comparisons on SSD1.

Fig. 7. Performance comparisons on SSD2.

Fig. 8. Performance comparisons on SSD3.

4 to 8 so that a comprehensive understanding of its impact can
be gotten. Due to the mirroring requirement the number of
channels in CR1 is as twice as that in other architectures. In all
the experiments, the total usable capacity keeps the same. In
table III, while ‘cl’ means the channel number in an SSD, ‘cp’
stands for the chip number on each channel. For example, in
SSD1 CR5M configuration, 4cl-7cp means an SSD has 4
channels with each containing 7 chips. In all the experiments,
5% of flash memory capacity is preserved as overprovisioned
space for bad block management and garbage collection.

B. Real-World Workloads

Fig. 6, 7 and 8 show the overall performance in terms of
mean response time in SSD1, SSD2, and SSD3 configurations.
All the values are normalized to that in the pure SSD
configuration. It is clear that the mean response time of read
operations does not change too much in CR5 and CR5M
configurations compared with that in the pure SSD. For CR1
configuration, a noticeable improvement of mean response
time can be found in almost every trace. The reason behind this
is that the mirroring chips in CR1 increase the data availability
so that the throughput of read is enlarged. Moreover, CR4

experience the worst read performance among all
configurations, especially when the number of channel is small.
Compared with CR5, the read performance of CR5M increases
at most 3%. Intuitively, CR5M should have a big improvement
in read performance due to the mirroring chip on each channel.
However, in real situations the read sub-requests that are
distributed to the mirroring chip is only 1.2% of total requests.
Hence, the read performance does not gain too much in the
mirroring chip.

For write performance, the pure SSD and CR1
configurations outperform the other three configurations (i.e.,
CR4, CR5, and CR5M) under all the traces. This is due to the
fact that CR4, CR5, and CR5M have an extra overhead of
parity calculation and updating. CR4 exhibits the worst write
performance as it uses a dedicated parity channel. The parity
channel becomes its performance bottleneck because each
stripe write or update results in a parity channel write. Under
the Build and Radius9 traces, CR5M improves 27.2% and
25.6% mean write response time compared with CR5,
respectively. This improvement gains from the MW of CR5M,
which takes a less time to serve partial-stripe requests than

RMW or RCW. Similar to the simulation results of write
performance, the overall mean response time of CR5M is better
than CR4 and CR5. For example, under Financial1, Radius9,
ATTO, Build and Exchange trace, CR5M improves 6%,
25.8%, 8.5%, 22.6% and 8.6% compared to CR5. Besides,
CR1 achieves the best performance, which profits from the
doubled flash memory capacity. CR4, on the contrary,
performs the worst because of the dedicated parity channels.

C. Synthetic Workloads

A set of synthetic workloads is also used to evaluate the
CR5M architecture. In particular, we evaluate the impact of
write percentage and average request size on overall
performance. All the experimental results are normalized to
that of a pure SSD.

Fig.9 shows the impact of write request percentage on
performance. The default average request size is set to 16KB
and the access rate is configured to 240 requests per second.
We vary the write percentage from 20% to 80%. CR5M
exhibits the best performance in the 80% write scenario. It
outperforms CR5 by up to 24.1%. As MW can boost write
performance a lot, CR5M provides a large improvement in
high write ratio scenario.

Fig. 10 presents the impact of average request size on
performance. The default write-ratio is set to be 60% and the
default access rate is configured to 240 requests per second.
Compared with CR5, the smaller the average request size, the
more improvement can be obtained by CR5M. In the best
situation, CR5M can gain improvement by 31.7%. Clearly,
when request size increases, the gap between CR5 and CR5M
becomes small.

Fig. 11. Overhead of pre-read operations.

Fig. 9. Impact of write percentage.

Fig. 10. Impact of average request size.

D. Parity Pre-Read Overhead

For partial-stripe write/update, a number of pre-read
operations have to be performed so that new parity can be
calculated. The number of pre-read operations should be as less
as possible so that the overhead of parity calculation is
minimized. Fig. 11 shows the average number of pre-read
operations for each write request. The pre-read operations are
the extra operations for parity updating. Unlike RMW and
RCW, MW does not generate any pre-read operation so that
the average number of pre-read operations in CR5M is reduced
due to the MW. It is clear that under all the traces, the number
of pre-read operations in CR5M is smaller than that of CR5.
On average CR5M reduces the number of pre-reads by 56%. In
Radius9 trace CR5M reduces the number significantly. The
reason behind this is that Radius possesses a lower access rate,
which results in a larger number of MW.

E. Wear-Leveling Evaluation

The number of writes a chip received is a good indicator of
wear-leveling as a large number of writes/updates can lead to a
increased number of P/E cycles. Fig. 12 shows the average
number of writes per channel when CR5 and CR5M are used,
respectively. The height of a bar represents the average number
of writes among all channels. The upper and lower cap of an
error bar shows the largest and the smallest number of writes
that a channel receives in a single SSD. Hence, the difference
between the upper and lower cap gives the largest difference of
wear out degree among channels. It is obvious that the number
of writes a channel receives in CR5M is smaller than that in
CR5 under all the real-world traces. On average, CR5M can
reduce the number of writes per channel by 14% compared
with CR5. The reason behind this is that the MW provided by
mirroring chips absorbs lots of parity updates in partial-stripe
updates. Especially, for stripe who has a high updating
frequency, only the parity of the last update (i.e., before
expired data reclaim operation) will be calculated and write
onto flash.

V. CONCLUSIONS

Due to aggressive scaling down technology flash memory
reliability continuously decreases, which threatens data
integrity and reliability in SSDs [5]. A typical approach to
addressing this problem is to apply an ECC scheme, which can
combat bit errors so that data integrity can be guaranteed
[3][5]. However, each ECC scheme has its own capacity
limitation, above which it can no longer work. [5]. Thus, a data
redundancy mechanism is greatly needed to protect data under

permanent errors. RAID structures have been successfully
applied in disk arrays to improve data reliability and integrity
for server-class applications [9]. However, there are many
cases [21][23] where only one SSD can be deployed due to
space and energy constraints. Yet, data reliability in such
applications like wireless healthcare systems [21] and mobile
military applications [23] is critical. Fortunately, the internal
hierarchical architecture of an SSD provides us with an
opportunity to employ a RAID-like structure at the channel
level. However, directly applying a RAID format at the
channel level faces several challenges. Firstly, frequent parity
updates largely accelerate aging of an SSD whose P/E cycles
are already limited [3]. Secondly, the parity updates increase an
SSD’s write amplification, which leads to a poorer SSD
performance. In this paper, to fully understand the impact of
RAID architecture on a single SSD’s performance and
reliability, we first implement and study several channel-RAID
organizations. We found that CR1 consistently outperforms the
other channel-RAID architectures. For example, in SSD1
configuration compared to a non-RAID SSD CR1 can improve
the I/O performance by up to 19%. Obviously, it improves
performance at the cost of 50% capacity loss. CR4 and CR5
use parity to enhance data reliability. In SSD1 configuration,
CR5 outperforms CR4 in the range of 9% ~ 26%. The reason
behind this is that CR4 adopts a dedicated parity channel,
whereas CR5 distributes parities on all the channels. The
dedicated parity channel in CR4 becomes a performance
bottleneck as each data update results in a parity update on the
parity channel. Next, a mirroring-powered channel-RAID5
structure called CR5M is proposed. It can be applied to a single
SSD. CR5M introduces a mirroring chip on each channel to
accelerate small writes/updates by reducing the overhead of
frequent parity updating. Moreover, the mirroring chips
provide a data protection for the small writes/updates, which
are not covered by present parity. Comprehensive experimental
results show that compared with CR5, CR5M achieves a
performance gain up to 25.8%. Besides, CR5M reduces the
average writes per channel in the range of 4.5% ~ 23.6%
compared with CR5.

In the future, we will implement and study the channel-
RAID architecture on a hardware evaluation board where real
flash chips are employed. The increased overhead caused by
channel-RAID data management and energy consumption will
be comprehensively studied.

VI. ACKNOWLEDGEMENT

This work is sponsored in part by the U.S. National Science
Foundation under grant CNS-(CAREER)-0845105 and Key
Technologies R&D Program of Anhui Province (China)-
11010202190.

References
[1] N. Agrawal, V. Prabhakaran,T. Wobber, J. Davis, M. Manasse, and R.

Panigrahy, “Design Tradeoffs for SSD Performance,” in Proc. USENIX
Annual Technical Conf., pp. 57-70, 2008.

[2] SZ. Chen, and D. Towsley, “The design and evaluation of RAID 5 and
parity striping disk array architectures,” Journal of Paralel and
Distributed Computing, Vol. 17, No. 1, 1993

[3] J. Cooke, “The inconvenient truths about nand flash memory,” Micron
MEMCON, June, 2007

0

4

8

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

CR5 CR5M
F
in

1
R

ad
iu

s9
B

ui
ld

E
xc

ha
ng

e
A

T
T

O

F
in

1
R

ad
iu

s9
B

ui
ld

E
xc

ha
ng

e
A

T
T

O

F
in

1
R

ad
iu

s9
B

ui
ld

E
xc

ha
ng

e
A

T
T

O

CR5 CR5M

0

4

8

12
N

u
m

b
er

 o
f

w
ri

te
s

(X
1

0
4
)

SSD1 SSD2 SSD3

Fig. 12. Average number of writes per channel.

[4] Y. Cai, F. H. Erich, M. Onur, and M. Ken, “Error patterns in MLC
NAND flash memory: Measurement, characterization, and analysis,” In
IEEE DATE, 2012.

[5] E. Deal, “Trends of nand flash memory error correction,” Cyclic Design,
June, 2009

[6] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. "Performance
impact and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity." in Proc. Int’l Conf.
Supercomputing (ICS), pp. 96-107, 2011

[7] L.M. Grupp, D. John, and S. Swanson, “The harey tortoise: managing
heterogeneous write performance in SSDs,” In USENIX ATC, 2013

[8] L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, “Characterizing
flash memory: anomalies, observations, and applications,” In
IEEE/ACM MICRO, 2009

[9] R. Bilton, “Good News for Consumers: Solid State Drives prices are
dropping,” http://www.zdnet.com/blog/storage/good-news-for-
consumers-solid-state-drive-prices-are-dropping/1706, June 2012.

[10] S. Im, D. Shin, “Flash-Aware RAID Techniques for Dependable and
High-Performance Flash Memory SSD,” IEEE Transactions on
Computers, Vol. 60, Issue1, pp. 80-92, Jan. 2011.

[11] A. Kadav, M. Kalarishnan, V. Prabhakaran, and D. Malkhi, “Differential
RAID: Rethinking RAID for SSD Reliability,” ACM Transactions on
Storage, Vol. 6, Issue 2, July 2010.

[12] Y. Lee, S. Jung, and Y.H. Song, “FRA: A Flash-aware Redundant Array
of Flash Storage Devices,” in Proc. 7th IEEE/ACM Int’l Conf. on
Hardware/Software Codesign and System Synthesis, pp. 163-172, 2009.

[13] B. Mao, H. Jiang, D. Feng, S. Wu, J. Chen, L. Zheng, and L. Tian,
“HPDA: A Hybrid Parity-based Disk Array for Enhanced Performance
and Reliability,” in Proc. IEEE Int’l Symp. on Parallel & Distributed
Processing (IPDPS), pp. 1-12, 2010.

[14] Micron. (2010, Oct.) Bad block management in NAND flash memory.
[Online]. Available:
http://www.micron.com/products/support/technicalnotes/

[15] Y. Du, F. Liu, Z. Chen, and X. Ma, “Wele-RAID: a SSD- based RAID
for System Endurance and Performance,” in Proc. 8th IFIP international
conference on Network and parallel computing (NPC), pp. 248-262,
2011.

[16] J. Hui, X. Ge, X. Huang, Y. Liu, and Q. Ran, “E-HASH: An Energy-
Efficient Hybrid Storage System Composed of One SSD and Multiple
HDDs,” in Proc. Springer-Verlag Berlin Heidelberg, pp. 527-534, 2012.

[17] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren, “Exploring and
Exploiting the Multi-level Parallelism Inside SSDs for Improved
Performance and Endurance,” IEEE Transaction on Computers, Vol. 62,
No. 6, pp. 1141-1155, June 2013.

[18] F. Chen, R. Lee, and X. Zhang, “Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed data
processing,” in Proc. High Performance Computer Architecture
(HPCA), pp. 266-277, February 2011.

[19] S. Park, S. Ha, K. Bang and E. Chung, “Design and analysis of flash
translation layers for multi-channel NAND flash-based storage devices,”
IEEE Transactions on Consumer Electronics, Vol. 55, Issue3, pp. 1392-
1400, Aug. 2009.

[20] A.R. Abdurrab, T. Xie, and W. Wang, “DLOOP: A Flash Translation
Layer Exploiting Plane-Level Parallelism,” In IEEE IPDPS, 2013.

[21] S. Im and D. Shin, “Delayed Partial Parity Scheme for Reliable and
High-Performance Flash Memory SSD,” Proc. IEEE Symposium on
Mass Storage Systems and Technologies (MSST), May 3-7, 2010.

[22] D.A. Patterson, G. Gibson, and R.H. Katz, “A Case for Redundant
Arrays of Inexpensive Disks (RAID),” ACM SIGMOD 88, Vol. 17, No.
3, June, 1988

[23] J.M. Smith, “The doctor will see you ALWAYS,” IEEE Spectrum, Vol.
48, No. 10, pp. 56-62, October 2011

[24] G. Stefano, A. Cabrini, O. Khouri, and G. torelli, “On-Chip Error
Correcting Techniques for New-Generation Flash Memories,”
Proceedings of the IEEE, Vol 91, pp. 602-616, 2003

[25] Department of Defense Mobile Device Strategy,
http://www.defense.gov/news/dodmobilitystrategy.pdf, 2012

[26] ATTO, http://www.attotech.com/disk-benchmark/.

[27] DiskMon for Windows v2.01, http://technet.microsoft.com/en-
us/Sysinternals/Bb896646.aspx

[28] SPC, Storage Performance Council I/O Repository,
http://iotta.snia.org/traces/.

[29] K. Bates, and B.McNutt, “Financial1 and Financial2 Traces,”
http://traces.cs.umass.edu/index.php/Storage/Storage

