
Toward I/O-Efficient Protection Against Silent Data
Corruptions in RAID Arrays

Mingqiang Li and Patrick P. C. Lee

Department of Computer Science and Engineering, The Chinese University of Hong Kong

Email: mingqiangli.cn@gmail.com, pclee@cse.cuhk.edu.hk

Abstract—Although RAID is a well-known technique to protect
data against disk errors, it is vulnerable to silent data corrup-
tions that cannot be detected by disk drives. Existing integrity
protection schemes designed for RAID arrays often introduce
high I/O overhead. Our key insight is that by properly designing
an integrity protection scheme that adapts to the read/write
characteristics of storage workloads, the I/O overhead can be
significantly mitigated. In view of this, this paper presents a
systematic study on I/O-efficient integrity protection against silent
data corruptions in RAID arrays. We formalize an integrity
checking model, and justify that a large proportion of disk reads
can be checked with simpler and more I/O-efficient integrity
checking mechanisms. Based on this integrity checking model,
we construct two integrity protection schemes that provide
complementary performance advantages for storage workloads
with different user write sizes. We further propose a quantitative
method for choosing between the two schemes in real-world
scenarios. Our trace-driven simulation results show that with
the appropriate integrity protection scheme, we can reduce the
I/O overhead to below 15%.

Keywords-RAID; silent data corruptions; integrity protection
schemes; I/O overhead

I. INTRODUCTION

Maintaining data reliability is a key design concern in mod-

ern storage systems. RAID (Redundant Array of Independent

Disks) [5, 23, 41] has been widely adopted to protect disk-

based storage systems from losing data due to disk failures

[26, 36] and latent sector errors [2, 35]. It operates by employ-

ing redundancy (e.g., using erasure coding [28]) in a disk array

to recover any error detected by disk drives. However, disk-

based storage systems also suffer from a significant number

of silent data corruptions [3, 10, 17], which can silently

corrupt disk data without being detected by disk drives. Silent

data corruptions occur mainly due to firmware or hardware

malfunctions in disk drives, and can manifest in different

forms (see Section II-B). Traditional RAID is designed to

protect against detectable errors such as disk failures and latent

sector errors, but cannot detect silent data corruptions. To

maintain data reliability, we often integrate additional integrity

protection mechanisms into RAID to protect against silent data

corruptions.

Adding new protection mechanisms to RAID often implies

additional I/O overhead. First, due to the complicated causes

and manifestations of silent data corruptions, we need to store

integrity metadata separately from each data chunk [10, 19].

This introduces additional disk writes. Also, to avoid missing

any silent data corruption, a detection step must be carried out

in each disk read. For each data chunk to be read, the detection

step also reads the separately stored integrity metadata for

checking. This introduces additional disk reads. To address

this seemingly inevitable I/O overhead problem, existing ap-

proaches either provide different solutions that make trade-offs

between error detection capabilities and I/O performance [10],

or delay the detection to the upper layer (e.g., the file system

layer [4, 29, 32]). The former often implies the degradation

of data reliability, while the latter implies additional recovery

support from the upper layer. We thus pose the following

question: Can we mitigate the I/O overhead of integrity

protection against silent data corruptions, while preserving

all necessary detection capabilities and making the detection

deployable in the RAID layer?

Our observation is that the design of an integrity protection

scheme should adapt to real-world storage workloads. By

choosing the appropriate scheme according to the read/write

characteristics, we can reduce the I/O overhead to an accept-

able level, while still protecting against all types of silent data

corruptions in the RAID layer. Existing studies (e.g., [10, 19])

only briefly mention the I/O overhead of integrity protection

at best, without any in-depth analysis based on real-world

workloads. Thus, a key motivation of this work is to system-

atically examine the I/O overhead and detection capabilities

of different integrity protection schemes, which would be of

great practical significance to storage system practitioners. In

this paper, we make the following contributions.

First, we present a taxonomy of the existing integrity

primitives that form the building blocks of integrity protection

schemes. We carefully examine the I/O overhead and detection

capability of each integrity primitive. To our knowledge, this is

the first systematic study of analyzing and comparing existing

integrity primitives.

Second, we formalize an integrity checking model and

show that a large proportion of disk reads can be checked

with simpler integrity checking mechanisms with lower I/O

overhead. This integrity checking model guides us to design

I/O-efficient integrity protection schemes for RAID.

Third, we construct two I/O-efficient integrity protection

schemes for RAID that can detect and locate all types of

silent data corruptions. The first one is a variant of the978-1-4799-5671-5/14/$31.00 c©2014 IEEE



scheme proposed in [19], while the second one is newly

proposed by this work. We further propose a low-overhead

protection mechanism tailored for parity chunks. We conduct

detailed I/O analysis, and show that the two schemes provide

complementary performance advantages. We also propose a

simple and feasible quantitative method for choosing between

the two schemes for different types of storage workloads.

Finally, we evaluate the computational and I/O overheads

of the two schemes we construct. We show that both schemes

have low computational overhead that will not make the

CPU become the bottleneck. We further conduct trace-driven

simulation under various realistic storage workloads [16]. We

show that by always choosing the more efficient scheme,

the I/O overhead can be kept reasonably low (often below

15% of additional disk I/Os). On the other hand, using an

existing integrity protection approach can have up to 43.74%

of additional disk I/Os.

The rest of the paper proceeds as follows. In Section II, we

present the background details for our study. In Section III,

we provide a taxonomy of existing integrity primitives. In

Section IV, we formalize the integrity checking model. In Sec-

tion V, we construct and analyze different integrity protection

schemes. In Section VI, we propose a quantitative method of

choosing the right integrity protection scheme for a given type

of workloads. In Section VII, we evaluate the computational

and I/O overheads of the integrity protection schemes as well

as the effectiveness of our quantitative method of choosing the

right scheme. In Section VIII, we review related work. Finally,

in Section IX, we conclude the paper.

II. PRELIMINARIES

In this section, we lay out the background details for our

study. We first define the terminologies for RAID arrays. We

then formulate the problem of silent data corruptions. Finally,

we state our goals and assumptions.

A. RAID

RAID (Redundant Array of Independent Disks) [5, 23, 41]

is a well-known technique for protecting data against disk

failures [26, 36], in which the entire disks are inaccessible,

and latent sector errors [2, 35], in which some disk sectors

are inaccessible. We consider a RAID array composed of n
homogeneous disks. Each disk has its storage space logically

segmented into a sequence of continuous chunks of the same

size. Here, the chunk size is often a multiple of sector size,

which is typically 512 bytes in commodity disks. Let r be the

number of sectors contained in a chunk. We define a stripe

as a group of n chunks located in the same offset of each

disk. Within each stripe, an (n, k) erasure code [28] is often

adopted to encode k data chunks to obtain m parity chunks,

where m = n − k, so as to tolerate the failures of any m
chunks. Two representative examples of RAID schemes are

RAID-5 with m = 1 and RAID-6 with m = 2. Figure 1

illustrates a stripe of a RAID-6 system.

We call reads and writes issued by the upper file system

layer to the RAID layer to be user reads and user writes,

D0 D1 D2 D3 D4 D5 P0 P1

k m

r

n

Fig. 1. A stripe of RAID-6 with n = 8 disks, in which there are k = 6

data chunks and m = 2 parity chunks. Assuming that each chunk has a size
of 4KB, so it has r = 8 sectors of 512 bytes each.

respectively. To simplify our description, when mentioning a

user read/write, we often assume the read/write falls within

one stripe. Then, a user read/write can be classified as a full-

stripe or partial-stripe one, which touches all data chunks or

only a subset of data chunks in a stripe, respectively. In RAID,

user reads are directly mapped to disk reads, yet user writes

are more complicated since all parity chunks must be updated

accordingly. In a full-stripe user write, parity chunks are

computed directly from the written chunks, and no additional

disk reads are needed for existing chunks [5]. In contrast, in a

partial-stripe write, depending on the number of data chunks

touched, one of the following two modes is used to update a

parity chunk [5]:

• RMW (Read-Modify-Write): It first reads each old parity

chunk from disk and all data chunks to be touched by the

user write. It then computes the parity delta by a linear

combination of the difference value of each touched data

chunk, and modifies the parity chunk by adding it with

the parity delta. Finally, it writes the new parity chunk to

disk.

• RCW (ReConstruct-Write): It first reads the data chunks

that are not touched by the user write from disk. It then

reconstructs each parity chunk from all data chunks in

the stripe (including the untouched data chunks that are

just read and the newly written chunks). Finally, it writes

the new parity chunk to disk.

Consider a user write within a stripe. Let τ be the number of

touched data chunks. Then the numbers of disk I/Os incurred

in the RMW and RCW modes, denoted by XRMW and XRCW ,

respectively, are:

XRMW = 2(τ +m) and XRCW = n. (1)

In a small user write where τ is small and XRMW ≤ XRCW ,

RMW mode is adopted; otherwise in a large user write, RCW

mode should be used.

B. Silent Data Corruptions

Besides disk failures and latent sector errors, a RAID array

can also suffer from silent data corruptions [3, 10, 17]. Unlike

disk failures and latent sector errors, silent data corruptions
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Fig. 2. Examples of aligned and unaligned misdirected writes and reads.

cannot be detected by disk drives themselves, and thus can

corrupt disk data without being notified.

Silent data corruptions can be caused by both disk reads and

disk writes. Specifically, there are four representative types of

silent data corruptions from disk drives1 [3, 10, 19, 20, 29]:

• Lost write: When a disk write is issued to a chunk, all

sectors in the chunk are not updated accordingly, and the

chunk becomes stale.

• Torn write: When a disk write is issued to a chunk, only a

portion of sectors in the chunk are successfully updated,

and the chunk contains some stale sectors in the end part.

• Misdirected write: When a disk write is issued to a

chunk (called target), the data is written to a wrong

disk location, and one or two neighboring chunks (called

victims) are corrupted. Specifically, if the misdirected

write is aligned with chunk boundaries, then a victim

chunk is entirely corrupted; if it is unaligned, then two

neighboring victim chunks are partially corrupted (see

Figure 2(a)). Since each stripe has one chunk per disk, the

two victim chunks corrupted by an unaligned misdirected

write belong to two neighboring stripes. A misdirected

write is often due to an off-track error [10], and hence

the target chunk becomes stale and will not be (partially)

overwritten. Since a stale target chunk has already been

treated as a lost write, we only consider a misdirected

write from the perspective of a victim chunk.

• Misdirected Read: When a disk read is issued to a chunk,

the disk head is not correctly positioned. Thus, it reads

data from a wrong location that is either aligned or

unaligned with chunk boundaries (see Figure 2(b)).

Silent data corruptions can cause stale or corrupted data

returned by disk reads without any indication. Without proper

1Disk drives may also suffer from “bit rot” errors, which cause random bit
flips. However, such errors can be corrected by the built-in ECC mechanism,
or they manifest as latent sector errors if an ECC error occurs. Thus, we do
not regard such errors as silent data corruptions in this paper.

protection, they can manifest in different operations:

• User read: Obviously, corrupted data is directly propa-

gated to upper layers.

• User write: Parity chunks are calculated from exist-

ing data chunks returned by disk reads. If one of the

data chunks is silently corrupted, the parity chunks are

wrongly calculated, leading to parity pollution [19].

• Data reconstruction: Reconstruction can be triggered

when failed disks or sectors are discovered. A silent data

corruption on a surviving data or parity chunk can be

propagated to the reconstructed data chunks [10, 20].

Silent data corruptions are more dangerous than disk failures

and latent sector errors, both of which make data inaccessible

and can be detected when a disk read fails to return data. To

protect data against silent data corruptions, we need to add to

the RAID layer an integrity protection scheme, which often

uses additional integrity metadata (e.g., checksums) to detect

and locate stale or corrupted data. The detected corruptions

can then be recovered through RAID redundancy.

C. Goals and Assumptions

In this work, we design I/O-efficient integrity protection

schemes for reinforcing RAID arrays to protect against silent

data corruptions. We aim for the following three goals:

(1) All types of silent data corruptions, including lost writes,

torn writes, misdirected writes, and misdirected reads,

should be detected.

(2) The computational and I/O overheads of generating and

storing the integrity metadata should be as low as possible.

(3) The computational and I/O overheads of detecting silent

data corruptions should be as low as possible.

We propose to deploy our integrity protection schemes in

the RAID layer, which is considered to be the best position

to detect and correct silent data corruptions [10]. In this case,

RAID redundancy can be leveraged to recover any detected

silent data corruption. Nevertheless, motivated by the need of

end-to-end data integrity for storage systems, recent studies

also propose integrity protection schemes in the upper layers.

We discuss them in detail in Section VIII.

For a given RAID scheme with the configuration parameter

m, we make the following assumptions in our study:

(1) There is at most one silently corrupted chunk within a

stripe2. This assumption is often made in the literature

[1, 10, 19, 21], since having more than one silently

corrupted chunk simultaneously in a stripe is very unlikely

in practice [3, 17].

(2) When a stripe contains a silently corrupted chunk, no more

than m−1 other chunks in the stripe can be simultaneously

failed due to disk failures or latent sector errors. This

assumption follows the principle that when silent data

corruptions are detected, they should then be recovered via

RAID redundancy. We thus do not consider the extreme

2Note that an unaligned misdirected write corrupts two chunks, but the
chunks belong to different stripes (see Section II-B).



case where a silent data corruption occurs when the RAID

array is in critical mode [10].

Our study uses the cases of RAID-5 with m = 1 and

RAID-6 with m = 2 as examples of illustration, although

it is applicable for general m.

III. TAXONOMY OF INTEGRITY PRIMITIVES

To cope with silent data corruptions, existing studies pro-

pose various integrity primitives, which form the building

blocks for complete data integrity protection schemes. In this

section, we provide a taxonomy study of existing integrity

primitives. We discuss their I/O overhead and detection ca-

pabilities. Our study provides foundations for constructing

integrity protection schemes in Section V.

Here, we only examine the integrity primitives that are

deployed in the RAID layer (see Section II-C). Since most in-

tegrity primitives include special metadata information along-

side with data/parity chunks to detect silent data corruptions,

we require that the integrity metadata be generated from the

RAID layer and the underlying disk drives.

We point out that although each integrity primitive discussed

in this section has been proposed in the literature, the com-

parison of their detection capabilities remains open. To our

knowledge, our work is the first one to present a systematic

taxonomy study of integrity primitives.

A. Self-Checksumming

Self-checksumming [3, 19] co-locates a checksum of each

data chunk at the chunk end (see Figure 3(a)), such that

both the data chunk and its checksum can be read or written

together in one disk I/O. It is a self-checking primitive, since

the integrity checking does not involve any disk read to another

chunk. It can detect and locate a corrupted data chunk that is

partially updated due to a torn write or unaligned misdirected

reads and writes, since the data chunk and its checksum

become inconsistent. However, it fails to protect against lost

writes and aligned misdirected reads/writes as the data chunk

and its checksum, while being consistent, are stale (for lost

writes) or unexpectedly overwritten (for aligned misdirected

reads/writes).

B. Physical Identity

Physical identity [19] co-locates a physical identity value

(e.g., the disk address of the data chunk) of each data chunk at

the chunk end (see Figure 3(a)). It is a self-checking primitive

just like self-checksumming, and both the data chunk and its

co-located physical identity can be read and written together

in one disk I/O. It can detect and locate a corrupted data

chunk that is overwritten by an aligned misdirected write or

has its end part modified by an unaligned misdirected write,

as well as a wrong chunk returned by an aligned/unaligned

misdirected read. In such cases, the physical identity becomes

corrupted or inconsistent with where the data chunk is actually

stored. However, the physical identity may remain intact in a

lost write, torn write, or an unaligned misdirected write that

modifies the front part of a chunk, so the protection fails.

C. Version Mirroring

Version mirroring [6, 7, 19] co-locates a version number

at the end of each data chunk and appends a copy of the

version number to each of the m parity chunks in the same

stripe (see Figure 3(b)). It is a cross-checking primitive since

the checking involves a disk read to another chunk. Note that

the layout is an instance of the data parity appendix method

[10]. Whenever a parity chunk is updated, its attached version

numbers can be updated in the same disk I/O.

In version mirroring, the version number often uses a

sequence number individually maintained for each data chunk.

In each disk write to a data chunk, the version number is

incremented via a read-modify-write operation. In small user

writes that use RMW mode, updating the version number does

not introduce any additional disk I/O, as it can “free-ride”

the disk I/Os for the updates of the data and parity chunks.

However, in large user writes that use RCW mode, additional

τ disk reads are needed for reading the old version numbers

of the touched data chunks.

Version mirroring can detect and locate a stale data chunk

due to a lost write, by checking if the data chunk has the

same up-to-date version number as that attached to one of

the parity chunks. However, it cannot detect other types of

silent data corruptions, since a version number only records

the version of a data chunk but does not check the content of

the data chunk.

D. Checksum Mirroring

Checksum mirroring [10] attaches a checksum of each data

chunk to the end of the neighboring chunk (called buddy) in

the same stripe and also appends a checksum copy to the end

of each of the m parity chunks (see Figure 3(c)). The layout

of the checksums follows the buddy parity appendix method

[10]. Like version mirroring, it is a cross-checking primitive,

and when a parity chunk is updated, the associated checksums

can be updated accordingly in the same disk I/O.

For each data chunk, checksum mirroring attaches check-

sum copies to m+1 other chunks in the same stripe. Thus, if

m − 1 other chunks are failed (as assumed in Section II-C),

then there are still two available checksum copies to detect

inconsistency and locate a silent data corruption. For example,

in Figure 3(c), when P0 is failed, and if an inconsistency is

detected between D0 and the checksum copy attached to P1,

the checksum copy attached to D1 can be used to determine

whether D0 or P1 (including the attached checksum copy) is

silently corrupted.

In a partial-stripe write, the checksum updates always

involve one additional disk I/O to the buddy of the last touched

data chunks, and it applies to both RMW and RCW modes.

For example, in a user write that touches the data chunks

Di, Di+1, · · · , Dj (where 0 ≤ i < j ≤ k−1 and j−i+1 < k),

an additional disk I/O is needed for updating the checksum

copy of Dj attached to Dj+1. In a full-stripe user write,

however, there is no additional I/O since all data chunks in

a stripe will be touched. Thus, compared to version mirroring,

checksum mirroring has one additional disk I/O in RMW
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Fig. 3. Examples of four integrity primitives in RAID-6 (with n = 8 disks).

TABLE I
FOUR INTEGRITY PRIMITIVES AND THEIR DETECTION CAPABILITIES FOR DIFFERENT TYPES OF SILENT DATA CORRUPTIONS. WE ALSO CONSTRUCT

DIFFERENT INTEGRITY PROTECTION SCHEMES FROM THE PRIMITIVES (SEE SECTION V FOR DETAILS).

Integrity Primitives

Detection Capabilities for Different Types of Silent Data Corruptions Integrity Protection Schemes

Lost
write

Torn
write

Misdirected write Misdirected read
PURE

(♦)
HYBRID-1

(♣)
HYBRID-2

(♠)Aligned
Unaligned

Aligned
Un-

alignedFront-part End-part

Self-
checksumming Self-

checking

X X X X ♣ ♠

Physical
identity

X X X X ♣ ♠

Version
mirroring Cross-

checking

X ♣

Checksum
mirroring

X X X X X X X ♦ ♠

mode, but can have fewer disk I/Os in RCW mode depending

on the number of data chunks (i.e., τ ) being updated. We can

see that versioning mirroring and checksum mirroring provide

complementary performance advantages in different user write

modes.

Checksum mirroring can detect and locate all types of

silent data corruptions, due to the adoption of checksums for

data chunks as well as the separation of data chunks and

their checksum copies. Thus, it provides complete integrity

protection as opposed to previous integrity primitives.

E. Summary

For comparison, we summarize the detection capabilities of

the above four integrity primitives in Table I. An open issue is

how to integrate the integrity primitives into a single integrity

protection scheme that can detect and locate all types of silent

data corruptions while incurring low I/O overhead. We address

this issue in the following sections.

IV. INTEGRITY CHECKING MODEL

The detection of silent data corruptions should be carried

out in each disk read, which in turn determines the correctness

of different operations including user reads, user writes, and

data reconstruction (see Section II-B). We present an integrity

checking model that formalizes how we detect silent data

corruptions in disk reads. We also discuss the implementation

details in practice.

A. Formulation

Our integrity checking model mainly classifies the disk

reads to a given chunk into two types: (1) the first-read after

each write to the chunk, and (2) the subsequent-reads after the

first-read to the chunk. Our observation is that the first-read

and subsequent-reads suffer from different types of silent data

corruptions, and this motivates us to apply integrity protection

for them differently.

Figure 4 depicts how silent data corruptions affect the first-

read and subsequent-reads. Specifically, the first-read sees the

following types of silent data corruptions: (1) a lost write or a

torn write caused by the last disk write to the same chunk, (2)

a misdirected write caused by a disk write to a different chunk,

or (3) a misdirected read caused by the current disk read. Thus,

the first-read can see all types of silent data corruptions. On

the other hand, a subsequent-read sees the following two types

of silent data corruptions: (1) a misdirected write caused by

a disk write to a different chunk, or (2) a misdirected read

caused by the current read.

This model reveals an important fact that while the first-read

sees all types of silent data corruptions, each subsequent-read

only sees a subset of types of silent data corruptions. The

reason is that both the lost write and the torn write can be

detected in the first-read, so they do not need to be considered

again in subsequent-reads. This fact will guide us to adopt

a simpler and accordingly lower-overhead integrity checking

mechanism for each subsequent-read when we design our

integrity protection schemes.

B. Discussion

To distinguish between the first-read and subsequent-reads,

we can employ a bitmap to record the read status of each chunk

in a RAID array. We maintain the bitmap as follows. Initially,

each bit in the bitmap is set to ‘0’ to indicate that the coming

read is the first-read. After the first-read, the corresponding

bit is changed to ‘1’ to indicate that the following reads

are subsequent-reads. The bit remains unchanged for any

subsequent-read until a disk write to the chunk happens. After

each disk write, the bit is reset to ‘0’.
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Fig. 4. Integrity checking model that describes how silent data corruptions
affect the first-read and subsequent-reads.

In practice, the bitmap may be too large to be entirely

cached in the RAID controller. To elaborate, let Schunk be

the chunk size, and let SRAID be the total capacity of the

RAID array. Thus, the bitmap size is SRAID/Schunk bits. Take

Schunk = 4KB and SRAID = 8TB for example. Then the

bitmap size is 256MB, which makes caching the entire bitmap

in the RAID controller infeasible. One plausible solution is

to divide the RAID storage space into smaller zones and

maintain a much smaller sub-bitmap for each RAID zone.

The sub-bitmaps are cached in the RAID controller when the

corresponding zones are recently accessed. Due to the strong

spatial and temporal localities of practical storage workloads

[11, 16, 30, 34], we expect that only a small number of sub-

bitmaps need to be cached.

V. INTEGRITY PROTECTION SCHEMES FOR RAID

Based on the integrity primitives in Section III and the

integrity checking model in Section IV, we now construct

and analyze different integrity protection schemes for RAID

that can detect and locate all types of silent data corruptions

described in Section II-B. We first consider the baseline

protection schemes that only protect data chunks, and then de-

scribe the extension for parity protection. Finally, we analyze

the additional disk I/Os due to different integrity protection

schemes.

A. Baseline Protection Schemes

Based on Table I, we explore different combinations of

integrity primitives that can detect all types of silent data

corruptions. Thus, we consider the following three integrity

protection schemes:

• PURE: it includes checksum mirroring only;

• HYBRID-1: it includes self-checksumming, physical

identity, and version mirroring; and

• HYBRID-2: it includes self-checksumming, physical

identity, and checksum mirroring.

PURE can detect all types of silent data corruptions, but it in-

curs high I/O overhead in general since it always uses a cross-

checking operation for both the first-read and subsequent-

reads. We mainly use it as a reference in this paper.

D0 D1 D2 D3 D4 D5 P0 P1

Physical identity

Version number

Checksum

Physical identity

Checksum

(a)

D0 D1 D2 D3 D4 D5 P0 P1

Physical identity

Checksum

Physical identity

Checksum

Checksum

(b)

Fig. 5. Examples of (a) HYBRID-1 and (b) HYBRID-2 (with the extension
for parity protection) in RAID-6.

The rationales of HYBRID-1 and HYBRID-2 are as fol-

lows. From Table I, we see that a combination of self-

checksumming and physical identity can sufficiently detect

misdirected writes and misdirected reads, both of which are the

silent data corruptions seen by a subsequent-read. Also, both

self-checksumming and physical identity are self-checking

operations and do not incur any additional I/O. Thus, we

construct HYBRID-1 and HYBRID-2, both of which include

both self-checksumming and physical identity, and add ver-

sion mirroring (for HYBRID-1) or checksum mirroring (for

HYBRID-2) to cover all types of silent data corruptions. Note

that HYBRID-1 is a variant of the scheme proposed in [19]

by removing the logical identity that does not belong to the

RAID layer, while HYBRID-2 is a new protection scheme

proposed in this paper. In both HYBRID-1 and HYBRID-2,

only the first-read requires a costly cross-checking operation,

while each subsequent-read can use a simpler self-checking

operation without any additional I/O.

Figure 5 shows the implementations of HYBRID-1 and

HYBRID-2. In HYBRID-1, the checksum co-located with each

data chunk should also protect the co-located physical identity

and version number. On the other hand, in HYBRID-2, two

checksum-based integrity primitives are employed at the same

time. To reduce computational overhead, for each data chunk,

we can use the same checksum for both primitives. Then the

checksum should also protect the co-located physical identity.

In addition, each data chunk in HYBRID-2 has two appended

checksums: one for itself and another one for its neighboring

chunk. To detect a torn write, the checksum for the data chunk

itself should be placed at the end of the appendix.



Each of the above schemes stores the integrity metadata as

an appendix, which is associated with each data/parity chunk.

In common disk drives with standard 512-byte sector size, the

appendix of each data/parity chunk is typically stored in an

additional sector attached to the end of the chunk. On the other

hand, in special enterprise-class disk drives with “fat” sectors

whose sizes are slightly larger than 512 bytes (e.g., 520 bytes

or 528 bytes), the appendix can be stored in the last sector of

the chunk [3].

B. Extension for Parity Protection

We thus far focus our attention on the integrity protection

of data chunks. Parity protection is necessary, since silent data

corruptions on parity chunks can be returned through disk

reads in two cases: (1) user write in RMW mode and (2)

data reconstruction.

A straightforward extension is to reuse all the integrity

primitives employed for data chunks and apply them for parity

chunks. However, such an extension would cause high I/O

overhead. For example, consider the case of applying version

mirroring (or checksum mirroring) for each parity chunk. Then

in a user write, when we update a data chunk, we have to

update the version numbers (or checksums) of the data chunk,

all parity chunks, as well as the additional version numbers

(or checksums) of parity chunks. The updates of the additional

version numbers (or checksums) will incur additional disk

I/Os.

To reduce additional disk I/Os, we propose a simplified

extension as follows: for both HYBRID-1 and HYBRID-2, we

only use self-checksumming and physical identity on parity

chunks (see Figure 5). Clearly, such an extension does not

incur any additional disk I/O, since both self-checksumming

and physical identity are self-checking primitives.

We argue that even with this simplified extension, all types

of silent data corruptions occurring on parity chunks can still

be detected. The appendix of each parity chunk now contains

a physical identity, a list of version numbers or checksums

for all data chunks in the same stripe, and a checksum that

protects the parity chunk, the co-located physical identity, and

the co-located list of version numbers (for HYBRID-1) or

checksums (for HYBRID-2) (see Figure 5). The checksum

of the parity chunk and the physical identity together can

detect misdirected writes, misdirected reads, and torn writes.

In addition, the list of version numbers or checksums for all

data chunks can be used to detect lost writes to parity chunks.

For example, consider a user write in RMW mode. In this

case, after reading both old data chunks touched by the user

write and all old parity chunks, we first self-check each old

data/parity chunk using its co-located physical identity and

checksum to determine if there is any corrupted chunk due to

a misdirected write/read or a torn write. If no corrupted chunk

is detected, then we compare the list of version numbers or

checksums attached to each old parity chunk with those co-

located with old data chunks to cross-check if there is any stale

data or parity chunk due to a lost write. We can apply similar

TABLE II
NUMBER OF ADDITIONAL DISK I/OS OF DIFFERENT INTEGRITY

PROTECTION SCHEMES IN DIFFERENT USER READ/WRITE SCENARIOS.

User Read/Write Scenarios PURE
HYBRID

-1

HYBRID

-2

Partial-stripe read
First-read 1 1 1

Subsequent-read 1 0 0

Partial-
stripe
write

RMW mode 1 0 2

RCW

mode

First-read 2 τ + 1 2

Subsequent-read 2 τ 1

Full-stripe read
First-read 0 1 0

Subsequent-read 0 0 0

Full-stripe write 0 k 0

integrity checking for data reconstruction that also reads parity

chunks.

C. Analysis of Additional Disk I/Os

Table II summarizes the additional disk I/Os for our

considered integrity protection schemes under different user

read/write scenarios. We elaborate the details as follows.

Partial-stripe user read: PURE always needs an additional

disk read to the list of checksums attached to one of the parity

chunks for cross-checking the data chunks touched by a user

read. On the other hand, for both HYBRID-1 and HYBRID-2,

the first-read needs an additional disk I/O for cross-checking,

while the subsequent-read does not need any additional disk

I/O for self-checking (see Section V-A).

Partial-stripe user write in RMW mode: In all protection

schemes, the integrity checking can free-ride the disk reads

originally triggered for reading parity chunks, and hence does

not incur any additional disk I/O. However, the updates of

integrity metadata may incur additional disk I/Os. PURE needs

an additional disk write to the appendix of the buddy of the last

data chunk touched by the user write (see Section III-D). For

HYBRID-1, the updates of version numbers can free-ride the

disk reads and writes originally triggered in RMW mode, so no

additional disk I/O is needed. For HYBRID-2, a read-modify-

write process, which involves one disk read and one disk

write, is needed for updating the checksum of the last touched

data chunk in the appendix of the untouched neighboring data

chunk.

Partial-stripe user write in RCW mode: In this user write,

the integrity checking incurs zero or one additional disk read,

as in a partial-stripe user read (see discussion above). Also,

the updates of integrity metadata involve additional disk I/Os,

as elaborated below. PURE needs one additional disk write

for updating the checksums as in RMW mode. HYBRID-1

needs τ additional disk I/Os for reading and incrementing

the old version numbers co-located with the τ data chunks

touched by the user write (see Section III-C). On the other

hand, for HYBRID-2, only one additional disk write is needed

for updating the checksum stored in the buddy of the last

touched data chunk, since the read to the checksum can free-

ride the original disk read to the untouched buddy data chunk

in RCW mode.
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Fig. 6. Increased percentages of disk I/Os of different protection schemes
versus the number of data chunks touched by a single user read/write.

Full-stripe user read/write: First, we consider a full-stripe

user read. PURE does not need any additional disk read for

integrity checking, since the user read touches all data chunks

and their checksums attached to buddies. HYBRID-1 still needs

an additional disk I/O for cross-checking in the first-read, as

in a partial-stripe user read. HYBRID-2 no longer needs any

additional disk read for integrity checking in the first-read, for

the same reason as PURE. We further consider a full-stripe

user write, which in essence incurs no disk read. Both PURE

and HYBRID-2 do not need any additional disk I/O, as all data

chunks are touched by the user write, while HYBRID-1 needs

k additional disk reads to the old version numbers for updates.

Analysis: We now analyze the disk I/O overhead of different

integrity protection schemes for user reads/writes of different

sizes. Specifically, we consider the increased percentage of

disk I/Os (denoted by Ω) for a user read/write that touches

τ data chunks in a stripe, where 1 ≤ τ ≤ k = n − m. A

lower increased percentage means lower disk I/O overhead.

Let δ be the number of additional disk I/Os (see Table II).

For a user read, the increased percentage of disk I/Os can be

directly calculated by:

Ω =
δ

τ
× 100%. (2)

For a user write, it can be either full-stripe or partial-stripe.

For a full-stripe user write, the increased percentage of disk

I/Os can be calculated by:

Ω =
δ

n
× 100%. (3)

However, for a partial-stripe user write, it chooses either RMW

or RCW modes, depending on which mode has fewer disk

I/Os. Thus, the increased percentage of disk I/Os is calculated

by:

Ω =

[

min(XRMW + δRMW ,XRCW + δRCW )

min(XRMW ,XRCW )
− 1

]

×100%,

(4)

where XRMW and XRCW are the numbers of disk I/Os for

regular user writes in RMW and RCW modes, respectively

(see Equation (1)), and δRMW and δRCW are the numbers of

additional disk I/Os due to integrity protection in RMW and

RCW modes, respectively (see Table II). We consider RAID-5

and RAID-6, both of which are configured with n = 8 disks.

Figure 6 presents the corresponding increased percentages of

disk I/Os for different integrity protection schemes. We make

the following observations:

• In the user read case, both HYBRID-1 and HYBRID-2

outperform PURE mainly in a subsequent-read, since they

do not introduce any additional disk I/O. Also, when the

read size is smaller, the gains of HYBRID-1 and HYBRID-

2 are more prominent, as the increased percentage of

PURE can reach as high as 100%.

• HYBRID-1 and HYBRID-2 provide complementary I/O

advantages in a user write for different sizes. Specifically,

as the user write size increases, the increased percentage

of disk I/Os for HYBRID-1 increases from zero to 87.5%

and 75%, while that for HYBRID-2 decreases from 50%

and 33.3% to zero for RAID-5 and RAID-6, respectively.

In addition, the winner of HYBRID-1 and HYBRID-2

always has no more disk I/O overhead than PURE.

VI. CHOOSING THE RIGHT SCHEME

To achieve the best I/O performance, it is important to

choose the most I/O-efficient integrity protection scheme for

a given storage workload. Since the winner of HYBRID-

1 and HYBRID-2 outperforms PURE in almost all cases,

we focus on choosing between HYBRID-1 and HYBRID-

2. In this section, we propose a quantitative method that

effectively chooses between HYBRID-1 and HYBRID-2 for a

given storage workload. We also discuss how to implement

the quantitative method in real deployment.

A. Quantitative Method

From the results of Figure 6, the difference in I/O overhead

between HYBRID-1 and HYBRID-2 mainly lies in user writes.

Specifically, let τ be the number of touched data chunks in

a user write. As τ increases, the I/O overhead of HYBRID-1

increases from zero to a large value, while that of HYBRID-

2 is opposite and decreases from a large value to zero. We

can thus define a switch point τ∗ as the threshold of the user

write size to switch between HYBRID-1 and HYBRID-2, such

that if τ ≤ τ∗, we choose HYBRID-1; if τ > τ∗, we choose

HYBRID-2.

In addition, near the switch point τ∗, the user write is

a partial-stripe one. From the results on partial-stripe user

writes in Table II (see Section V-C), HYBRID-1 has fewer



additional disk I/Os in RMW mode, while HYBRID-2 has

fewer additional disk I/Os in RCW mode. Thus, the switch

between HYBRID-1 and HYBRID-2 also leads to a switch

between RMW and RCW modes. Specifically, if τ ≤ τ∗,

HYBRID-1 will be selected and it will operate in RMW mode;

if τ > τ∗, HYBRID-2 will be selected and it will operate in

RCW mode.

We now derive τ∗. Note that the number of disk I/Os of

each of HYBRID-1 and HYBRID-2 is the sum of the disk I/Os

in a regular user write (see Equation (1)) and the additional

disk I/Os due to integrity protection (see Table II). If τ ≤

τ∗, HYBRID-1 is used and it operates in RMW mode, so the

number of disk I/Os (denoted by XL) is:

XL = 2(τ +m). (5)

On the other hand, if τ > τ∗, HYBRID-2 is used and it

operates in RCW mode, so the number of disk I/Os (denoted

by XR) is:

XR = n+ 1 + σ, (6)

where σ is 1 for the first-read case, or 0 for the subsequent-

read case. By setting XL = XR, we obtain τ∗:

τ∗ =

⌈

n+ 1

2

⌉

−m. (7)

We next show how to quantitatively choose between

HYBRID-1 and HYBRID-2 for a storage workload. Consider

a RAID array configured with n disks, m parity chunks per

stripe, and r sectors per chunk. Given that the standard sector

size is 512 bytes, the chunk size, denoted by Schunk, is

Schunk = 0.5× r KB. In addition, suppose the average write

size of a storage workload is Swrite, which can be estimated

by tracing the workload patterns [11, 16, 30, 34]. This implies

that the average number of data chunks touched by a user

write is Swrite/Schunk. Thus, our quantitative method chooses

between HYBRID-1 and HYBRID-2 according to the following

rule: If
Swrite

Schunk

≤

⌈

n+ 1

2

⌉

−m, (8)

we choose HYBRID-1; while if

Swrite

Schunk

>

⌈

n+ 1

2

⌉

−m, (9)

we choose HYBRID-2.

Based on the above rule, we deduce the following two

change trends:

• With the increase of either Swrite or m, we switch from

HYBRID-1 to HYBRID-2;

• With the increase of either Schunk or n, we switch from

HYBRID-2 to HYBRID-1.

B. Discussion

In practice, we can adopt our proposed quantitative method

based on workload characterization [11, 16, 30, 34]. We first

analyze the workload traces collected beforehand to obtain

the average write size, and then use the average write size to
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Fig. 7. Encoding speeds of RAID integrated with different integrity protection
schemes. The remark “sse crc” indicates the implementation with the SSE4.2
CRC32 instruction.

determine the most I/O-efficient scheme (i.e., either HYBRID-

1 or HYBRID-2). The selected scheme is finally configured

in the RAID array during initialization. Our assumption here

is that while the write size varies across applications, the

variability of the write size within each application is low

[30]. Thus, the average write size can be accurately predicted

through workload characterization.

VII. EVALUATION

We evaluate and compare the integrity protection schemes,

and address the following issues. First, we examine the com-

putational overhead due to integrity metadata computations.

Second, we examine the disk I/O overhead under various

real-world storage workloads that have different read/write

characteristics. Finally, we evaluate the effectiveness of our

quantitative method for choosing the right integrity protection

scheme (see Section VI).

A. Computational Overhead

We note that the integrity protection schemes incur com-

putational overhead in metadata computations (e.g., checksum

computations) in general RAID operations. Here, we focus on

RAID encoding, which needs to compute all integrity metadata

in each stripe.

We implement RAID encoding coupled with different in-

tegrity protection schemes. We use the libraries GF-Complete

[27] and Crcutil [15] to accelerate the calculations of parity



TABLE III
INFORMATION OF THE STORAGE WORKLOAD TRACES.

I/O

Traces

Trace name
DAP-

DS

TPC-

E

LM-

TBE

MSN-

BEFS

MSN-

CFS
DTRS

TPC-

C

DAP-

PS
Exch WBS

RAD-

BE

RAD-

AS

Device ID 0 13 1 5 2 6 2 0 4 0 4 0
Duration (Hrs) 24 0:17 24 6 6 24 0:06 24 24 24 18 18

User

Reads

Proportion (%) 90.49 90.40 79.46 76.58 73.96 65.42 62.44 56.19 52.58 50.71 18.49 10.43
Avg. size (KB) 31.50 8.00 53.28 9.88 7.55 21.60 8.00 62.13 10.04 26.09 152.28 10.29

User

Writes

Proportion (%) 9.51 9.60 20.54 23.42 26.04 34.58 37.56 43.81 47.42 49.29 81.51 89.57
Avg. size (KB) 7.04 9.26 63.47 10.45 13.63 34.57 8.62 97.13 12.59 29.78 8.54 8.24
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Fig. 8. Increased percentages of disk I/Os of different integrity protection schemes under different storage workloads, using RAID-6 with n = 8 disks.

chunks and checksums, respectively. For checksum computa-

tions, we employ the CRC-32C (Castagnoli) polynomial [18]

that has been included in the SSE4.2 CRC32 instruction [14].

We also implement bare-bones RAID, and the integrity pro-

tection schemes without using SSE4.2 CRC32 for reference.

We run all the tests on an Intel Xeon E5530 CPU running at

2.40GHz with SSE4.2 support.

Figure 7 presents the encoding speed results for RAID-

5 and RAID-6 for different values of n (with chunk size

4KB) and different chunk sizes (with n = 8). Although

integrity protection with SSE4.2 CRC32 support still has

lower encoding speed than bare-bones RAID (e.g., by up

to 37.76% for RAID-5 and up to 27.05% for RAID-6), the

encoding speed can still reach over 4GB/s for RAID-5 and

2.5GB/s for RAID-6, both of which are much faster than the

access speed of modern disk drives (typically below 1GB/s).

Note that SSE4.2 CRC32 significantly increases the encoding

speed of integrity protection (by two to three times). Thus,

even with integrity protection, the RAID performance is still

bottlenecked by disk I/Os, rather than the CPU.

B. I/O Overhead for Storage Workloads

We evaluate the disk I/O overhead of different integrity pro-

tection schemes for various storage workloads with different

I/O characteristics.

Evaluation methodology: We develop a simulator that can

measure the increased percentage of disk I/Os of each integrity

protection scheme, with the inputs of RAID configuration

parameters (i.e., n, m, and r) and storage workload traces. The

simulator counts the numbers of disk I/Os for PURE, HYBRID-

1, and HYBRID-2, and that for bare-bones RAID, by emulating

the mapping from user reads/writes to disk I/Os in real RAID

arrays. For HYBRID-1 and HYBRID-2, the simulator maintains

a bitmap to record the read status of each data chunk in a

RAID array, so as to differentiate between the first-read and

subsequent-reads (see Section IV-B).

Our trace-driven simulation uses 12 sets of storage workload

traces collected from the production Windows servers [16].

Since each set of traces is collected from several storage

devices (each device is either a disk drive or a disk array),

we pick the traces from only one busy device. Table III

summarizes the user read/write characteristics of different

traces, sorted by their read proportions in descending order. We

see in most storage workloads, the read proportion is higher

than 50%.

Evaluation results: We evaluate the disk I/O overhead of

different integrity protection schemes over bare-bones RAID

under different storage workloads. In the interest of space, we

only present our findings for RAID-6 with n = 8 disks, while

similar observations are made for RAID-5 and other values

of n. Figure 8 shows three groups of simulation results with

chunk sizes 2KB, 4KB, and 8KB. We make the following

observations:

• Owing to the complementary performance gains of

HYBRID-1 and HYBRID-2 for different kinds of storage

workloads, the I/O overhead can be kept at a reasonably



low level (often below 15%), as long as the right scheme

between HYBRID-1 and HYBRID-2 is chosen for each

kind of storage workloads.

• The winner of HYBRID-1 and HYBRID-2 often incurs

lower I/O overhead than PURE, because of the I/O gain

in subsequent-reads (see Section V-C). The gain can be

more prominent for storage workloads with a larger read

proportion and a smaller average read size. For example,

for TPC-E with a read proportion 90.40% and an average

read size 8.00KB, the increased percentage of disk I/Os

of the winner between HYBRID-1 and HYBRID-2 is only

1.86% in the case of 8KB chunk size, while that of PURE

can reach up to 43.74%.

• We observe some glaringly high I/O overhead in PURE

and HYBRID-1: PURE can incur very high I/O overhead

(up to 43.74%) in read-heavy workloads, especially if

the workloads mostly consist of small reads (e.g., TPC-

E); HYBRID-1 can incur very high I/O overhead (up

to 48.28%) in the workloads with large writes (e.g.,

DAP-PS). On the other hand, HYBRID-2 incurs relatively

moderate I/O overhead (no more than 27.70%).

• With a small chunk size (e.g., 2KB), HYBRID-2 has

the minimum increased percentage of disk I/Os in most

cases. As the chunk size increases, the I/O overhead

of HYBRID-2 also increases, while the I/O overhead

of HYBRID-1 decreases and may become significantly

lower than that of HYBRID-2, especially for storage

workloads with a smaller average write size. Thus, the

pre-configuration of chunk size of a RAID array can

significantly influence the choice between HYBRID-1 and

HYBRID-2 (see Section VI).

C. Effectiveness of Choosing the Right Scheme

We evaluate the effectiveness of our proposed quantitative

method (see Section VI) for choosing between HYBRID-1 and

HYBRID-2, based on the simulation results of I/O overhead

presented in the last subsection.

For each of the 36 cases in Figure 8, we compare if the

choice made by our quantitative method according to the

information of average write size in Table III is consistent

with the choice made directly from the simulation results. We

find that 34 out of 36 comparison outcomes (or 94.44%) are

consistent. The quantitative method only makes two inconsis-

tent choices for DAP-DS with 2KB chunk size and Exch with

4KB chunk size. From Figure 8, we see that for each of the

two inconsistent cases, the I/O overhead difference between

HYBRID-1 and HYBRID-2 is insignificant (below 3%). Thus,

our quantitative method can be very effective in choosing

between HYBRID-1 and HYBRID-2 to achieve I/O-efficient

integrity protection in a real-world scenario.

VIII. RELATED WORK

Silent data corruptions in disk drives have been widely

recognized in the literature. Two field studies from CERN [17]

and NetApp [3] reveal the significant occurrences of silent data

corruptions in production storage systems.

In Section III, we provide a taxonomy of integrity primitives

that employ special integrity metadata. Several studies analyze

the metadata-based integrity primitives from different perspec-

tives. Sivathanu et al. [38] survey three common integrity

techniques including mirroring, RAID parity checking, and

checksumming, and then provide a general discussion of their

applications and implementations in all layers of storage sys-

tems. Hafner et al. [10] discuss the causes and manifestations

of silent data corruptions in disk drives, and propose a family

of parity appendix methods that arrange different general

layouts of integrity metadata in RAID arrays. Krioukov et

al. [19] propose model checking to analyze the effectiveness

of different data protection strategies in RAID arrays. Rozier

et al. [33] develop a simulation model to evaluate silent data

corruptions in petabyte-scale storage systems. Unlike previous

work, we focus on the performance perspective, from which

we quantitatively analyze how to combine different metadata-

based integrity primitives to reduce I/O overhead.

There are other integrity primitives that do not employ any

integrity metadata but can be deployed in RAID. Write-verify

[31, 40] rereads the data that has just been written to disk

and checks the correctness of the written data. However, it

causes an additional disk read in each disk write and also

needs a certain amount of cache space for temporarily storing

the written data. Also, it cannot detect misdirected writes due

to the mismatch of the reread and misdirected write positions.

Parity checking [1, 20, 21] recomputes a parity chunk from all

data chunks in the same stripe and compares the regenerated

parity chunk with that stored on disk. However, checking a

single data chunk involves all other data chunks in the same

stripe, and thus incurs very high I/O overhead. In this paper,

we do not consider write-verify and parity checking due to

their high I/O overhead.

In addition to the work in the RAID layer, some studies

address silent data corruptions in the upper layers to achieve

end-to-end data integrity. For example, some studies cope with

silent data corruptions in file systems, such as IRON [29], ZFS

[4], and BTRFS [32]. However, file systems are vulnerable to

memory corruptions [13, 37, 39], which require additional data

protection above the file system layer [42, 43]. Other studies

[8, 9, 12, 24] develop end-to-end data integrity solutions

based on the integration of the T10 Protection Information

(PI) industry standard [40] and the Data Integrity Extension

(DIX) jointly developed by Oracle and Emulex [25]. T10 PI

defines the data integrity protection for enterprise-class SCSI-

based disk drives, covering the data path from the host bus

adapter (HBA) through the RAID controller to the disk drives,

while DIX extends the integrity protection to cover the data

path from the application to the HBA. A variant of T10 PI

for SATA-based drives is also implemented [22]. In fact, our

work can co-exist with both T10 PI and DIX approaches, as

we target silent data corruptions in the disk drives, while the

latter cope with data corruptions on the data transmission path

between the application and the disk drives. How to combine

the T10 PI and DIX approaches and our work is posed as

future work.



IX. CONCLUSIONS

Integrity protection is critical for protecting RAID against

silent data corruptions, but its I/O overhead can be an obstacle

to its practical deployment. We conduct a systematic study on

how to protect RAID against silent data corruptions with low

I/O overhead. We show via an integrity checking model that

we can employ simpler and more I/O-efficient integrity check-

ing mechanisms for a large proportion of disk reads. This idea

enables us to design I/O-efficient integrity protection schemes,

while still being capable of detecting all types of silent data

corruptions. We propose two integrity protection schemes that

provide complementary performance advantages, and further

develop a quantitative method for effectively choosing between

the two schemes. Our trace-driven simulation results show

that with the appropriate integrity protection scheme, we can

reduce the I/O overhead to below 15%.
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