
Anode: Empirical Detection of Performance
Problems in Storage Systems using Time-Series

Analysis of Periodic Measurements

Vipul Mathur
NetApp India Private Limited

vipul.mathur@netapp.com

Cijo George
NetApp India Private Limited

cijo.george@netapp.com

Jayanta Basak
NetApp India Private Limited

jayanta.basak@netapp.com

Abstract—Performance problems are particularly hard to
detect and diagnose in most computer systems, since there is
no clear failure apart from the system being slow. In this paper,
we present an empirical, data-driven methodology for detecting
performance problems in data storage systems, and aiding in
quick diagnosis once a problem is detected.

The key feature of our solution is that it uses a combination
of time-series analysis, domain knowledge and expert inputs to
improve the overall efficacy. Our solution learns from a system’s
own history to establish the baseline of normal behavior. Hence it
is not necessary to determine any static trigger-levels for metrics
to raise alerts. Static triggers are ineffective since each system
and its workloads are different from others.

The method presented here (a) gives accurate indications of
the time period when something goes wrong in a system, and (b)
helps pin-point the most affected parts of the system to aid in
diagnosis. Validation on more than 400 actual field support cases
shows about 85% true positive rate with less than 10% false
positive rate in identifying time periods of performance impact
before or during the time a case was open. Results in a controlled
lab environment are even better.

I. INTRODUCTION

Performance problem diagnosis in storage systems is an
expert centric process today. The basic steps start with gath-
ering metrics and reports about the system in question. Then
a human expert sifts through the data to find various levels of
evidence of a possible cause of the reported problem. Once the
problem has been diagnosed, the expert recommends a course
of action to work-around or resolve the issue. The success of
this process depends heavily on the availability and abilities of
the human experts. In industrial settings, often various levels
of such manual assessments are done to triage the common
recurring issues quickly at the first level itself, and escalate
the tricky ones to more proficient/ specialized performance
experts. Thus there is a large spread in the time it takes to
resolve a problem reported by the customer (case age). This is
illustrated in Figure 1 by the standard box and whisker plots of
case age from about 100,000 reported incidents. Note that the
median (thick line in the figure) is 10× higher for performance
related cases compared to the median for other cases.

As the complexity of storage solutions grows in order to
provide better features and functional capabilities, it becomes
paramount to scale the diagnosis capabilities as well. With

Performance Cases Other Cases

C
a
s
e
 A

g
e
 (

d
a
y
s
,
lo

g
 s

c
a
le

)

0.001

0.01

0.1

1

10

100

Fig. 1. Performance cases stay open 10× longer (median) than other cases.

the advent of better data gathering, processing and analysis
capabilities, there is an opportunity to (a) automate repetitive
tasks involved in diagnosis; (b) catch common well-known
problems early and automatically; and (c) aid experts in study
and diagnosis of the harder/ less-common problems. Reducing
the burden on human experts, from various parts of the de-
tection and diagnosis process, would provide a means to scale
overall support and problem resolution. One way to reduce
the turn-around time for resolving performance problems is to
notice the problems as early as possible and then narrow-down
the affected parts of the storage system.

There are two key challenges that need to be addressed.
First, there is often a gap between the start of a problem and
its impact being noticed by users. For instance, see Figure 2
that depicts two metrics from a single system over multiple
weeks. Note that the time when the incident was reported
(case filed) is much later than the first time when a deviation in
regular pattern (anomaly) is detected. Second, static thresholds
for raising alerts are insufficient. A threshold being crossed at
peak load may be normal, and not indicative of a problem (e.g.
weekly periodic peaks in both the metrics in Figure 2). Also,
instead of a value above the threshold indicating a problem, a
missing high peak in the metric may be the observed effect of
an underlying problem. This is seen in the Disk Reads metric
(see Figure 2) after the time that the case was filed. These and
other challenges are addressed by our data-driven method to
enable early detection of performance problems (ideally before
the impact is felt/ noticed by the users) and also ways to

978-1-4799-5671-5/14/$31.00 c© 2014 IEEE

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Jul 30 Aug 06 Aug 13 Aug 20 Aug 27 Sep 03 Sep 10 Sep 17 Sep 24 Oct 01 Oct 08

C
P
U

 B
u
s
y
 (

%
)

Time

Case FiledAnomaly Detected

 0

 20

 40

 60

 80

 100

 120

Jul 30 Aug 06 Aug 13 Aug 20 Aug 27 Sep 03 Sep 10 Sep 17 Sep 24 Oct 01 Oct 08

D
is

k
 R

e
a
d
s
 (

M
B

/s
)

Time

Case FiledAnomaly Detected

Fig. 2. Nine weeks of CPU Busy and Disk Reads metrics from a field-deployed storage system. Anode detects an anomaly in the system much before the user
actually opened a support case, as indicated.

identify the top affected parts of the system. The key highlights
and contributions of this work are:

• Using the history of a system to derive a dynamic
notion of normal behavior. Hence, eliminating the
need to set static thresholds on metrics for raising
performance alerts.

• Applying an empirical, data-driven approach to de-
tection of performance problems in storage systems
hosting actual customer workloads.

• The core of our method is metric, workload and
system agnostic and can be readily adapted to other
types of server systems.

• We take domain knowledge into account by using the
notion of aggregation sets that can be pre-determined.

• This method aims to make the life of support per-
sonnel and administrators easier, rather than aim to
replace them with a complicated system.

• The system uses simple, well-known concepts for its
core processing and thus can readily keep up with
changes in system needs and hardware/ software stack.
This is often not the case for other methods with brittle
models of system behavior.

The paper is organized as follows. Section II discusses
some existing work pertaining to applications and techniques
for anomaly detection. Section III gives an overview of the
architecture and system model for the detection of performance
problems in field-deployed storage systems. We describe our
proposed methodology in Section IV, and present results on
lab experiments and field-reported incidents in Section V. The
paper concludes in Section VI.

II. RELATED WORK

In literature anomaly detection has been used in varying
application domains starting from credit card fraud detection
to network anomaly detection. Below we first discuss some
specific use-cases of anomaly detection, followed by a sum-
mary of techniques for anomaly detection on time-series data.

A. Applications of anomaly detection

In [1], network anomalies are detected using a modified
form of kernel recursive least square. The authors first detect
the normal range of values in the feature space (upper and
lower bounds). Subsequently, any observation violating these
bounds is triggered as an anomaly. In [2], a probabilistic
model of the time-series of observations is constructed us-
ing exponentially weighted moving average (EWMA). If any
observation deviates from the value predicted by this model,
then an anomaly is flagged. This technique is then successfully
applied in network anomaly detection. In [3], multivariate
singular value decomposition (SVD) technique has been used
to represent the time-series of network traffic into multiple
principal components. Any deviation in the normal ranges of
these multiple components is detected as a network anomaly.

In [4] anomalies in the Internet traffic have been identi-
fied by representing the traffic as multi-resolution time-series.
Any anomaly detected at any resolution is then summed up
(with the proper weighting mechanism) with that of the other
resolutions. The authors claim that the resultant anomaly detec-
tion is much superior to single-resolution anomaly detection.
Anomaly detection has been successfully applied in various
other domains such as automobile fault detection [5], aviation
safety [6], early detection of ecosystem disturbances in earth
science data [7], and early detection of disease outbreak [8].

Anomaly detection has been successfully applied in prob-
lem diagnosis in different systems. In many of these analyses,
certain signatures were computed from the problem sources
(anomalies) and then these signatures were visually displayed
or automatically processed. For example, in [9], the authors
developed a visualization tool called Theia that analyzes
application-level logs in a Hadoop cluster, and generates visual
signatures of each job’s performance. These visual signatures
provide compact representations of task durations, task status,
and data consumption by jobs. In [10], the authors developed
a diagnostic tool called Giza to characterize and troubleshoot
performance issues in one of the largest IPTV networks in
North America. Various measurements such as device usage

and error logs, user activity logs, video quality alarms, and
customer trouble tickets were considered and multi-resolution
data analysis was applied to detect and localize regions in
the IPTV distribution hierarchy that are experiencing seri-
ous performance problems. In [11], the authors use machine
learning, specifically a decision tree based random forests,
to characterize applications’ hardware behavior by modeling
the hardware events. They use machine learning on the ar-
chitectural micro-benchmarks to fingerprint the performance
problems throughout the core and memory hierarchy.

To our knowledge, this paper represents the first application
of time-series analysis based anomaly detection combined with
domain knowledge to analyze empirical data for detecting
performance problems in storage domain.

B. Techniques for anomaly detection in time-series

The techniques for anomaly detection in time-series have
been broadly classified into the following four categories as
per survey presented in [12]–[14]: (a) kernel based techniques,
(b) predictive techniques, (c) segmentation based techniques,
and (d) window based techniques. Usually in kernel based
techniques, the time series is modeled as a function of kernel
matrices of the observations in multidimensional space. The
test time series is then fitted with the function using optimiza-
tion techniques and outliers are obtained as the anomalous
vectors of observations. For example, support vector regression
is an instance where some of the support vectors can represent
the anomalous behavior. In predictive techniques, the time-
series is statistically represented as a function of its past
behavior (for example EWMA in [2]). The future values are
then predicted based on the past behavior and any major
deviation from the predicted behavior is considered as an
anomaly. In segmentation based techniques, a time-series is
represented as short segments and a model is built to represent
the transitions as state-transition machine (e.g., Markov chain).
Any behavior manifested as a transition that cannot be captured
by the state-transition machine is treated as an anomaly. In the
window based techniques, several windows of observations
are overlaid on each other and the normal behavior with
respective bounds are derived. Any characteristic of the time-
series not conforming the bounds of normal behavior is flagged
as anomaly. In this paper, we perform widow-based anomaly
detection.

III. ARCHITECTURE AND SYSTEM MODEL

The parts involved in detection and diagnosis of perfor-
mance problems in deployed storage systems are depicted in
Figure 3. Metrics are periodically (say every hour) collected
and recorded locally by the storage systems deployed at the
field data center. This recorded measurement data is uploaded
to the central Anode data center via the Internet, and sits
in a database. Next, the data is pulled out of the database
and analyzed by the Anode system in a batch manner. The
specific steps in processing are depicted as blocks in Figure 3
and described later in Section IV. The results of the analysis
are in the form of alerts or advice that can be sent back to
administrators at the field deployment site, or alternatively
consumed by a reporting and corrective action system.

The Anode system consists of a data warehouse to store
the measurement data uploaded from all the systems deployed

Fig. 3. Overview of performance problem diagnosis, in deployed storage
systems, using Anode.

in the field data centers. It also contains a cluster of compute
nodes where the data is processed. In our current experimental
setup, the compute nodes are represented by a single virtual
machine with enough resources to completely process one
week’s measurement data from one storage system in about
5-10 minutes. More such virtual machines can be provisioned,
as the need arises, to analyze more systems in parallel.

The current work-flow for addressing any performance
issues that may arise in a deployed storage system has been
briefly introduced in Section I. With the Anode system, the
main change in this process would be that data is automatically
analyzed at a central location (instead of local tools at the field
data center), and the results are made available to the admins.

Looking deeper into the storage systems themselves, there
are various sub-systems/ resources/ logical entities that need to
be monitored. Hence, each sub-system is programmed to mon-
itor metrics relevant to that sub-system. The full set of metrics
is thus divided into sub-sets based on hardware resources (e.g.
disks, processors, network cards, memory etc.), or logical/
software entities (such as RAID groups, partitions, protocols
etc.). Further, most of these entities (for example: processors,
disks, storage space partitions) have multiple instances within
each system. The same sub-set of metrics specific to each sub-
system (like utilization for CPU, throughput for network card,
latency for protocols, space used for partitions) is monitored
for each instance of that entity. In the next section, we describe
the steps of our solution in detail.

IV. SOLUTION METHODOLOGY

Our solution consists of the steps and parts depicted in
Figure 3. Before describing the steps involved in our solution
below, we begin with a brief introduction to the metrics that are
measured. We also introduce some common facts and notations
used in the rest of the paper.

In our study, the number of total metrics per storage system
varied from a few hundred for smaller systems to several tens

of thousands for large systems with thousands of disks and
multiple network cards etc.

Since metrics are collected periodically over time (hourly
averages in this case), it makes sense to view each metric as a
time series of individual measurements. Let us introduce some
notations used to describe the analysis in the rest of the paper.
We denote a time series of measurements of metric x (taken at
regular discrete intervals ∆ t) with bold lowercase letters like
x. We have

x∆ t = (x1, x2, . . . , xn) (1)

where xi for 1 ≤ i ≤ n are n values of the metric x. The single
discrete measurement xi of metric x taken at time instant t
represents an average of the values of the quantity x in the
previous left-open interval (t−∆ t, t]. Thus if measurement x1

was recorded at time t, then x2 would be recorded at time t+
∆ t, x3 at time t+2∆ t and so on till xn being recorded at time
t+(n− 1)∆ t. Since the time interval between measurements
is always one hour throughout this paper, we drop the ∆ t
notation and call the time series x for simplicity. A set of
multiple related time series is denoted by bold uppercase letters
like X , and defined as

X = {x,y, . . .} . (2)

A. Data Collection

In order to analyze the value of metrics over time, we use
a two-step scheme for collecting the measurement data itself.
First, each storage system periodically measures metrics of
interest (every hour in this paper, but any appropriate fixed
period could be used) and internally records them to a log
file. Second, these recorded measurements are sent back to
the Anode data center via the Internet over a secure channel.
This can be done either at regular intervals (say daily/ weekly),
or on-demand by an administrator at the field data center. The
Anode data center receives these collected measurements from
all deployed storage systems across the world and stores them
in a data warehouse, ready for analysis. Note that the set of
metrics to monitor and record is programmed into each storage
system before it is deployed. Hence there are no direct calls
made from the Anode data center to the actual storage systems
in the individual field data centers.

In the following subsections we describe the analysis steps
that are carried out by Anode. These steps are carried out in
batch mode on the collected data read from the data warehouse
(see Figure 3). The analysis may also be manually triggered
if needed, for instance, when a field administrator calls for an
assessment.

B. Baseline Summarization

The objective of this step is to establish the expected range
of values for each metric. This is where we avoid the use of
any static thresholds, since they are observed to be insufficient
as discussed earlier.

a) Weekly periodicity: of metric values is observed in
most systems we studied. This means that the same pattern
of metric values is seen to repeat week after week. Thus, for
instance, the average value each week for the period Monday
9am-10am is expected to be in the same range as previous

week’s Monday 9am-10am. A sample of this is seen visually
in Figure 4 where the Rate of Read Operations is seen to repeat
in the same pattern week after week. This weekly periodicity
is the key observation we utilize to find the expected baseline
normal value for each metric, at each hour of a week. Note that
the underlying reason for such periodicity is that workloads are
triggered by users’ actions, that are known to go through daily
cycles, with weekends being different.

Our summary S(x) of what a typical week looks like for
metric x represented as time series x is based on the previous
k weeks of values for the metric, summarized as follows. If
x1,x2, . . . ,xk are the time-series of values of metric x in
previous k weeks, where

xk =
(
xk
1 , x

k
2 , . . . , x

k
n

)
(3)

and

x̃i = median
(
x1

i , x
2

i , . . . , x
k
i

)
(4)

σxi
= standard deviation

(
x1

i , x
2

i , . . . , x
k
i

)
(5)

x̃ = (x̃1, x̃2, . . . , x̃n) (6)

σx = (σx1
, σx2

, . . . , σxn
) (7)

then

x̃± σx = (x̃1 ± σx1
, x̃2 ± σx2

, . . . , x̃n ± σxn
) (8)

S(x) = {x̃, x̃− σx, x̃+ σx} (9)

In other words, the baseline summary of a metric consists
of the median and a 2σ band at each index period (hour) of the
week, based on data from the same period in previous k weeks.
Note that since we have hourly values as our measurements,
there are n=168 successive values in each week. As sample of
such a summary, see the first two graphs of Figure 4 depicting
the Rate of Read Operations in a system. The first graph
(Fig. 4(a)) depicts successive weeks with overlapping lines
illustrating the periodic nature of the workload, and the second
graph (Fig. 4(b)) depicts the median, upper and lower bands
of the summary of the same metric.

We chose median as our measure of central tendency as
it is robust to outliers, while having standard deviation (not
robust to outliers) as a measure of dispersion. This allows for
a liberal estimate of the acceptable range of metric values.
Another option is to use inter-quartile range as the measure of
dispersion, and this would make the range more conservative in
the case of large deviations (outliers). Since the k weeks of data
may naturally have some non-periodic behavior, it would help
to filter out slow trends and irregular behavior using a time-
series decomposition approach—retaining only the seasonal
(periodic) portions of the metric. This option is available in
our method, however is optional for use since we may choose
the reference k weeks from a time when the system was known
to operate within acceptable limits.

Apart from the choice of using decomposition-based fil-
tering or quartile based dispersion measures, one needs to
specify the amount of history to process (k weeks) and where
to take the historical data from. In our evaluations on real
customer field data, k=4 weeks of data was found to be enough.
Also, Anode allows for storing the summary time-series S(·)
and retrieving it later for analysis. This allows for having a

0 50 100 150

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

Hour of Week

R
e

a
d

 O
p

e
ra

ti
o

n
s
/

S
e

c

Week
#7
#6
#5
#4
#3
#2
#1

(a) Periodic metric behavior (week over week)

0 50 100 150

0
1

0
0

0
2

0
0

0
3

0
0

0
4

0
0

0

Hour of Week

R
e

a
d

 O
p

e
ra

ti
o

n
s
/

S
e

c

Limits
Lower
Mid
Upper

(b) Weekly summary (based on weeks #1-#4)

0 50 100 150

−
6

−
4

−
2

0
2

4
6

Hour of Week

A
n

o
m

a
lie

s
 (

c
o

u
n

t)

Anomalies
Negative
Positive

(c) Marked anomalous hours (flags) in week #7

0 50 100 150
0

1
2

3
4

Hour of Week

A
n

o
m

a
lie

s
 (

m
a

g
n

it
u

d
e

)

Anomalies
Negative
Positive

(d) Marked anomalous hours (magnitudes) in week #7

Fig. 4. Illustration of baseline summarization and anomaly detection steps for system-wide read operations per second from an actual field system.

known good summary being used repeatedly for assessment,
and revised as needed.

C. Anomaly Detection

The next step is to use the summary S(·) to mark deviations
from this expected behavior in the duration being tested. Any
value which lies outside the band of expected values is called
an anomaly. We represent such anomalies as the value of an
indicator function A(·) defined as:

A(xi) =

1 if xi > x̃i + σxi

0 if x̃i − σxi
≤ xi ≤ x̃i + σxi

−1 if xi < x̃i − σxi

(10)

thus a time series x of metric values has a corresponding time
series of anomaly indications represented as:

A(x) = (A(x1),A(x2), . . . ,A(xn)) (11)

Naturally, anomalies may be positive (if the actual value
is above the upper band from S(·) for that hour of the week)
or negative (if value is below the lower band). This can be
seen in Figure 4(c) that shows the anomaly time series A(·)
for our sample metric. Apart from the existence of anomalous
values indicated by A(·), we are also interested in a measure
of the severity of the anomalous values. For this, we define a
normalized anomaly magnitude function M(·) that measures
the amount of deviation of a metric from the band of acceptable
values S(·) at each time index i as:

M(xi) =
xi − (x̃i + σxi

A(xi))

max
(
x1
i , x

2
i , . . . , x

k
i

) (12)

In this manner, we are essentially looking at the amount by
which the metric value xi falls outside the upper/ lower band
of acceptable values (see Eq. (9)). In order for magnitudes
to be comparable across metrics, we choose to normalize this
deviation to the maximum value observed for the metric in the
weeks used to create the baseline summary S(·). This gives
rise to an anomaly magnitude time series represented as:

M(x) = (M(x1),M(x2), . . . ,M(xn)) (13)

This is a time series of positive and negative anomaly magni-
tudes as depicted in Figure 4(d).

D. Aggregation and Scoring

The previous steps dealt with time series of measured
values of each individual metric, and marked anomalies in
those values during the duration being assessed. We used
a metric-specific summary created from past values of each
metric. However, individual metrics indicating an anomalous
value may be noisy/ error-prone and may or may not constitute
a problem worth being escalated or considered significant. In
order to suppress sporadic fluctuations in individual metrics
that don’t indicate a bigger problem, we make use of the
fact that metrics in the storage system being monitored are
naturally grouped in many ways. The strategy we use is to
combine the anomaly time series A(·) and normalized anomaly
magnitudes M(·) of multiple related metrics appropriately
(as described below). This serves the dual objectives of (a)
creating more robust indications of when a problem occurs,
and also (b) creating a way to assess specific sub-systems
(storage partitions, disks, processors, protocols) within the
given storage system.

1) Aggregation: First, we define an aggregation set G as
a set of related metrics chosen from domain knowledge of
the storage system internals. The set G is essentially a set of
individual metric time series

G = {x,y, . . .} (14)

and #G is the cardinality of the set, i.e. the number of metrics
in the aggregation set. These metrics may be of the same type
(say latency at various points in the system), or correspond
to the same sub-system (say all metrics corresponding to a
particular disk or partition). This grouping may also be chosen
from the knowledge of which metrics most effectively indicate
a particular type of problem.

Next, for each specified aggregation set G, two time series
are derived as follows. First, we define an anomaly count time
series C(·) that counts the number of metrics out of the set G
that have an anomaly at each time index i (where 1 ≤ i ≤ n,
and n is the length of the assessment period) as:

ci =
∑

g∈G

|A(gi)| (15)

C(G) = (c1, c2, . . . cn) (16)

Note that we have used the absolute value |A(·)| of the
anomaly indicator function, since we don’t differentiate a
negative anomaly from a positive anomaly for the aggregation
step.

Similarly, we also define an aggregated anomaly magnitude
time series L(·) by averaging the normalized anomaly magni-
tudes M(·) of the metrics in G. We have, for 1 ≤ i ≤ n,

li =
∑

g∈G

|M(gi)|

#G
(17)

L(G) = (l1, l2, . . . ln) (18)

Note that such a combination makes sense since each individ-
ual anomaly magnitude M(·) is already normalized.

At this stage, we further employ a threshold based scheme
for assessing significant anomalies within a given aggregation
set G. This is done via a significance indicator function F(·, ·)
based on L(·) defined above. For this we externally configure
two thresholds π and θ where Pπ(·) denotes the πth percentile
value of the given set of numbers, and θ ≥ 1 is a threshold
on the average anomaly magnitude within the set G. Then we
have:

F(G, i) =

{
1 if (li ≥ Pπ(L(G)) and (li ≥ θ)

0 otherwise
(19)

This gives us the final time series F (G) of raised anomaly
flags for the aggregation set G as:

F (G) = (F(G, 1),F(G, 2), . . . ,F(G, n)) (20)

Appropriate choice of the parameters π and θ by users can
make Anode liberal or conservative in assessing whether an
anomaly is significant or not. Typical values are π = 50,
θ = 2 for a liberal assessment and π = 80, θ = 4 for more
conservative setting.

2) Scoring: There can be many possible such aggregation
sets of metrics in a system. For instance, we may want to
create an aggregation set for each storage space partition in
the system. Then the count C(·), combined anomaly magnitude
L(·) and raised anomaly flags F (·) will be known, as defined
above, for each of the aggregation sets. The next step in our
methodology is to come up with a score for each set, so that
different aggregation sets may be compared with each other
on some factors. Each score is a single positive scalar number
calculated over the assessment period (n observations). There
are several ways to come up with such a score, and we describe
a few that are implemented in Anode.

a) Total Anomaly Duration: (TAD) is the simplest
score, and counts the number of time periods in which an
anomaly is flagged in the given aggregation set. This is
expressed as:

TAD(G) =

n∑

i=1

F(G, i) (21)

b) Cumulative Anomaly Magnitude: (CAM) is the sum
of anomaly magnitudes L(·) in all the time indices of the
assessment period, for the given aggregation set. This is
expressed as:

CAM(G) =

n∑

i=1

∑

g∈G

|M(gi)|

#G
(22)

c) Mean Anomaly Count: (MAC) is another simple
measure that counts total number of metrics that raise an
anomaly in each index of the assessment period, and then di-
vides by the number of metrics involved in the set. Expression
for MAC is as follows:

MAC(G) =

n∑

i=1

∑

g∈G

|A(gi)|

#G
(23)

E. Types of Analysis Output

The core Anode methodology described here can be used
for carrying out several kinds of analysis. A single system
can be analyzed (on-demand, or automatically) for a given
assessment duration to determine if a performance problem
exists in the system, and if so where. The key enabling factor in
each of the following analysis is the use of anomalies detected
using the Anode method described earlier.

1) Flag time-periods of impact: This is the basic output
meant to identify time periods within the requested assessment
duration, when a performance problem has been flagged.
Thus, for instance, an intermittent performance impact might
be found for 3 of the 200 hours that were analyzed. Each
subsystem/ resource in the system can be assessed in this
manner, by using the corresponding set of metrics as an
aggregation set (see Section IV-D).

This basic flagging of impacted time-periods allows further
analysis to be triggered, and establishes a time-line of perfor-
mance impact. This is beneficial also in the case that an expert
needs to later look at the history of the problem, much after
the actual impact occurs.

2) Pin-pointing affected parts: Once some flag has been
raised for any of the analyzed entities within the system, the
corresponding score for each entity (see Section IV-D2) can
be used to get an ordered short-list of affected entities that
were flagged anywhere in the requested assessment duration.
Thus, Anode helps not only in pin-pointing what parts of
the system are affected (i.e. having a non-zero score), but
also identifies an ordered list of most affected parts. For
instance, one performance problem may impact several storage
partitions hosting data. By looking at the scores for these
partitions in descending order, the most affected partitions can
be pointed out.

This is often an important step in identifying what is the
impact of a problem on the availability of stored data. Iden-
tifying the most affected resources, data partitions, protocols
etc. will often lead to quick diagnosis by focusing the attention
of an administrator/ support expert to the correct place within
a large system.

3) Identify top symptoms: A useful ability of Anode is the
identification of top symptoms i.e. indicators of a performance
problem experienced by a system. Indicators of hardware
failures are usually clear—for instance a failed disk—but the
same may not be true for performance problems. The root
cause of the problem may be hidden and only its impact on
different subsystems is seen.

Anode leverages its scoring mechanism (see Section IV-D2)
to find the list of most affected metrics by applying it to each
metric individually within each system that is analyzed. This
list of top affected metrics in the system can often reveal
the underlying cause quickly, when seen by an experienced
administrator/ support engineer. For instance, if the metric for
cache hit rate is showing an anomaly along with an anomalous
increase in latency, then it makes sense to look if the nature
of the workload changed in a way to make the system’s cache
less effective.

This section described the core analysis used in Anode. In
the next section, we present validation, results and discussion
for using Anode in both a controlled environment, as well
as on historical data from actual production deployed storage
systems.

V. EXPERIMENTS AND FIELD-VALIDATION

In the following subsections, we demonstrate the efficacy of
the Anode methodology by (a) using controlled experiments in
a laboratory environment to establish the accuracy of anomaly
detection when the cause and time of occurrence of the
problem is known, and (b) by using actual past measurements
from hundreds of storage systems deployed in production data-
centers around the world to evaluate how our method fares in
real world conditions, where the cause and time-periods of a
problem are not known a-priori.

A. Lab validation

The first step in our evaluation of the Anode methodology
is to apply it in a controlled laboratory environment. This gives
us two advantages over the use of field data. First, since the
problem is created as part of our experiment, the cause and
time-periods when the problem exists in the system is known.

Fig. 5. Setup for laboratory validation

This gives good ground-truth to evaluate the effectiveness of
Anode. Secondly, a controlled environment helps in tuning
some of the parameters of Anode to improve the accuracy of
our method. Later, we also present results from actual field
measurements, where we do not have existing periodic (hourly)
assessments of the existence of a problem.

Our experiment setup (see Figure 5) consists of an NFS
storage server with 16GB RAM, and a client virtual machine
(VM) running Ubuntu 9.10 (Linux kernel version 2.6.31-22).
For the experiments, we use a logical partition P in the storage
system created by a RAID group consisting of 7 disks of
128 GB each, configured with dual parity RAID to protect
against up to two disk failures. Two logical sub-partitions P1
and P2, 200 GB each, are created on partition P. 100 files with
random data, 492 MB each, are created on P1. Total data set
size for P1 is thus 48 GB, which is three times the storage
system’s RAM. This is to make sure that caching within the
NFS server will not dominate the outcome of our experiments.
A single 32 GB file with random data is created on P2. The
sub-partition P1 is then exported via NFS and mounted directly
within the client VM.

A workload generation tool in the client VM is used to
generate I/O traffic on the files in P1. Even though these are
essentially micro-benchmarks in a controlled lab environment,
we still wanted the I/O patterns to mimic those observed in real
setups. Hence, our workload generator (called Patio) emulates
four concurrency patterns (A, B, C, D) observed from actual
deployments (for instance, see Figure 6). The specifications
of workloads with varying parameter combinations is given in
Table I. These are chosen from commonly observed values
seen in the field. Thus a combination of one concurrency
pattern and one workload gives us a description of the input
I/O traffic used in a single experiment.

Since our method detects performance impact, we also
need ways to artificially create a disturbance in our experiment
setup. For this we follow three scenarios:

• Secondary workload scenario uses another load gen-
erator (internal to the NFS server, see Figure 5) to
generate a disturbance workload on P2 to emulate a
performance problem in the storage system caused by
interference from any workload apart from the primary
client VM. We use two sets of such internal workload
called Anomaly-1 and Anomaly-2 in Table I.

TABLE I
EXPERIMENT WORKLOAD DESCRIPTION

Workload Read Ops (%) Random Seek (%) Concurrency

Client-1 60 80 A, B, C, D

Client-2 60 20 A, B, C, D

Anomaly-1 100 80 128
Anomaly-2 0 80 128

• Degraded RAID scenario artificially fails one disk in
the RAID group, while no spare disks are available.
Hence, the RAID subsystem has to reconstruct the
data of the missing disk on-the-fly by using the parity
information. This is denoted as Anomaly-3.

• RAID reconstruction scenario is an extension of
degraded RAID, where a spare disk is added to the
system. Then the RAID system starts reconstructing
the data of the disk that had failed earlier, on to the
new spare disk. While the system can intelligently do
this in the background to avoid impacting the fore-
ground workload, we force immediate reconstruction
to make the impact more direct, for the purposes
of our test. For simplicity, this is always combined
with Anomaly-3 in the same experiment, to give three
overall combinations of disruptions.

In this manner, we used four input concurrency patterns,
along with two workload combinations, and also three sets of
artificially injected disruptions. This leads to 24 experiments,
each of which was repeated four times. Each experiment is
structured as follows (see example in Figure 6).

• Weekly periodic customer workload pattern is emu-
lated on the storage system for a period equivalent
to five weeks and periodic averaged measurements
of metrics from the system are collected. To keep
time tractable, an hour is scaled down to a minute.
Hence the customer workload pattern repeats every
168 minutes (representing 168 hours of a week) for
a period of 168*5=840 minutes (representing five
weeks) as shown in the first two graphs of Figure 6.

• A problem is triggered for some period of time once
or multiple times during the fifth week of the emulated
customer workload and the start and end times of each
triggered anomaly is recorded to create a disturbance
time-line (for instance, graph three in Figure 6).

• The collected periodic metric measurements from the
system are analyzed using Anode by taking the first
four weeks as the reference period for creating a sum-
mary and the last week is assessed for anomalies. The
resulting anomaly time-line output is then compared
with the recorded disturbance time-line hour-by-hour
(minute-by-minute in our experimental setup).

1) Per-experiment results: The following standard statistics
are collected for each experiment:

• True Positives (TP): Number of periods where
anomaly was indicated by Anode matching with the
actual anomaly time line.

• False Positives (FP): Number of periods where
anomaly was indicated by Anode, but there wasn’t any
actual anomaly present. And similarly,

 0

 50

 100

 150

 0 168 336 504 672 840

C
o
n
c
u
rr

e
n
c
y

Time

Patio Input Concurrency

 0

 50

 100

 150

 0 168 336 504 672 840

C
o
n
c
u
rr

e
n
c
y

Time

Partition-1 Concurrency (Patio workload)

 0

 50

 100

 150

 0 168 336 504 672 840

C
o
n
c
u
rr

e
n
c
y

Time

Partition-2 Concurrency (Disturbance)

 0

 50

 100

 0 168 336 504 672 840

A
v
e
ra

g
e
 L

a
te

n
c
y
 (

m
s
)

Time

Partition-1 Average Latency

Fig. 6. Time-lines from one laboratory experiment. The disruption created
on P2 in the end is clearly seen to impact the latency of P1.

• True Negatives (TN): Anode didn’t indicate an
anomaly and none was actually present.

• False Negatives (FN): Anode didn’t indicate an
anomaly when there was an actual disruption.

These can be used to derive the following set of standard
statistical measures, which have their usual meaning from
statistics:

True Positive Rate (TPR) =
TP

TP + FN
(24)

False Positive Rate (FPR) =
FP

FP + TN
(25)

Precision =
TP

TP + FP
(26)

Accuracy =
TP + TN

TP + FN + FP + TN
(27)

As mentioned earlier, an assessment (along with the above
stats) is available for each aggregation set (see Section IV-D).
For instance, in our experiment setup, we generate assessments
for two kinds of aggregation sets (a) one system aggregation
set that consists of all system-level metrics (total rate of
operations, average latency, etc.) and system-wide resources
(e.g. CPU utilization). Also, we generate (b) one aggregation
set per partition, so that we may compare impact felt by each.
In order to derive the statistics given above for a given system,
we compare two approaches:

• Use the system aggregation set itself as the overall
assessment, and

• Combine the partition level aggregation sets using
a weighted sum, where weights are based on the
total number of I/O operations seen by each partition
in the assessment duration. This is passed through
a percentile threshold to come up with a combined
assessment across partitions.

Figure 7 depicts the anomaly detection output for the experi-
ment of Figure 6 with system level aggregation set (first graph

Problem Timeline Anomaly Magnitude Flagged Anomalies

 24 48 72 96 120 144 168

System Level

 24 48 72 96 120 144 168

Partition Level - Weighted Sum / Quantile 50

 24 48 72 96 120 144 168

Partition Level - Weighted Sum / Quantile 75

 24 48 72 96 120 144 168

Partition Level - Weighted Sum / Quantile 90

Fig. 7. Sample of anomaly detection with four ways of overall assessment.

in Figure 7) as well as partition-level aggregation with 50th,
75th and 90th percentile filters. Each set of graphs in the figure
depicts the problem time line, combined anomaly magnitude,
and flagged anomalies detected by Anode. As can be clearly
seen, a 75th percentile filter on the combined magnitudes (third
set of graphs) seems to work better (best visual match between
problem time line and flagged anomalies). A more detailed
comparison of the statistical metrics defined above for all these
assessment methods across all experiments is presented below.

Another useful way to assess the effectiveness of such
a methodology is via the well-known Receiver Operating
Characteristic (ROC) plot. This is a scatter plot between TPR
on the y-axis and FPR on the x-axis. A formal description of
ROC is left out due to space constraints, but in a nutshell, the
ROC curve reveals the TPR attained for a certain amount of
FPR. The ideal point for a method to be on this graphs is at the
top-left corner where TPR=1 and FPR=0. A curve of TPR vs.
FPR is obtained (called the ROC curve) as we vary a threshold
to convert anomaly magnitudes into anomaly flags (instead of
the definition in Section IV-C). For instance, see Figure 8 for
sample ROC curves for four metrics from one experiment (all
four repetitions). Here the y = x diagonal represents chance
behavior, with curves above diagonal being better. A related
statistic is the Area Under ROC Curve (AUC). This is the area
enclosed between the ROC curve and the TPR=0 and FPR=1
lines. We use a derived value called Area Above Diagonal
(AAD) defined as:

AAD = AUC − 0.5 (28)

This value being positive means better detection of the
problem by that metric (Figs. 8(a), 8(b)). If the AAD value
is close to zero or negative (Figs. 8(c), 8(d)), it means that the
metric does not do a good job of detecting the problem time-
periods. We calculated AAD for each metric used in the sample

experiment above. Figure 9 depicts the spread of AAD values
where the x-axis is each metric from the experiment sorted in
descending order of their AAD values (note that metric names
have been omitted to keep the graph legible). In this manner,
one can select the metrics that best indicate a problem (i.e.
symptoms of the problem).

While ROC requires knowing the ground-truth value, other
scoring mechanisms described in Section IV-D2 do not have
this limitation. These may be used to find most impacted
metrics in any system being analyzed for the first time.
Looking across aggregation sets instead of metrics, one can use
these scoring mechanisms as ranks for instances of partitions,
resources etc. The most impacted partition, would have the
highest score, and so on.

2) Summary across experiments: Moving beyond the sam-
ple experiment, let us look at summary stats across the 24 com-
binations of experiments described earlier. In order to assess
Anode, we show three types of graphs for statistics gathered
across the 24 experiments. These graphs (see Figure 10 for
instance) are:

• Summary statistics: Median true positive rate (TPR),
false positive rate (FPR), precision and accuracy
across the 24 experiments. Ideally, TPR should be
1.0, FPR should be 0.0, precision should be 1.0 and
accuracy also should be 1.0.

• Breakup of TPR vs. FPR: Histogram spread of FPR
across the 24 experiments (called cases in the graphs).
We have binned the TPR and FPR into bins of size
0.25, to get an idea of how the spread looks across
the range of FPR observed in the 24 experiments.

• Breakup of FPR vs. TPR: Similar to the previous
one, this is a histogram spread of TPR across the 24
experiments.

Note that each of the 24 experiments was repeated four
times in order to assess the difference between different runs.
We found that the error margins for the artificially generated
disturbance time-line and the corresponding anomaly magni-
tude time-line are less than 1% for four runs of the same set
of experiments. Since the error margins are negligible we have
used results from only one randomly chosen run, out of the
four repetitions, to represent each of the 24 experiments in the
results here.

The results depicted in Figure 10 present the aggregate
stats for 24 experiments across the four types of overall
per-experiment assessment, i.e. system-only and partition-
weighted-sum with three percentile thresholds (50, 75, 90).
Clearly, the system-only assessment (see Figure 10(a)) is not
very good even though it has the highest true positive rate
(TPR). This is because it has higher false positive rate (FPR),
lower accuracy and precision compared to the others. The
intuitive explanation for this is that system-level metrics are a
superimposition of all the processes/ workloads in the system,
and hence have higher false positives when compared to a
given problem time-line.

Looking at each partition-level assessment results in b on
an hourly basisetter separation of behaviors between workloads
that are usually tied to one or more partitions. This is illustrated
in the high TPR, low (almost negligible) FPR and high preci-
sion and accuracy scores for the partition-weighted-sum based

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(a) Meta-data operations per second

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(b) Latency for meta-data operations

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(c) Network data received per second

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Write operations per second

Fig. 8. ROC curves for four metrics with (a),(b) showing high area above diagonal (AAD), (c) showing negative AAD, (d) showing close to zero AAD.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

A
re

a
 A

b
o
v
e
 D

ia
g

o
n

a
l

Metrics (names omitted) sorted by Area Above Diagonal

Fig. 9. Ranking metrics by the area (AAD) between the ROC curve and
the diagonal value in a single experiment reveals that some metrics (with high
positive AAD) are well suited to detecting a problem, while others (with zero/
negative AAD) are ill-suited.

overall assessments in Figure 10(a). The other advantage of
using the per-partition assessment approach is that the relative
scores (as defined in Section IV-D2) of each partition given
by Anode allow us to pin-point the most affected partitions.
Typically each partition is mapped to a single user-application/
workload, thus aiding the experts in focusing their diagnosis
on those applications.

Looking at the histograms of FPR (first column of Fig-
ure 10(b)) reveals some interesting observations. Using a
relaxed threshold (50th percentile) over the combined anomaly
magnitude results in some false positives, and those are limited
to some cases where high FPR is observed (second row of
Figure 10(b)). Here either most cases have low FPRs (0.0 to
0.25 bin) or very high FPR (0.75 to 1.00 bin). Thus the low
(50th percentile) threshold is particularly bad for a significant
subset of the 24 experiments. The two higher thresholds (75th

and 90th percentile) perform much better in this regard, with
all 24 experiments being in the low FPR (0.0 to 0.25) bin as
seen in the last two rows of Figure 10(b).

Looking at the TPR histograms (second column of Fig-
ure 10(b)) reveals the dual of this behavior. Using a relaxed
threshold of (50th percentile) gives very high median TPR
(Figure 10(a)), at the cost of some small amount of FPR.
TPR is high across the 24 experiments, as depicted in the
TPR histogram (right-most graph in the second row of Fig-
ure 10(b)). The more conservative thresholds of 75th and
90th percentile have progressively lower median TPR, but
zero/ negligible FPR as depicted in Figure 10(a). However,
as the TPR histograms (last two rows of Figure 10(b)) reveal,
the spread of TPR values has increased (over that of 50th

percentile), with a significant number of the 24 experiments
falling in the low TPR bin (0.0 to 0.25).

Based on the observations given above, the choice of
threshold percentile to use in Anode is carried-out as follows:

• The high threshold of 90th percentile performs slightly
worse overall compared to the medium 75th per-
centile. Hence the slightly better (with little to no
downsides) 75th percentile threshold is preferred.

• Choice between 50th and 75th percentile is trickier,
since 50th percentile gives higher TPR at the cost of
some FPR, while 75th percentile gives lower TPR, but
has the negligible FPR.

• Precision and accuracy are highest for 75th percentile.
• Overall, we select the 75th percentile threshold, to

avoid false positives, while still having reasonably
high rate of true positives. The intuition being that
in a detection and diagnosis setup, having false in-
dications (higher false positives) is more problematic
than missing some anomalies (lower true positives).

• The particular threshold numbers were chosen here
just for illustration, and this is a parameter config-
urable by advanced users of Anode.

To summarize, the results from our laboratory based
study of 24 scenarios shows that Anode is able to mark the
anomalous periods with high success rate (TPR > 90%) and
very low false alarms (negligible FPR). Next, we move to
validation over measurement data collected from actual field
deployments, which will have much more variability and noise
than the controlled environment used up to this point.

B. Field validation

The laboratory experiment based results showed that Anode
can catch anomalous durations successfully. Now, one would
like to evaluate how well it fares on real performance-related
cases filed in the past by customers. However, there is one
problem with this study of field data. While Anode indicates
anomalies in the system on an hourly basis, the corresponding
truth value available to us from a field-incident report (case)
is the begin and end time. This truth value does not accurately
represent what has happened in the given system on a hour-
by-hour basis. Three particular problems arise:

• A customer will typically file a case only after they
have noticed a performance problem. The problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

TPR FPR PRECISION ACCURACY

V
a
lu

e

System Metrics
Partition Metrics 50%ile

Partition Metrics 75%ile
Partition Metrics 90%ile

(a) Summary statistics (median)

0

10

20

30

N
o
.
o
f

e
x
p
ts

System Metrics

TPR 0.00-0.25
TPR 0.25-0.50
TPR 0.50-0.75
TPR 0.75-1.00

System Metrics

FPR 0.00-0.25
FPR 0.25-0.50
FPR 0.50-0.75
FPR 0.75-1.00

0

10

20

30

N
o
.
o
f

e
x
p
ts

Partition Metrics 50%ile Partition Metrics 50%ile

0

10

20

30

N
o
.
o
f

e
x
p
ts

Partition Metrics 75%ile Partition Metrics 75%ile

0

10

20

30

0.00-0.25

0.25-0.50

0.50-0.75

0.75-1.00

N
o
.
o
f

e
x
p
ts

FPR

Partition Metrics 90%ile

0.00-0.25

0.25-0.50

0.50-0.75

0.75-1.00

TPR

Partition Metrics 90%ile

(b) Breakup of TPR vs. FPR

Fig. 10. Summary of results from laboratory validation

may have been existing (perhaps to a lesser degree)
much before the case is filed.

• The case may remain open for a long time after the
actual problem has been solved (e.g. for cross-checks).

• The actual performance impact may be intermittent—
coming and going within the duration that a case is
open. Anode catches this on an hour-by-hour basis,
but the same is not reflected in the case-open-close
time-line.

Thus there is no way to accurately establish an hour-by-
hour truth value for comparison, like we had in the case of
laboratory experiments. We work around this limitation by

augmenting the case open-close dates in the following manner:

• Anomalies flagged by Anode just before the start of the
case (within the duration being analyzed) are counted
as true positives, since they would indicate existence
of the problem before the case was opened.

• Negative outputs (no anomaly flagged) after at least
one anomaly has been indicated, but before the close
of the case, are counted as true negatives, since these
would reflect that the impact has been fixed.

This is as close as we can get to a (so-called) golden standard
assessment readily for the study of field deployments. A more
detailed manual assessment at hourly granularity is sometimes
possible, but it would involve far too much expert manpower
to create for the purposes of this paper.

With that done, we can now assess any performance case.
For this part we analyze 423 actual cases/ incidents (that were
deemed by experts to be performance-related) from actual
field-deployed storage systems. The summary of results for
this analysis are presented in Figure 11 in the same format as
those of the laboratory experiments.

As in the case of laboratory experiments, using only
system-wide metrics (see Figure 11(a)) is not very useful. Here
it has a low (about 17%) median true-positive rate with very
low false-positive rate. This could be usable due to the low
false positives, but the lack of true positives is undesirable.
Assessments using a weighted sum of individual partition-level
assessments are much better even for field deployments. Here
weights are based on the number of total operations done over
the assessment period. Across all three thresholds depicted (see
Figure 11(a)), the 75th percentile threshold shows the best
combination of statistics (high TPR, precision, accuracy and
low FPR) even in the case of field-validation.

Across the board, the false-positive rate (FPR) is higher
in the case of field measurements. This is natural, given that
laboratory experiments were done in a controlled environment,
but the systems here are serving actual production workloads.
Even so, the FPR is not very high, being approximately around
the 5% mark (median) for our chosen setup of 75th percentile
threshold with partition-level weighted sums (Figure 11(a)).
Also recall that this field validation is across 400+ actual cases,
compared to merely 24 experiments in the laboratory. Some
other observations from the field validation are:

• True-positive rate (TPR) remains high for our chosen
setup (75th percentile threshold with partition-level
weighted sums) between lab and field results, showing
the consistency of the method.

• The slightly higher FPR can be explained as above.
This however, also reflects in lower, but very usable
accuracy (75% median) and precision (65% median)
for our chosen setup (Figure 11(a)).

Overall, the field-data based validation results show good
promise in using Anode for drilling down into a single case
with the use of anomalies, and scoring of metrics, metric sets
and other objects. As mentioned in the introduction, focusing
the experts attention to the most affected areas could give
significant boost to reduction of the time taken to detect and
address performance problems. Likewise, automated methods

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

TPR FPR PRECISION ACCURACY

V
a
lu

e

System Metrics
Partition Metrics 50%ile

Partition Metrics 75%ile
Partition Metrics 90%ile

(a) Summary statistics (median)

0

100

200

300

400

500

N
o
.
o
f

c
a
s
e
s

System Metrics

TPR 0.00-0.25
TPR 0.25-0.50
TPR 0.50-0.75
TPR 0.75-1.00

System Metrics

FPR 0.00-0.25
FPR 0.25-0.50
FPR 0.50-0.75
FPR 0.75-1.00

0

100

200

300

400

500

N
o
.
o
f

c
a
s
e
s

Partition Metrics 50%ile Partition Metrics 50%ile

0

100

200

300

400

500

N
o
.
o
f

c
a
s
e
s

Partition Metrics 75%ile Partition Metrics 75%ile

0

100

200

300

400

500

0.00-0.25

0.25-0.50

0.50-0.75

0.75-1.00

N
o
.
o
f

c
a
s
e
s

FPR

Partition Metrics 90%ile

0.00-0.25

0.25-0.50

0.50-0.75

0.75-1.00

TPR

Partition Metrics 90%ile

(b) Breakup of TPR vs. FPR

Fig. 11. Field validation summary

could be built using Anode as the first-level assessment and
properly handling possible false-positives at later stages.

VI. CONCLUSIONS

In this paper, we have presented a methodology for detect-
ing anomalies in periodic measurements from storage systems.
This work is a step towards developing automated problem
diagnosis and healing systems for performance related prob-
lems. Our method is particularly well-suited to environments
with variety of workload patterns given that our method uses a
system’s own history for determining the baseline for normal
behavior of metrics, and can assess on a per-workload basis.

Our method effectively detects the time when a problem
impacts metrics, identifies the most affected metrics and most
affected parts of the storage system. We have shown the
effectiveness of our method on both controlled experiments as
well as actual incidents reported from field deployments. Being
a data-driven method, it is bound to have some statistically
significant probability of making a mistake, but it is still a
big improvement over manual or simple rule-based methods—
particularly in reducing detection and diagnosis time.

ACKNOWLEDGMENTS

The authors would like to thank Kaladhar Voruganti for
his help in reviewing several drafts of this work and giving
feedback that helped refine the paper. We would also like to
thank Swaminathan Ramany, Jason Ledbetter, Ajay Bakhshi,
Siddhartha Nandi, Gaurav Makkar, Apoorva Sareen and his
team-mates for their guidance and support through the execu-
tion of this work.

REFERENCES

[1] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly
detection using kernel recursive least squares,” in 26th IEEE Intl. Conf.

on Computer Communications (INFOCOM), 2007, pp. 625–633.

[2] K. M. Carter and W. W. Streilein, “Probabilistic reasoning for streaming
anomaly detection,” in IEEE Statistical Signal Processing Workshop

(SSP), 2012, pp. 377–380.

[3] J. Terrell, K. Jeffay, F. D. Smith, L. Zhang, H. Shen, Z. Zhu, and
A. Nobel, “Multivariate SVD analyses for network anomaly detection,”
in ACM SIGCOMM Conference, Poster Session, 2005.

[4] L. Zhang, Z. Zhu, K. Jeffay, J. S. Marron, and F. D. Smith, “Multi-
resolution anomaly detection for the internet,” in IEEE Intl. Conf. on

Computer Communications (INFOCOM) Workshops, 2008, pp. 1–6.

[5] R. Fujimaki, T. Nakata, H. Tsukahara, A. Sato, and K. Yamanishi, “Min-
ing abnormal patterns from heterogeneous time-series with irrelevant
features for fault event detection,” Statistical Analysis and Data Mining,
vol. 2, no. 1, pp. 1–17, 2009.

[6] S. Das, B. L. Matthews, A. N. Srivastava, and N. C. Oza, “Multiple
kernel learning for heterogeneous anomaly detection: Algorithm and
aviation safety case study,” in ACM SIGKDD Intl. Conf. on Knowledge

Discovery and Data Mining (KDD), 2010, pp. 47–56.

[7] H. Cheng, P.-N. Tan, C. Potter, and S. Klooster, “A robust graph-
based algorithm for detection and characterization of anomalies in noisy
multivariate time series,” in IEEE Intl. Conf. on Data Mining Workshops

(ICDMW), 2008, pp. 349–358.

[8] T. H. Lotze, “Anomaly detection in time series: Theoretical and prac-
tical improvements for disease outbreak detection,” Ph.D. dissertation,
University of Maryland, College Park, 2009.

[9] E. Garduno, S. P. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan,
“Theia: Visual signatures for problem diagnosis in large hadoop clus-
ters,” in USENIX Intl. Conf. on Large Installation System Administration

(LISA), 2012, pp. 33–42.

[10] A. A. Mahimkar, Z. Ge, A. Shaikh, J. Wang, J. Yates, Y. Zhang, and
Q. Zhao, “Towards automated performance diagnosis in a large IPTV
network,” ACM SIGCOMM Computer Communication Review, vol. 39,
no. 4, pp. 231–242, Aug. 2009.

[11] W. Yoo, K. Larson, L. Baugh, S. Kim, and R. H. Campbell, “Adp: Au-
tomated diagnosis of performance pathologies using hardware events,”
ACM SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, pp.
283–294, June 2012.

[12] V. Chandola, D. Cheboli, and V. Kumar, “Detecting anomalies in a time
series database,” Department of Computer Science and Engineering,
University of Minnesota, Tech. Rep. TR 09-004, February 2009.

[13] V. Chandola, “Anomaly detection for symbolic sequences and time
series data,” Ph.D. dissertation, University of Minnesota, 2009.

[14] D. Cheboli, “Anomaly detection of time series,” M.S. thesis, University
of Minnesota, 2010.

