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Abstract—In recent years, non-volatile memory devices such
as SSD drives have emerged as a viable storage solution due to
their increasing capacity and decreasing cost. Due to the unique
capability and capacity requirements in large scale HPC (High
Performance Computing) storage environment, a hybrid config-
uration (SSD and HDD) may represent one of the most available
and balanced solutions considering the cost and performance.
Under this setting, effective data placement as well as movement
with controlled overhead become a pressing challenge. In this
paper, we propose an integrated object placement and movement
framework and adaptive learning algorithms to address these
issues. Specifically, we present a method that shuffle data objects
across storage tiers to optimize the data access performance. The
method also integrates an adaptive learning algorithm where real-
time classification is employed to predict the popularity of data
object accesses, so that they can be placed on, or migrate between
SSD or HDD drives in the most efficient manner. We discuss
preliminary results based on this approach using a simulator we
developed to show that the proposed methods can dynamically
adapt storage placements and access pattern as workloads evolve
to achieve the best system level performance such as throughput.

I. INTRODUCTION

With the explosive increase in the amount of data being

generated by various HPC applications, developing resilient

and high-performance storage solutions becomes even more

of a challenge [1], [2]. Therefore, it is crucial to come up

with effective data placement mechanisms in a heterogamous

environment based on the nature of workloads, as well as the

properties of the underlying hardware such as their network

topology and bandwidth. On the other hand, both the work-

loads and the underlying hardware evolve over time, so it

requires algorithms have to be designed to take these changes

into their consideration.

One particular trend that has emerged in recent years is the

use of SSD drives in storage solutions to provide premium

services, as the read and write speed for SSD drives are

typically much faster compared to hard drives [3]. On the

other hand, SSD drives have different failure patterns where

repeated read and write operations of the same address blocks

will cause the drives to fail [4]. Furthermore, SSD drives are

also limited in capacity, meaning that it is not yet practical

to use them to completely replace conventional hard disks.

Therefore, how to effectively integrate SSD drives into the

design of storage systems for HPC environments becomes a

critical yet challenging task.

Existing algorithms to integrate SSD drives can already

be found in the literature [5], [6]. These methods, while

effective, are largely based on heuristic algorithms that are

either developed in isolation with the runtime workload, or are

based on static assumptions on the workload patterns, making

them unsuitable when the underlying workloads and demands

change over time.

To address such drawbacks, we present a holistic approach

where we aim to develop a framework that adaptively classifies

the popularity of data objects, adjusts their placement among

storage tiers by moving them between slower HDDs and faster

SSDs, and fulfills the needs of users with regard to their

I/O operation requirements. Formally, our developed algorithm

makes the following assumptions. First, we assume that the

storage hardware consists of both slower HDD drives and

faster SSD drives. Second, the user may have their own rules

for the placement of data, such as, a particular data object must

be stored on HDDs with three copies available for a certain

period of time, among others. Therefore, such rules must be

properly fulfilled during runtime.

Based on these assumptions, our proposed method makes

two contributions: first, it proposes a Markov-chain based

classification model to predict whether data objects will be

accessed frequently in the future based on their historical ac-

cess records; second, it develops an integrated data placement

engine that is based on linear programming for fulfilling the

requirements of throughput and reliability from the users. We

next describe these two contributions separately.

In the first contribution, we classify data objects based on

their access patterns, including both their access frequencies

and the particular workload that accessed them, so that we can

determine those objects that are most likely to be accessed

frequently in the future. Our method is based on training a

Markov chain model, and once such predictions are made,

we move those frequently accessed objects to SSD drives

under the constraint that the moving cost does not exceed the

predicted savings.

In the second contribution, we consider the challenge on

fulfilling the user policies on data placements, such as their

preferences on where to place the objects. To this end, we

develop a data placement engine that takes user policies
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as the bandwidth and delays between two HDDs or SSDs,

as input, and generates a satisfying solution, if any, as the

output. The theoretical foundation of this engine stems from

linear programming, where we allow numerical methods to be

adopted to find solutions. For example, if the user specifies that

no two copies of a data object should be on the same rack,

such a requirement will be formulated as a constrain in the

linear programming model and be guaranteed in the solution.

The rest of this paper is organized as follows. We describe

the related work in Section II. The design is described in

Section III. The performance evaluation is given in Section IV.

We provide conclusions in Section V.

II. RELATED WORK

In this section, we survey several existing works related to

our paper. We classify these existing works into two categories.

The first category consists of existing works on data placement

algorithms for distributed storage systems, while the second

consists of those on hybrid storage systems that aim to leverage

SSD drives to improve data access performance.

As large-scale distributed storage systems have been ex-

tensively used in the HPC area, the problem of distributing

several petabytes of data among hundreds or thousands of

storage devices becomes more and more critical. To address

this problem, many data placement algorithms have been

proposed. For instance, Distributed Hash Tables (DHTs) have

been used to place and locate data objects in P2P systems

[7], [8], [9]. Another replica placement scheme called chain

placement was also proposed and applied to some P2P and

LAN storage systems [10], [11], [12]. Honicky and Miller

presented a family of algorithms named RUSH [13] that

utilizes a mapping function to evenly map replicated objects to

a scalable collection of storage devices, so that it can support

efficient additions and removals of weighted devices.

To address the reliability and replication issues of the RUSH

algorithm, Weil et al. proposed a scalable pseudo-random data

distribution algorithm named CRUSH [14]. Besides optimally

distributing data to available resources and efficiently reorga-

nizing data after adding or removing storage devices, CRUSH

exploits flexible constraints on replica placement to maximize

data safety in the case of hardware failures. Specifically,

CRUSH allows the administrator to assign different weights

to storage devices so that the administrator can control the

relative share of data each device is responsible for. However,

the device weights used in the CRUSH algorithm only re-

flect the capacities of storage devices, therefore, the CRUSH

algorithm may not be effective anymore for hybrid storage

systems consisting of both SSD and HDD devices, as these

two kinds of storage devices have totally different performance

characteristics.

Recently, efforts have been made to combine SSD and HDD

drives together to construct hybrid storage systems. In such

systems, SSDs are either used for caching purposes, or used

as more independent storage devices. For example, Srinivasan

et al. designed a block-level cache named Flashcache [15]

between DRAM and hard disks using SSD devices. Zhang et

al. proposed iTransformer [16] which exploits a small SSD

to schedule requests for the data on disks so that high disk

efficiency can be achieved. SieveStore [17] adopts a selective

caching approach in which the accesses of each block are

tracked and the most popular block is cached in SSD device.

In the second approach, SSDs are more independently used.

Chen et al. designed and implemented a high performance

hybrid storage system named Hystor [18], which identifies

data blocks that either can result in long latencies or are

semantically critical on hard disks, and store them in SSDs

for future accesses. In order to prolong the service life of

SSDs devices, Ren et al. proposed I CASH [19] to reduce

random write traffic to SSDs. Specifically, I CASH is an

approach that exploits the spacial locality of data accesses,

and only store those seldom-changed data blocks on SSDs.

Finally, ComboDrive [20] concatenates SSD and HDD into

one address space via a hardware-based solution, so that

certain data on HDD can be moved into the faster SSD space.

There are two main differences between existing works

on hybrid storage systems and our approach: first, most

existing works on hybrid storage systems only consider how

to improve the utilization of SSD drives, but they have ignored

the reliability and replication issues in HPC environments;

second, existing works have not considered the dynamic nature

of workflows, a nature that makes continuous training and

learning necessary. In our approach, we fully consider these

issues, and our method provides up-to-date predictions on

popular data blocks, so that we can store critical data on SSDs

well in advance.

III. DATA PLACEMENT ALGORITHM DESIGN

In this section, we introduce the design of the data place-

ment algorithm. We first present the problem formulation.

Then, we present an overview of our algorithm architecture.

Finally, we present a detailed description of its components

and related algorithms.

A. Problem Formulation

The core problem is formulated as follows. Given a set

of storage devices represented by HDDs and SSDs as the

hardware platform, our task is to find a data placement that

1) satisfies user polices on data placements, and 2) maximizes

the throughput of I/O operations from HPC applications. This

problem is challenging due to: 1) we don’t have complete

knowledge on future access patterns to data objects due to

the dynamics of workloads, 2) user policies can be highly

heterogeneous and may change over time. Therefore, if we

model such a problem as an optimization problem, its solution

is from a very large search space, such that it is very hard

to always reach the optimal configuration when something

changes, even such change could be slight. Furthermore, given

that the users’ request may change frequently, we would like

to be able to re-use previous calculation results as much as

possible, so that we can avoid the re-calculation when a similar

scenario is met in practice.



Fig. 1. The Design Architecture

B. Architecture Overview

We first present the design architecture of our data place-

ment algorithm. For this design, we consider the I/O workload

from user applications to include both read and write opera-

tions. All I/O workload are generated to access data objects,

which are minimal storage units in object-based storage sys-

tems. In practice, a large file can be divided into multiple

data objects which will be stored on single or multiple object-

based storage devices (OSDs). Note that the write operations

may be dominating for certain I/O workload, such as periodic

checkpoint [21]. The I/O workload from user applications may

also change over time, therefore, the solution should adapt to

the dynamic nature of the I/O workload.

Figure 1 shows the overall architecture, where the whole

procedure works as follows: the first core component, the clas-

sification model, is trained based on the access history of data

objects. In our current work, we concentrate on the historical

access frequency of data objects, while we leave exploiting

the access pattern (sequential/random read or write) to improve

data placement performance as our future work. After training,

it provides parameters for the runtime prediction model that

are used to predict the access popularity of data objects in

the future. Specifically, the predictions decide if an object is

going to have “recurring” or “non-recurring” accesses, based

on its history of accesses, as well as the particular workload

that accessed them. Such predictions are then used, together

with user demands, as the input for the storage placement

engine, whose goal is to generate an optimized placement of

data objects to storage devices so that the overall system level

performance on access delay and bandwidth can be improved.

Finally, the runtime object access traces are also used as input

for the classification model for continuous training purposes,

and keeping the parameters up-to-date.

C. Markov Chain based Workload Classification

In this section, we describe how the classification model

generates model parameters based on object access traces. In

our design, we adopt a Markov chain based approach.

Observe that there exists a tradeoff in the overhead of

training and the prediction accuracy. Therefore, we need to

achieve a good tradeoff in our design. Our approach has the

following key steps. First, we assume that we can keep the

access history for each data object. In reality, it may not be
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Fig. 2. Traces of Data Object Accesses in Frequency

practical to record a long access history for each data object

since in that case the storage overhead could be huge, instead,

only recent access history needs to be maintained and updated

periodically. Second, we model the access frequency of each

data object using a discrete-time Markov chain in which each

state represents a specific range of access frequency. With the

access history, we can estimate the parameters of the Markov

chain model. Third, by calculating the stationary distribution

of the Markov chain, we can predict the likelihood for the

access frequency of each data object to stay within certain

ranges in the long run. Finally, we rank each data object based

on the weighted sum of the stationary distribution, where the

weights are chosen according to the specific range represented

by each state in the Markov chain. A higher rank of the data

object indicates that it is more appropriate and efficient to be

moved or placed into low-latency, high-bandwidth drives such

as SSDs. We next describe these steps in more detail.

1) Collection of Access History of Data Objects: Fig. 2

demonstrates the access frequency (here the “access” includes

both read and write operations) of a data object during one

month from the LASR traces [22], which include I/O activ-

ities of benchmark applications for the SEER project, which

observes users’ file access patterns across storage networks.

The X axis of Fig. 2 is the range of one month time that has

been divided into 720 time periods (each period is 1 hour). The

Y axis represents the number of times the data object has been

accessed during each time period. As the storage overhead for

maintaining the entire access history of each data object is

not cost-effective, we only maintain recent access history of

each data object and use such access history to build a Markov

chain model to predict the future access frequency. As shown

in Fig. 2, only the access history in the dotted window is used

to train the prediction model, where the window will slide

with time so that we can implement online prediction for data

objects access frequency.

2) Markov Chain Predication Model: With the access his-

tory of each data object, we build a Markov chain model to

predict the future access frequency of data objects. First, we

need to determine how many states the Markov chain should

have and the range of access frequency each state represents.

For example, as shown in Fig. 2, if the maximum number
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of access times during an observation period is 50, then, for

example, we can divide 50 evenly into two ranges, and build

a Markov chain model that has three states: 0, (0, 25], and

(25, 50], respectively. If during a time period, there is no access

of the data object, then the Markov chain will stay in state 0.

If the number of access times is larger than 0 but less than

25, then the Markov chain will stay in state 1, and so on. The

transition diagram of the Markov chain is shown in Fig. 3.

Second, we transform the access history to the state transi-

tion sequence of the Markov chain based on the specific range

each state represents. For example, after transformation the

state transition sequence of access history shown in Fig. 2 is:

1,1,1,1,1,0,0... Based on this state transition sequence, we can

estimate the transition probabilities between every two states

and construct the transition matrix of the Markov chain shown

below:

T =





p00 p01 p02
p10 p11 p12
p20 p21 p22



 (1)

According to the properties of Markov chain, we have:

lim
n→∞

T
n =





π0 π1 π2

π0 π1 π2

π0 π1 π2



 (2)

in which π = [π0, π1, π2] is called the stationary distribution

of the Markov chain. We can simply calculate π through

computing a normalized multiple of a left eigenvector E of

the transition matrix T with an eigenvalue of 1:

π =
E

∑

i ei
(3)

where ei is the i-th element of eigenvector E. Since the

stationary distribution π reflects the probabilities that each

state of Markov chain will be visited in the future, which can

be used to predict the access frequency of each data object.

Based on the predicted access frequency in the future,

we rank the data objects so that we can determine which

data object should be placed or moved to SSD drives. Note

that, however, even if the calculated stationary distribution

tells us state 1 will be visited with higher probability than

state 2, to rank the importance of the data object, we must

consider that state 2 represents a higher access frequency.

Therefore, we use a weighted sum of the stationary distribution

to rank the importance of the data objects, where the weights

are defined by values that are proportional to the access

N Total number of storage drives

M Total number of data objects

csi Capacity of storage drive i

dsi Size of data object i

fi Predicted frequency of access for data object i

bij Bandwidth for the link connecting storage drives i and j

ati Average throughput for storage drive i

eij Whether data object i is stored on storage drive j (0 or 1)

cpi The minimum number of copies for data object i

TABLE I
NOTATIONS OF SYMBOLS

frequency ranges that the states represent. For example, if

we obtain the stationary distribution of the data object as

π = [0.31, 0.56, 0.13], and we assign weights [0, 10, 20] to

the three different states, we can calculate the rank of the data

object by rankobjx = 0.31× 0+0.56× 10+0.13× 20 = 8.2.

We can then compare the ranks of objects, and provide input

for the placement engine.

D. Finding Placements under User Polices

Once we obtain the predicted popularity of data objects,

i.e., their ranks, the next step is to find an optimized placement

solution such that the access latency is minimized, while satis-

fying users’ placement policies. In this aspect, we assume that

users’ requests will be parametric, meaning that all requests

will be embedded into equations or constraints. For example,

by using the notations in Table I, a requirement on the number

of redundant copies of a data object i stating that at least three

extra copies must be made can be expressed as cpi > 3.

Our solution to this problem is by formulating the placement

problem in a mathematical optimization as follows:

We want to maximize:

∑

i∈M

fi ×max[∀j ∈ N, atj × eij ] (4)

subject to constraints such as:

∑

j∈N

eij = cpi, ∀i ∈ M, (5)

∑

∀i s.t. eij=1

dsi ≤ csj , ∀j ∈ N, (6)

In this short paper, we only give a description of an easier

scenario in these equations. In this example, Equation 4

specifies that we want to find a way that assigns data objects

to storage devices such that the weighted access throughput

by the access frequency is maximized. Note that we use the

equation atj × eij to filter those storage devices where the

particular data object i is stored on: if i is stored on device j,

we know eij = 1, otherwise eij = 0. Hence, finding the max

of them translates into finding the storage unit with a copy of

data object i that has the highest throughput.

On the other hand, this optimization goal is subject to two

or more constraints. In this example, we only consider two

of them, in Equation 5 and Equation 6, respectively. The first

constraint specifies that each storage drive j should not contain

more data objects than its capacity, while the second constraint

specifies that the number of duplicate copies of a data object
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should be set according to the users’ placement polices. If a

data object does not need to have duplicates, its cp value is

set to 1 by default.

In more complex scenarios, the users may have additional

constraints. As we mentioned earlier, such constraints are pa-

rameterized, meaning that we can easily add more constraints

to the formulation above. Finally, even the optimization goal

can be adjusted. For example, if we only want to minimize

the access delay rather than the throughput, we can change

the Equation 4 accordingly.

Based on this formulation, we notice that the optimization

is reduced to a linear programming problem where we can

use numerical methods to recalculate its solution periodically

in the placement engine. Note that the engine is operating

independently of the rest of the system. Doing so does not

require the engine to be tightly integrated, so that we can

easily change the engine’s implementation as needed, which

gives us additional flexibility.

IV. SYSTEM EVALUATION

In this section, we systematically present the evaluation

of the proposed algorithm. We first present a study of the

traces of data object accesses, based on which we evaluate

the performance of our learning algorithm by replaying them.

We use a long-term I/O traces, LASR traces [22], which were

collected at system-call level. We track the access frequency

of different files during their lifetime. Specifically, we divide

the time span into hundreds of time slots and each of which

has same length. We then count how many times each file

has been accessed during each time slot. In the LASR traces,

we eliminate those files which have only been accessed less

than 10 times during their lifetime (the access of these files

almost has no impact on the performance of the storage

system) and focus on the remaining ones (1,703 files) which

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Object ID

F
u
tu

re
 a

c
c
e
s
s
 t

im
e
s

not chosen

chosen

Fig. 6. Future Access Times of Data Objects

are more frequently accessed. By analyzing the access of

these frequently accessed files, we find out that these files

can be roughly put into two categories according to their

access patterns. The first category contains files that have

constant access patterns. Files in this category have been

frequently accessed during their whole lifetime, without too

much difference between the maximum and minimum access

periods. Fig. 4 shows a typical file falls into this category. The

learning algorithm, especially the Markov chain approach can

achieve a higher level of accuracy for this kind of files. The

second category is files with a bursty access pattern. Files in

this category have only been accessed at very few time slots,

but the access counts for those time slot can be very large.

Fig. 5 shows a typical file falling into this category. For files

belong to second category, it is pretty hard for any learning

algorithm including Markov chain approach to train a model

to accurately predict their future access frequency.

To save the evaluation time, we did not use the entire

LASR traces, instead, from the dataset we select traces of

files that have been accessed more than 1,000 times (traces of

40 different files). For each trace we use the first half as the

training data to train our Markov prediction model while use

the other half as the testing data. As illustrated in Fig. 6, the

bars represent the future access frequency of the 40 different

files which are extracted from the testing dataset. Since we

only have limited SSD storage space, our goal is to store the

files that will be most frequently accessed in the future on SSD

devices to improve the average data access throughput. For

example, if we can only put 10 of 40 files on SSDs, as shown

in Fig. 6, the light-colored bars illustrate the files predicted

by our Markov model that are required to be placed on SSD

devices. From the results we can observe that, 7 of 10 files that

have the highest future access frequency have been chosen.

We next choose random selection approach as baseline

and compare the average read throughput achieved by our

Markov prediction model with that achieved by random object

selection. Here the random object selection means that we

randomly choose several data objects (files) and put them

on SSD devices. The number of data objects that can be

placed on SSD devices is also limited. For example, in the

simulation, we vary the number of data objects that can be

put on SSD devices from 2.5% to 50%. Besides, we set
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the read throughput of SSD devices as 550MB/s and that of

HDD devices as 120 MB/s, consistent with typical datasheets

provided by manufacturers of storage devices [4]. As shown

in Fig. 7, our object selection approach can achieve higher

average read throughput than random selection, demonstrating

the effectiveness of our proposed approaches.

V. CONCLUSIONS

In this paper, we presented a study of developing a hybrid

configuration (SSD and HDD) for storage needs of HPC

environments. Specifically, we proposed an integrated object

placement framework with adaptive learning algorithms. The

method placed data objects with considering both the popular-

ity of the data and the capability of different storage devices,

so that the data access performance can be optimized. The

method also integrated a Markov chain algorithm where real-

time classification is employed to predict the popularity of

data object accesses, so that they can be placed on, or migrate

between SSD or HDD drives in the most efficient manner. Our

preliminary results based on realistic data traces demonstrate

that this approach is highly promising, and achieves better

performance than benchmark methods such as pure random

selections.
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