
Client-aware Cloud Storage

Feng Chen Michael P. Mesnier Scott Hahn

Louisiana State University Intel Labs Intel Labs

fchen@csc.lsu.edu michael.mesnier@intel.com scott.hahn@intel.com

Abstract—Cloud storage is receiving high interest in both
academia and industry. As a new storage model, it provides many
attractive features, such as high availability, resilience, and cost
efficiency. Yet, cloud storage also brings many new challenges. In
particular, it widens the already-significant semantic gap between
applications, which generate data, and storage systems, which
manage data. This widening semantic gap makes end-to-end dif-
ferentiated services extremely difficult. In this paper, we present
a client-aware cloud storage framework, which allows semantic
information to flow from clients, across multiple intermediate
layers, to the cloud storage system. In turn, the storage system
can differentiate various data classes and enforce predefined
policies. We showcase the effectiveness of enabling such client
awareness by using Intel’s Differentiated Storage Services (DSS)
to enhance persistent disk caching and to control I/O traffic
to different storage devices. We find that we can significantly
outperform LRU-style caching, improving upload bandwidth by
5x and download bandwidth by 1.6x. Further, we can achieve
85% of the performance of a full-SSD solution at only a fraction
(14%) of the cost.

Index Terms—Storage, Operating systems, Cloud computing,
Cloud storage

I. INTRODUCTION

Cloud storage is becoming increasingly popular among

enterprise and consumer users. According to an IHS report,

personal cloud storage subscriptions have reached 500 million

in 2012 for major providers such as DropBox and iCloud [10].

The combined public and private cloud storage market is

predicted to be $22.6 billion by 2015 worldwide [24].

Unlike conventional storage, such as local disk drives or

NFS servers, public cloud storage users store, access, and

manage files (objects) stored in the data centers of service

providers and pay for the service based on a monthly rate, or

actual usage. For its unique technical merits, such as high

availability, resilience, and cost efficiency, cloud storage is

quickly changing the way people store and manage data.

A. The Challenge of Widening Semantic Gap

Benefits aside, cloud storage introduces many new chal-

lenges (e.g., [16], [17], [20], [26]). In particular, it further

widens the already-significant semantic gap between appli-

cations and storage systems, making it especially difficult to

realize end-to-end differentiated services, often referred to as

Class of Service (CoS).

Cloud storage is not a file system that users can directly in-

teract through conventional read/write commands. Instead,

an HTTP-based REST interface (e.g., GET/PUT) is used for

transmitting data from client to server. During this process,

Fig. 1. Data flow in the existing cloud storage framework

valuable semantic information, which is only available on

the client, is lost. Figure 1 illustrates such a process – (1)

Before uploading a file, the user has rich semantic knowledge

about the data, such as ownership, priority, data importance,

interest-based ranking, etc. (2) When the data is transmitted

to the cloud storage server, the server sees an object with

limited information (e.g., object name), and most semantic

information is stripped off. (3) When data is written to

the storage system, the storage system only sees a stream

of bytes. As so, realizing end-to-end (i.e., client-to-server-

storage) differentiated services becomes extremely difficult.

For example, how can cloud storage tell the difference between

1-star songs and 5-star songs and store them differently?

Fig. 2. Logical/physical interfaces in cloud storage

To enable client awareness in cloud storage, semantic

information must flow along with the data across multiple

logical and physical layers (See Figure 2). Unfortunately, with

existing cloud storage infrastructures, we lack the appropriate

mechanisms to enable such semantic information flow, from

collecting the semantic information on the client side to

utilizing such information on the server side. We need to

systematically reconsider the entire cloud storage stack and

build a semantic information channel from the client to the

storage, which involves multiple intermediate layers that need

to be tailored to make cloud storage truly client-aware.

978-1-4799-5671-5/14/$31.00 © 2014 IEEE Published by the IEEE Computer Society

B. Potential Use Cases

Client-aware cloud storage can be used in many scenarios.

• Semantic importance-based caching - Emerging storage

technologies, such as flash SSDs, can be used for persistent

storage caching in cloud storage systems. Lacking semantic

hints from clients, traditional caching schemes, such as

LRU, cannot reflect the semantic importance of data from

users’ perspective. With client-awareness, we can selectively

choose semantically critical data for caching.
• Selective on-line compression - Cloud storage can apply

on-line compression to reduce capacity and cost, however,

the efficiency of compression is highly dependent on object

types. For example, multimedia objects, such as video and

audio files, are already heavily compressed. Compressing

such objects cannot provide any further benefits, but only

unnecessary overhead. With our client-aware cloud storage

framework, these difficult-to-compress objects can be la-

beled in advance to bypass the compression.
• Differentiated encryption - Privacy and security are always

important in cloud services. Encryption provides protection

but incurs a potentially high performance penalty, which

degrades user experience. Giving users the capability to

selectively encrypt certain data can help achieve a good

balance between performance, cost, and security. For ex-

ample, videos can be uploaded without being encrypted,

while emails can be encrypted.

To enable each of these possibilities, the cloud storage must

have the capability of differentiating requests and applying

different service policies to user generated data.

C. Client-Aware Cloud Storage

We present a design for building client-aware cloud storage.

In principle, our design is based on data classification. Specif-

ically, the client classifies data and requests different classes

of data to be handled with different storage policies (e.g., low

latency versus high throughput). The classification informa-

tion, as well as the data, is transmitted over the network to

the cloud storage server through an augmented REST interface

(PUT/GET). The cloud storage is responsible for extracting the

classifiers from the HTTP requests and translating them into

storage system policies. The storage system, in turn, enforces

the associated policies. In other words, this framework enables

clients to label data and pass the label along with data to the

storage, where data is managed based on labels.
We have prototyped a complete stack of the proposed

client-aware cloud storage based on OpenStack Object Storage

(Swift) [1]. This prototype system includes (1) a cloud storage

client emulator that simulates hundreds of clients that are

concurrently performing cloud storage operations based on

specified object type/size distributions, (2) a classification-

enabled cloud storage server, which handles labeled requests

and interacts with a policy-based storage system, and (3) a

tiered storage system based on DSS [23], which enforces

certain service policies. We demonstrate the strength of this

framework with two practical applications, persistent disk

caching and fine-grained I/O traffic control, to enhance cloud

storage performance and manageability. As mentioned, the

proposed mechanism can also enable a variety of other op-

timization opportunities, such as differentiated security and

reliability.

D. Our Contributions

In this paper, we make the following contributions: (1) We

present a client-aware cloud storage framework designed to

improve end-to-end class of service (CoS). (2) We propose

a backward compatible and easy-to-standardize REST API

interface for transmitting semantic hints to the server. (3) We

present a complete prototype of the proposed framework. (4)

We demonstrate the effectiveness of the proposed framework

by using persistent disk caching and an I/O traffic control.

The paper is organized as follows. Section II presents

background on cloud storage. Sections III and IV describe

our design and implementation. Section V presents the ex-

perimental evaluation. Section VI presents the related work.

Section VII discusses our future work.

II. BACKGROUND

In this section, we introduce the storage model, the archi-

tecture, and the API of cloud storage. Our description is based

on OpenStack Swift [1], which is similar to Amazon S3. More

details can be found in the on-line documentation [1].

A. The Swift Cloud Storage Model

An object is the basic entity of user data in cloud

storage. Conceptually, an object is akin to a file

in file system. Each object can be associated with

optional metadata in the form of a key/value pair.

An object can be specified as a URL consisting of

a service address, container, and object name (e.g.,

http://localhost:8080/v1/AUTH_test/c1/foo).

The maximum object size is 5 GB, which is limited by the

HTTP protocol. Objects larger than 5GB must be segmented

into smaller chunks, and a manifest is used to locate the

related segments of a big object. Objects are organized into

logical groups, called containers (akin to buckets in Amazon

S3). A container is analogous to a directory in a file system.

Unlike directories, containers cannot be nested, but users

can emulate a hierarchical naming structure by arbitrarily

inserting “/” in object names.

B. Cloud Storage API

Almost all cloud storage services provide a simple REST

(Representational State Transfer) web service interface to

allow users to store and retrieve objects. Normally at least

five standard HTTP primitives (verbs) are supported – PUT

(uploading), GET (downloading), POST (updating object meta-

data), HEAD (retrieving object metadata), and DELETE (re-

moving an object). For each operation, a URL is presented to

specify the target object stored in the cloud storage. Besides

the operation and the URL, a number of HTTP headers are

used to carry extra information to the server. For example, in

Swift, the X-Auth-Token header carries the authentication

token for access control. We leverage HTTP headers to carry

extra hints from the clients.

With the REST API interface, a request can be constructed

easily with tools, like curl [2]. The below is an example

of uploading the file ‘foo’ to cloud storage in the container

‘c1’ with an authentication token of ‘abc’. Some cloud storage

services also provide command-line, GUI (e.g., CyberDuck),

or web interfaces. In essence, such tools simply translate

actions to REST operations.

curl -X PUT -H "X-Auth-Token: abc" -T "foo" \
http://localhost:8080/v1/AUTH_test/c1/foo

C. Swift Object Storage Architecture

Cloud storage is a large-scale distributed storage system

carefully designed for availability, resilience, and cost ef-

ficiency. A ring describes the mapping from the name of

storage entities (e.g., an object or a container) to their physical

locations. Accounts, containers, and objects have separate

rings. Storage entities in a ring are divided into partitions.

Each partition is replicated (3 times by default) in the cluster,

and the mapping (locations for a partition) is maintained

by the ring. The ring also determines the fail-over devices.

Partitions are guaranteed to be evenly distributed among all

devices in the cluster. For reliability, storage devices are

logically organized into zones, based on their physical location,

network connectivity, machines/cabinets, etc. For example, a

zone could be a disk drive, a server, or a cluster of servers

connected to the same switch. Zones should be isolated from

each other as much as possible. When replicating a partition,

each replica is guaranteed to reside in a different zone.

Fig. 3. An illustration of cloud storage system

A cloud storage cluster consists of many physical machines

(nodes), each runs one or more services (Figure 3). The proxy

server is a gateway that exposes APIs to clients and handles

incoming requests. The object server performs PUT, GET,

and DELETE operations on local storage devices. Each object

is stored in the host file system as a file and associated

metadata, if any, is stored in the file’s extended attributes

block (XATTR), which requires support from file systems,

such as Ext4 or XFS. The container server maintains listings

of objects in a container. It only tracks whether an object is in

a container and disregards its physical location. The account

server maintains listings of containers for an account, similar

to container servers. Swift nodes also run several supporting

services, such as the replicator, which replicates data in the

cluster, the updater, which handles delayed updates to storage

entities, and the auditor, which periodically scans the file

system to check object integrity. We normally call a machine

running the proxy service a proxy node, and a machine running

the other services as storage node. Since the services and

nodes are largely isolated from each other, the storage services

can be scaled out.

III. DESIGN

In order to make cloud storage client-aware, we need to

consider the following three questions:

• How to describe and express the most valuable semantic

information in a compact and general way to satisfy the

CoS requirement for applications?
• How to transmit the semantic information across multiple

logical and physical interfaces between client and storage,

without introducing significant disruptive changes to the

existing architecture?
• How to appropriately handle and leverage the client-supplied

semantic hints for improving services?

In this section, we answer these questions by following

the information flow from the client to the storage – (1)

generating semantic information at the client, (2) transmitting

the semantic information to the server, (3) handling the seman-

tic information appropriately at the server, and (4) enforcing

service policies in the storage system. Figure 4 illustrates this

process.

Fig. 4. Architecture of client-aware cloud storage

A. Collecting Semantic Information on the Client

Users possess rich semantic knowledge about data. How-

ever, the semantic information that matters the most differs

across various applications. For example, ranking information

is important for managing a music library (e.g., 5-star songs

vs. 1-star songs), while distinguishing I-frames in a video file

is important for video analytics. By being able to differentiate

distinct classes of data, cloud storage can employ proper

storage management policies for various purposes, such as

selectively caching important objects in SSDs (e.g., 5-star

songs) or encrypting certain objects (e.g., emails).

One principle of our design is to separate data classification

and policy enforcement. Specifically, the client classifies data

and the storage system enforces policies. Such a separation

enables a dynamic mapping between data classes and storage

policies, which can be flexibly defined and configured by

administrators.

1) Data classification: A classifier is a numerical value

differentiating one group of data from another. Classes are

used only for the purpose of differentiating data, and the

associated numerical values do not necessarily imply any

relative priority for storage services. The size of a classifier

is defined by the capability of storage system. For example, a

5-bit classifier is used in DSS [23].

In our design, data classification can be performed at three

different granularities:

• Object-based – The client can associate a classifier with an

entire object.
• Range-based – The client can associate a classifier with a

range of 512-byte sectors in an object.
• Block-based – The client can associate a classifier with a

given block (e.g., 4096 bytes) in an object.

Applications select the appropriate classification granularity

based on their needs. For example, a music library manager

can use object-based classification to differentiate 1-star songs

and 5-star songs; a video analytics tool can use range-based

classification to separate I-frames from the other frames in

a video file; a virtual machine manager can use block-based

classification to identify metadata and data blocks inside a

virtual disk image file. If no class is provided, the object is

regarded as a regular object with no classification information

and the default management policies are applied. This makes

classification an enhancement rather than a requirement, which

provides backward compatibility.

2) Classifying data at the client: The client is responsible

for creating and transmitting the class information to the

server. In our vision, at least three classification mechanisms

can be implemented on the client.

• Manual labeling – A user can manually assign a classifier

to a file either through a command line interface or a GUI

interface (e.g., mark a file with colors in a right-click menu).

Users often upload data through a dedicated client, which

also provides an opportunity for cloud service providers to

integrate such a capability.
• General-purpose classification – Client systems can pro-

vide a default classification. For example, DropBox clients

segment objects larger than 4MB into multiple 4MB chunks

[14], which makes a cloud storage server lose track of the

original file sizes, which is important for caching. A general-

purpose classification scheme can directly extract the file

size information from the client and send to the server.
• In-app classification – Applications with integrated cloud

storage support can extract deep semantic information. For

example, a music library manager (e.g., iTunes) can use the

ranking information (e.g., 1-star songs vs. 5-star songs) to

classify music files based on the semantic importance.

B. Transmitting Classification to the Server

We provide both in-band and out-of-band modes to transmit

classification information from client to server. In both cases,

classifiers can be transmitted either in headers, or in objects.

1) In-band mode: In the in-band mode, the classifiers are

transmitted along with the object content to the cloud storage

server in one single HTTP request. There are two ways to

perform in-band classification.

• Transmitting classifier in HTTP headers – When a client

sends an HTTP request to the cloud storage server, we create

HTTP headers to transmit classifiers for object- and range-

based classification. For object-based classification, we create

a new header X-DSS-Object-Class to contain a classifier,

which represents the class of all blocks in the object, in an

HTTP request. The following is an example of classifying the

object “foo” as class 25.

curl -X PUT -H "X-Auth-Token: abc" -T "foo" \
-H "X-DSS-Object-Class: 25" \
http://localhost:8080/v1/AUTH_test/c1/foo

For range-based classification, we create a new header

X-DSS-Range-Class to contain a string, which specifies

the classes for a sequence of data ranges of the object. Each

range is represented as <offset>-<length>-<class>,

where offset and length are in units of sectors (512

bytes) and class is the classifier for the corresponding data

range. The following is an example of classifying two ranges

of blocks to class 25 and 26.

curl -X PUT -H "X-Auth-Token: abc" -T "foo" \
-H "X-DSS-Range-Class: 0-64-25,1024-32-26"\
http://localhost:8080/v1/AUTH_test/c1/foo

A constraint of using headers to transmit classifiers is that

the header size is limited. For example, the Apache server

can accept a header of at most 8190 bytes by default. Thus,

it is unsuitable for transmitting a large number of classifiers,

especially for block-based classification in a large object.

• Transmitting classifiers in objects – To address the header-

size limitation, classifiers can be transmitted by crafting a

specially formatted object file, containing both classifiers and

data. We create a header X-DSS-Object-File to use with

PUT operations. If the header contains a string ‘True’, the

uploaded file is an object with classifiers embedded. Upon

receiving such a request, the cloud storage server knows to

extract the embedded classification information.

RESERVED
(12 Bytes)

V
E

R
_

ID

(1
 B

yt
e

s
)

C
L

S
_

B
Y

T
E

S

(1
 B

yt
e

)

M
A

G
IC

_
S

IG

(2
 B

yt
e

s
)

O
B

J
_

C
L

A
S

S

(C
L

S
_

B
Y

T
E

S
 b

yt
e

s
)

OBJ_DATA
(Variable)

Metadata Section Class Section Data Section

Fig. 5. Object-based Classification Format

An object with embedded classification information con-

tains at least two sections, a Metadata and a Class section,

plus an optional Data section. Specifically, (1) the metadata

section describes the format of the class section, (2) the class

section contains one or multiple fixed-size entries, each of

which associates a class with object data, and (3) the data

section contains the object data, if the in-band mode is used.

All three classification methods are supported by in-object

transmission of classification information. Depending on the

classification method used, metadata and class sections are

defined differently. Figure 5 shows an example of object-based

classification. Complete descriptions of all three types of data

classification can be found in the Appendix (A.1).

2) Out-of-band mode: In the out-of-band mode, the clas-

sifiers can be transmitted to the cloud storage after an object

is uploaded. This gives users an opportunity to re-classify an

object without re-uploading the data. There are two ways to

perform out-of-band classification:

• Transmitting classifiers in headers – The header can be

used with GET operations for downloading, or with POST

operations to update the object’s metadata. When the server

receives the request, it re-classifies the object. The following

example reclassifies object ‘foo’ to class 26.

curl -X POST -H "X-Auth-Token: abc" \
-H "X-DSS-Object-Class: 26" \
http://localhost:8080/v1/AUTH_test/c1/foo

• Transmitting classifiers in objects – We create a header

X-DSS-Class-File with PUT operations to upload a file

only with the metadata and class sections. When using this re-

quest, the target URL specifies the object for re-classification,

and the header contains a string ‘True.’ Upon receiving such

a request, the cloud storage server knows that the uploaded

file contains classification information only. The following is

an example of reclassifying object ‘foo.’

curl -X PUT -H "X-Auth-Token: abc" \
-T "foo.cls" \
-H "X-DSS-Class-File: True" \
http://localhost:8080/v1/AUTH_test/c1/foo

C. Handling Requests with Classifiers on the Server

Upon receiving an HTTP request with classifiers, the cloud

storage server needs to (1) extract the classification informa-

tion, and (2) access the local storage system (as per the DSS

protocol).

1) Handling requests with classifiers: When a request

arrives, the cloud storage server checks to see if it is a

request with classification information. If the request car-

ries classifiers in headers (using X-DSS-Object-Class or

X-DSS-Range-Class), the embedded values are extracted.

Then the server begins to receive the object data from the

socket buffer and writes data into storage using the DSS

protocol [23]. To improve storage performance, the object data

is written into storage in chunks, each of which is a sequence

of contiguous blocks with the same class.

If the incoming request carries classification information in

the object (i.e., the X-DSS-Object-File header is ‘True’),

the server first reads the metadata section from the socket

buffer to determine the classification format (object-, range-

, or block-based), then reads the class section and forms

the classifiers, and finally the object data is read out of the

socket buffer and written into the storage system with I/Os

and associated classifiers.

2) DSS protocol overview: Running at the application level,

the cloud storage server needs to deliver the classification in-

formation across the application/OS interface. The server code

normally interacts with storage using language-specific APIs,

which interface to I/O syscalls. The standard I/O syscalls, such

as read() and write(), only pass limited information,

such as the file descriptor, length, memory pointer, etc. We

use the POSIX scatter/gather I/O interface to transmit extra

classification information to local storage [23].

unsigned class = 23; /* a class ID */
int fd = open("foo", O_RDWR|O_CLASSIFY);

iov[0].iov_base = &class; /* class ID */
iov[0].iov_len = 1; /* 1 byte */
iov[1].iov_base = "Hello, world!"; /* data */
iov[1].iov_len = strlen("Hello, world!");
rc = writev(fd, iov, 2);
close(fd);

The POSIX standard provides a scatter/gather I/O inter-

face, namely readv() and writev(), to perform vectored

I/Os to input/output a data stream from/to multiple memory

locations in one syscall. We pack the classifier with the

data into a multi-element vector and transmit it through the

readv/writev interface to the OS kernel. As shown in the

above example code [23], the file is first opened with a flag

O_CLASSIFY. When preparing the array of memory buffers,

one additional 1-byte scatter/gather element containing a clas-

sifier for the I/O is added as the first element. When the OS

sees a scatter/gather I/O to a file with the O_CLASSIFY flag

set, it assumes the first element of the received scatter/gather

list points to a classifier (1 byte) and the remaining elements

point to data buffers. Upon receiving such an I/O, the OS

extracts the classifier and associates it with a kernel-level I/O

request, passes it across the VFS layer, the generic I/O layer,

and eventually to the device driver. When the request reaches

the SCSI device driver, the classifier associated with the I/O

is copied into a 5-bit, vendor-specific Group Number field

in byte 6 of the SCSI CDB. At this point, the I/O with its

classifier is given to the storage system.

D. Enforcing Policies in the Storage System

When an I/O with a classifier is received, the storage

system enforces the associated policy, which is assigned to

predefined classes when the storage system is initialized. A

variety of storage system policies can be developed, and here

we demonstrate with disk caching and traffic control.

1) Classification-based persistent disk caching: In the

tiered storage system, flash SSDs are used as a cache for

hard drives. With semantic hints, the limited SSD space can

be efficiently used for caching the most “important” data,

which improves system throughput, reduces latency, and also

improves cost efficiency.

Here we briefly introduce our caching scheme. More de-

tails on the caching mechanisms are available in our prior

work [23]. We first segment the SSD cache into 4KB entries.

Initially all free entries are linked in a free list. For each I/O,

cache entries are allocated from the free list and added to a

class-specific dirty list. A hash table tracks the mapping of

logical block number (LBN) to the allocated cache entries.

A syncer daemon tracks the number of free cache entries. If

it reaches a low watermark, the syncer initiates a cleaning

process by scanning the dirty list. Whenever an entry is

accessed, it is moved to the end, so the syncer always cleans

the least recently used (LRU) entry. The cleaned entries are

added back to the free list, which is also an LRU list.

As any caching solution, the most important decision is

cache admission and eviction. With semantic hints, the tiered

storage system can make caching decisions based on the

priorities of data classes. Two algorithms are used:

• Selective allocation – When the storage cache is under

pressure, (i.e., when the syncer daemon is actively cleaning

the dirty entries), incoming I/Os that carry a classifier below

a specified priority level would bypass the cache, because

caching such “less important” data would only increases

cache pressure.
• Selective eviction – Knowing data classes and their relative

priorities, eviction can start with the lowest priority class.

When the low watermark is reached, the syncer daemon

scans the lowest priority list first, and then the second lowest

one, and so on. For each list, the LRU entry is evicted first.

This process repeats until reaching a high watermark.

2) Fine-grained I/O traffic control: A client-aware cloud

storage framework also enables many other potential opti-

mizations, such as reliability, security, and management. Fine-

grained I/O traffic control is one – Cloud storage vendors

often desire to have the capability of controlling I/O traffic,

e.g., directing emails and videos to different storage pools.

Current solutions are very coarse-grained. and inflexible. Our

framework provides a fine-grained classification capability to

precisely control the location of each uploaded object by

labeling objects with different classes. More details will be

discussed in Section V.

IV. IMPLEMENTATION

We have implemented a complete stack of the proposed

client-aware cloud storage system, from client, server, to

storage. Our prototype system includes five major components.

(1) Cloud Storage Client – As existing cloud storage bench-

marks (e.g., COSbench [4]) do not generate data classification

information, we developed a cloud storage client emulator

to generate synthesized cloud storage workloads based on

specified distributions. With an actual distribution provided by

a cloud storage service provider, we can faithfully generate

realistic cloud storage traffic. This tool is implemented in

Python and consists of about 2,300 lines of code. We use

the pycurl library for the HTTP communication. Users can

specify object type distributions (e.g., 60% for videos), and

the object size distribution for each type (e.g., 80% less than

128KB), and assign data classes. When initialized, a pool of

files with different types and sizes is created. Then, a pool of

connections is created to emulate a specified number of client

connections to the cloud storage. This emulator performs ex-

periments in several phases. Each phase of operations follows

the user-configured distribution. Details about the workloads

will be introduced in the next section.

(2) Modified the Object Storage Server – Our client-aware

cloud storage server is based on OpenStack Swift 1.4.6 [1]. We

added about 600 lines of code in the object server controller,

which is a fairly small patch. The main work is to add support

to handle requests with classifiers. When we receive a request

with classification-related headers (i.e., X-DSS-<foo>), the

request and the related data are as described in the prior

section. For requests with classifiers, we use Python-specific

API functions that interface to writev() and readv()

system calls to communicate with the OS kernel. In our current

prototype, we have implemented the object-based and range-

based classification for both in-band and out-of-band modes.

The in-object classification is partially supported in our current

prototype.

(3) Python APIs for Scatter/Gather Syscalls – OpenStack

Swift reads and writes objects through the standard Python

APIs for I/Os. Swift 1.4.6 relies on Python 2.x, which does not

support the scatter/gather I/O. We wrote a standalone Python

library module, called dssio, which provides two API functions

dread() and dwrite(), which converts to readv() and

writev() syscalls, respectively. The module is written in C

and consists of about 110 lines of code. The library enables

the classification information to flow from the cloud storage

server to the OS.

(4) Modified the OS Kernel for Passing I/O Classification –

We modified Linux kernel 3.2.1 to add classification support

in the Ext4 file system to allow passing classifiers received

from applications via readv() and writev() to the storage

system. We added a classification field (b_class) in the

buffer_head data structure to carry the file system related

classifier (e.g., inode). When an I/O request reads or writes

the buffers, the classifier is copied to a new classification field

(bi_class) in a block I/O request (bio). When the bio

reaches the SCSI device driver, the classifier is copied into

the 5-bit Group Number field in byte 6 of the SCSI CDB.

An additional 3 reserved bits can be used, which can further

extend 32 classifiers to 256 classifiers.

(5) Hybrid Storage System – Our hybrid storage system

is implemented as a standalone RAID module in the Linux

kernel [23]. We implemented a new RAID level, RAID-9, for

users to create and manage a hybrid storage with a heteroge-

neous set of storage devices (e.g., SSDs and HDDs). Unlike

conventional RAID levels, our RAID-9 module dynamically

decides the logical-to-physical block mapping across multiple

devices based on the data classification information. Also,

unlike some RAID levels, such as RAID-5 and RAID-6, we do

not need to perform parity calculation. We also modified Linux

mdadm utility to load the module and create a hybrid storage

device (/dev/md) with a specified caching device (SSD) and

a backend storage device (HDD). The classification scheme

and the priority policy are specified during the module loading

time. Since the caching device and storage device can both

be an another RAID volume, multi-tier (recursive) caching is

possible. After the device is initiated, we can create partitions,

make file systems, and use it like any block device.

V. EVALUATION

We evaluate our prototype with our emulated cloud storage

workloads based on real object distributions, including user

files, pictures, videos, music, and virtual disk images. The

generated workload mimics the cloud storage traffic of a well-

known public cloud storage service provider [3].

A. Experimental Setup

All experiments are run on a six-node Linux-based cluster.

Two nodes are equipped with two 8-core Xeon Sandy Bridge

(E5-2690) 2.9GHz processors (16 cores) and 128GB memory.

One node is used as the client, which is responsible for

emulating concurrent client connections. The other is used as

the cloud storage proxy node, which runs the proxy server

to accept incoming requests from the client node. The other

four nodes are standard storage servers with two 6-core Xeon

Westmere (X5680) 3.3 GHz processors (12 cores) and 24GB

memory. The four nodes work as storage nodes providing

object, container, account and other supporting services. Ac-

cording to the recommended setup [1], we connect the client

and proxy nodes to a 10GbE Switch through two 10GbE links,

and the four storage nodes are connected to the switch through

1GbE links.

All nodes are installed with Fedora Core 14 with a DSS-

patched Linux 3.2.1 kernel and the Ext4 file system. Each

node is equipped with one Intel 710 SSD and two Seagate

Constellation ST1000NM0011 1TB hard drives, one of which

is used as the system disk and the other is used for experi-

ments. In order to complete the experiments in a reasonable

time frame, we keep the working-set around 100GB. We use

an SSD and an HDD to organize a hybrid device for each

storage node. The actual SSD cache size is configured to a

specified percentage (5% and 10%) of the working-set size to

reflect the true performance in a real-world setup [8].

Swift cloud storage servers are mostly configured with

the recommended default settings. In particular, we set each

object to be replicated 3 times. The connection timeout is

set to 0.5 second. All services are enabled. We use the

built-in authentication method for the proxy server. For each

experiment, we create 100 containers and objects are uploaded

to randomly selected containers. We configure 32 workers for

the proxy server and 8 workers for each object, container, and

account server. Each device is configured as an individual zone

to evenly distribute the load.

B. Workloads

Our workloads emulate five object categories. For each

category, the object size distribution is derived from real

files. We use their combination to mimic a real-life public

cloud storage service based on their input [3]. Figure 6 shows

the Cumulative Distribution Function (CDF). The figure only

shows file sizes to 16MB; file sizes larger than 16MB are

collapsed. More details are shown in Table I.

• Files emulates regular user files (e.g., documents) based

on the distribution of files generated by the SPECsfs2008

benchmark, which is also used in prior work [23].

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
e
rc

e
n
ta

g
e
 (

%
)

Object Size (KB)

CDF of Object Sizes

Combined
Files

Music
Picture
Video

VMDK

Fig. 6. Distributions of object sizes.

• Picture emulates a picture file distribution based on a photo

library of 10,711 pictures from flickr.com. The pictures

are retrieved with top-ranked search keywords, such as

‘wedding,’ ‘arts,’ ‘animals,’ etc.
• Music emulates a music file distribution based on a music

library of 2,346 audio files, which consists of different

genres, e.g., pop, jazz, and rock, etc.
• Video emulates a video file distribution based on a large

video library, which contains 319,073 video files crawled

from YouTube.com [12].
• VMDK emulates a file distribution of large virtual machine

disk images in cloud storage. Since the HTTP protocol has

an object size limit of 5GB, files larger than that split into

smaller ones. So we randomly select the object size between

1GB and 5GB.

File Size Files Picture Music Video VMDK

≤64KB 79% 17.1% 0% 0.3% 0%
≤512KB 14% 43.6% 0% 2.8% 0%
≤1MB 3% 14.5% 0.8% 4.9% 0%
≤5MB 2% 20% 52.3% 32.4% 0%
≤10MB 1% 3.5% 39.6% 31.7% 0%
≤50MB 0% 1.3% 7.3% 27.3% 0%
≤100MB 0% 0% 0% 0.4% 0%
>100MB 0% 0% 0% 0.2% 100%
Percentage 60% 35% 4% 0.9% 0.1%

TABLE I
OBJECT TYPE AND SIZE DISTRIBUTIONS

The synthesized workloads perform cloud storage oper-

ations in five phases. We first create 100 containers, then

perform 26,000 PUT requests to upload 100GB data to the

cloud storage, which is replicated 3 times in the cluster. Then

we perform 100,000 GET (downloading) requests, and finally

DELETE all objects.

C. Case study: disk caching

In cloud storage, SSDs can be used as a cache to speed up

I/O accesses. User-specified classification information can be

used to guide cloud storage to cache the most important data in

the SSD, which significantly improves caching performance.

1) Classification and Storage System Policies: As an ex-

ample policy, we use object types to classify the objects. We

assign the five object types, Files, Pictures, Music, Video, and

Description Class ID Priority

FS Metadata 1-10 0
Files ≤ 256KB 11-14 1

USER0 24 2
...

USER7 31 9
Files > 256KB 15-22 10
Unclassified 0 11

TABLE II
REFERENCE CLASSES AND CACHING PRIORITY

VMDK with different medium-priority classes (class USER1-

USER5 in DSS [23]), whose caching priorities are high to low

in that order. Recognizing that large objects can easily pollute

the SSD cache, we assign large objects with the lowest priority

(class USER7 in DSS). For selective allocation, we fence off

the lowest priority data when there is cache pressure and let

them directly bypass the cache and be self-evicted. As so,

we can evict large objects to the backend storage (HDDs) to

avoid cache thrash. For selective eviction, we give file system

metadata and small files the highest priority, since Swift

involves many metadata and small file operations (e.g., SQLite

DB files updates). The objects with user-defined classifiers

(USER0-USER7) are given the second highest priority. The

lowest priority is given to large files and unclassified data.

Table II gives more details.

2) Performance of Semantic Hint-based Caching: We com-

pare the cloud storage performance on storage with hard drives

only (HDD), SSDs only (SSD), an LRU-based cache (LRU),

and an enhanced LRU cache that uses semantic hints from

the clients (DSS). We show the caching effects by setting the

cache space proportional (5% and 10%) to the working-set

size, which are considered cost-effective in practice [8].

Figure 7 shows the bandwidths, latencies, and failure rates.

We can see in the figure that, as we increase the cache

space from 5% to 10%, the uploading performance (PUT) is

improved for DSS, from 53MB/sec to 76MB/sec. With a 10%

cache size, DSS can achieve 87% of the bandwidth of using

an SSD-only solution (86MB/sec) and outperform LRU by 5

times. In contrast, LRU remains at 14MB/sec to 15MB/sec,

which is even 3.6 times lower than HDD. This is because,

knowing data classes, DSS can selectively allocate SSD cache

space when the cache is under pressure. In contrast, LRU

cannot distinguish and blindly caches everything, which causes

data to first flush into cache and soon be evicted out to the

hard drives. This doubles the I/O operations and leads to cache

thrash.

The downloading (GET) bandwidth difference is also sig-

nificant. DSS can achieve a bandwidth of 295MB/sec, which is

85% of the performance of the full-SSD solution (347MB/sec)

and 1.6 times higher than LRU. LRU, in contrast, shows

degraded performance (88MB/sec) with a small 5% cache size,

which is 2.1 times lower than HDD. With a 10% cache size,

the bandwidth of LRU (178MB/sec) becomes close to HDD.

For latencies, as shown in Figure 7(e), the average down-

loading latency (i.e., until the first byte is received by the

client) for DSS with 10% cache is 89 ms, which is 5.5 times

less than LRU (497 ms) and 3 times lower latencies than SSD

(275 ms). This is because with DSS, incoming requests can be

served from two devices (SSD and HDD), while the SSD-only

solution cannot benefit from the device-level parallelism. Also,

since the SSD holds mostly small objects, the small requests

wait less behind large requests.

In Figure 7(b), we can find that LRU appears to show a

lower latency than DSS for uploading. Figure 7(c) explains

this. Due to the HTTP connection timeout, the failure rate of

LRU is much higher than DSS, and the failed connections

complete earlier than the successful connections by only

sending back a failure response (e.g., HTTP 503 code). This

makes the average latency of LRU appear lower.

In order to understand why DSS performs better than LRU,

we show the content they choose to cache. As shown in Figure

8, LRU uses most space to cache VMDK and other large

objects (more than 10MB), and the portion of cache space

occupied by these large objects is also roughly constant across

different cache sizes (from 5% to 10%). In contrast, DSS

caches data based on the user-specified importance. When the

cache size is limited, most space is used to cache metadata and

the small objects from the “Files” distribution. As cache space

increases, more space is used to cache the other classes, such

as pictures and music, while VMDK and other large objects

remain a small percentage. Since the user-defined classification

offloads large objects and VMDK files to the HDD, DSS uses

the SSD space more effectively.

3) Cost Efficiency: We also use “U.S. $/GB/IOPS” as the

metric to calculate the cost efficiency. According to Ama-

zon.com, the cost of an Intel 710 series SSD is about $3.95

per GB, which is 26 times more expensive than a Seagate

Constellation ST1000NM0011 hard disk ($0.15 per GB).

Figure 9 shows the cost efficiency for the four configurations

with a 10% cache size. For presentation, we normalize the

numbers by using HDD as the baseline. We can see that

although the SSD-only solution provides high performance,

its cost is 9.9 and 14.3 times higher than HDD for uploading

and downloading. DSS is much more cost effective. DSS can

achieve a performance comparable to SSD for downloading,

but its cost is only 14% of that. LRU is 1.4 times more costly

than DSS, due to its less efficient use of SSD space.

D. Case Study: I/O traffic control

Cloud storage service providers often desire to have a

flexible control capability to direct I/O traffic to different

storage pools for a variety of reasons, such as performance

and reliability. In client-aware cloud storage, I/O traffic carries

classifiers, which helps achieve this goal easily at a fine level

of granularity. In this section, we demonstrate such a case by

redirecting I/O traffic to either an SSD or an HDD based on

object type. In this experiment, we reuse workloads in the prior

section. We set up a non-caching hybrid storage system. As

so, when uploading an object, the I/O traffic can be directed

either to the SSD or the HDD. This allows us to only speed

up accesses for selected data classes.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

5% 10%

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Cache Size/Working−set Size (%)

HDD
LRU
DSS
SSD

(a) Uploading B/W

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

5% 10%

L
a

te
n

c
y
 (

S
e

c
)

Cache Size/Working−set Size (%)

HDD
LRU
DSS
SSD

(b) Uploading Latency

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

5% 10%

F
a

ilu
re

 R
a

te
 (

%
)

Cache Size/Working−set Size (%)

HDD
LRU
DSS
SSD

(c) Uploading Cost

 0

 50

 100

 150

 200

 250

 300

 350

5% 10%

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

Cache Size/Working−set Size (%)

HDD
LRU
DSS
SSD

(d) Downloading B/W

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

5% 10%

L
a

te
n

c
y
 (

S
e

c
)

Cache Size/Working−set Size (%)

HDD
LRU
DSS
SSD

(e) Downloading Latency

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

5% 10%

F
a

ilu
re

 R
a

te
 (

%
)

Cache Size/Working−set Size (%)

HDD
LRU
DSS
SSD

(f) Downloading Cost

Fig. 7. Performance of caching with semantic hints

 0%

 20%

 40%

 60%

 80%

 100%

5% 10%
5% 10%

P
e
rc

e
n
ta

g
e
 o

f
C

a
c
h
e
 S

p
a
c
e

LRU DSS

Metadata
VMDK/Large
Video
Music
Picture
Files

Fig. 8. Cache content breakdown by object types

 0

 2

 4

 6

 8

 10

 12

 14

 16

PUT GET

N
o
rm

a
liz

e
d
 $

/G
B

/I
O

P
S

SSD
LRU
DSS
HDD

Fig. 9. Normalized cost efficiency (10% cache)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

none +Files +Pictures +Music +Video

B
a

n
d

w
id

th
 (

M
B

/s
e

c
)

DSS

Video
Music
Pictures
Files

Fig. 10. Aggregate bandwidths with I/O traffic control

For the experiments, we set four concurrent streams, each of

which has 25 clients. Each stream uploads one class of objects,

namely files, pictures, music, and video. We calculate the

bandwidth for each stream individually. For experiments, we

performed five test runs with different classification schemes.

We first classify all objects as unclassified and send all four

streams to the HDD (none). In the second run, we send Files

and direct its traffic to the SSD (+Files). In the third run, we

send both Files and Pictures to the SSD (+Pictures). In the

fourth run, we send Files, Pictures, Music to SSD. In the fifth

run, we send all the objects to SSD.

Figure 10 shows the aggregate bandwidths of the five test

runs and the bandwidth breakdown of each stream. As we

include one additional stream to the SSD, the added stream

receives an increase of bandwidth due to the faster device

speed. The aggregate bandwidth keeps increasing until it

saturates the SSD and network bandwidth. When all four

streams are directed to the SSD, we see a decrease in aggregate

bandwidth. This is due to two reasons. Firstly, the SSD is

over-congested and used to serve all the objects, disregarding

the fact that videos can be streamed from the HDD with a

good performance. Secondly, the HDD is left unused and the

potential I/O parallelism of the two devices is lost.

We also show the Cumulative Distribution Function (CDF)

of the transaction latencies for each stream in Figure 11. We

can clearly see that after redirecting Files to the SSD (Figure

11(b)), its average access latency can be immediately reduced

and its curve differs from other curves. Over 90% of the

requests to Files can be finished in less than 100ms. In contrast,

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 (
%

)

Latencies (sec)

CDF of Transaction Latencies

Files
Music

Pictures
Video

(a) Before adding any objects to SSD

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 (
%

)

Latencies (sec)

CDF of Transaction Latencies

Files
Music

Pictures
Video

(b) After adding Files to SSD

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

P
e

rc
e

n
ta

g
e

 (
%

)

Latencies (sec)

CDF of Transaction Latencies

Files
Music

Pictures
Video

(c) After adding all objects to SSD

Fig. 11. The effect of traffic control by directing different object types to the SSD

only 40% of the requests can achieve the same latency before

this optimization. After we direct all the I/Os to the SSD, their

distributions become similar again (Figure 11(c)).

Finally, we would again like to point out that persistent

disk caching and the I/O traffic control capability are just

two of many possible applications of this client-aware cloud

storage framework. Although our evaluation is mostly focused

on performance, other optimization goals can be realized. For

example, certain objects can be selectively made more reliable

through a high-degree replication. Also, selected objects (such

as personal emails) can be made more secure by using

encryption.

VI. RELATED WORK

Prior cloud storage research has worked on addressing a

variety of issues, such as performance, reliability, availability,

confidentiality, and lock-in concerns (e.g., [5], [6], [9], [16],

[18], [20], [29]). A large body of research has focused on

studying the performance of commercial cloud storage ser-

vices, such as Dropbox and Amazon S3, by passively inter-

cepting and statistically analyzing network traffic on Internet

(e.g., [7], [14], [15], [19], [22], [27]). Some prior research

attempts to unify the strength of cloud storage and file systems.

For example, Vrable et al. have presented a cloud-backed

network file system for the enterprise use, called BlueSky

[25], to store data in cloud storage and access storage through

an on-site proxy, which caches data and provides an NFS

and CIFS interface to the clients. Dong et al. presented a

similar network file system design, called RFS [13], for mobile

devices. Our work is largely orthogonal to these prior efforts.

If semantic hints can be provided by the proxy servers when

communicating with the cloud storage, potential optimization

can be easily achieved with our framework.

Our work is also related to hybrid storage technologies.

Caching is important in large-scale storage systems [21].

Mesnier et al. have presented a storage CoS framework, called

Differentiated Storage Services, to associate semantic hints

with each I/O for optimizing performance in a local storage

system [23]. Chen et al. presented a hybrid storage system,

called Hystor, by integrating SSDs and HDDs and leveraging

SSDs as a cache to hold the small and frequently accessed

data [11]. Karma uses hints on database block access patterns

to improve multi-level caching [28]. This work aims to use

semantic hints in cloud storage scenario, and we find that it

can significantly improve performance.

VII. DISCUSSIONS AND FUTURE WORK

Exploiting client awareness in cloud storage requires col-

laboration among clients, servers, and storage. This paper

presents a first step in this direction – building a system

framework to enable such end-to-end semantic information

flow. We demonstrate that this is feasible in practice and

can be achieved with relatively small changes to the existing

systems. As future research, we will further investigate how

to leverage such information to optimize storage systems. In

this paper, we have shown two such cases: a priority-based

persistent disk caching, and a fine-grained I/O traffic control.

Both cases focus on storage management, in which DSS plays

an important role for hybrid storage management. In fact,

leveraging semantic hints from clients can realize numerous

optimization opportunities at various levels, even with non-

DSS storage. For example, proxy servers can differentiate

uploading traffics to enable a coarse-grained data placement

(e.g., different sets of servers). Another potential future work is

on the object structure definition and protocol standardization.

In this paper, we propose a set of predefined object formats

to embed the classification in objects. These definitions, by

no means, will be the only possible ones. Other definitions

could be developed in the future. However, as any protocol,

we need to seek a common agreement between clients and

cloud storage service providers. This demands an industry-

wide effort to eventually reach a standard to define the ways

we describe, transmit, and handle the data and the associated

semantic hints in a proper and consistent way. This will be a

long-term but important effort in the future.

VIII. CONCLUSION

Cloud storage is deeply changing the way people store,

access, and manage data. In this paper, we present a client-

aware cloud storage framework to close the widening semantic

gap between client and storage and realize end-to-end differ-

entiated services in cloud storage. With only minor changes to

the existing system, we can make semantic information travel

together with data from the client end, where data is generated,

to the storage end, where data is stored. We have showcased

the effectiveness of enabling client awareness in cloud storage

by using semantic hints for persistent disk caching and I/O

traffic control. Our experimental results show that we can

effectively leverage semantic hints from users to enhance LRU

caching, and the cost efficiency ($/GB/IOPS) is 7 times higher

than the full-SSD solution for 85% of the performance.

ACKNOWLEDGMENT

The authors would like to thank reviewers for their con-

structive comments and the advice. We also thank Paul Brett,

Ren Wang, and Pat Stolt for discussions and support during

this work. We also thank our industrial partners for providing

data and feedback for this research.

REFERENCES

[1] http://www.openstack.org/.
[2] http://curl.haxx.se/.
[3] Anonymized for commercial reasons.
[4] Intel Cloud Object Storage Benchmark. https://github.com/intel-cloud/

cosbench.
[5] H. Abu-Libdeh, L. Princehouse, and H. Weatherspoon. RACS: A Case

for Cloud Storage Diversity. In Proceedings of the 1st ACM symposium

on Cloud computing (SoCC 2010), Indianapolis, IN, June 10-11 2010.
[6] S. Bazarbayev, M. Hiltunen, K. Joshi, R. Schlichting, and W. Sanders.

PSCloud: A Durable Context-Aware Personal Storage Cloud. In Pro-

ceedings of the 9th Workshop on Hot Topics in Dependable Systems

(HotDep 2013), Farmington, PA, Nov. 3 2013.
[7] I. Bermudez, S. Traverso, M. Mellia, and M. Munafo. Exploring

the Cloud from Passive Measurement: the Amazon AWS Case. In
Proceedings of The 32nd IEEE International Conference on Computer

Communications (INFOCOM 2013), Turin, Italy, April 14-19 2013.
[8] C. Black, M. Mesnier, and T. Yoshii. Solid-State Drive Caching with

Differentiated Storage Services. In IT@Intel White Paper. Intel Co.,
July 2012.

[9] N. Bonvin, T. G. Papaioannou, and K. Aberer. A Self-Organized,
Fault-Tolerant and Scalable Replication Scheme for Cloud Storage. In
Proceedings of the 1st ACM symposium on Cloud computing (SoCC

2010), Indianapolis, Indiana, June 10-11 2010.
[10] B. Butler. Personal Cloud Subscriptions Expected to Reach Half a

Billion This Year. In Network World, September 7 2012.
[11] F. Chen, D. Koufaty, and X. Zhang. Hystor: Making the Best Use of

Solid State Drives in High Performance Storage Systems. In Proceedings
of the 25th ACM International Conference on Supercomputing (ICS

2011), Tucson, AZ, May 31 - June 4 2011.
[12] X. Cheng, C. Dale, and J. Liu. Statistics and Social Network of YouTube

Videos. In Proceedings of the 16th International Workshop on Quality

of Service, Enschede, Netherlands, June 2-4 2008.
[13] Y. Dong, J. Peng, D. Wang, H. Zhu, F. Wang, S. C. Chan, and M. P.

Mesnier. RFS - A Network File System for Mobile Devices and the
Cloud. In SIGOPS Operating System Review, volume 45, pages 101–
111, February 2011.

[14] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and A. Pras. Benchmarking
Personal Cloud Storage. In Proceedings of the 2013 ACM conference

on Internet measurement conference (IMC 2013), Barcelona, Spain,
October 23-25 2013.

[15] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto, R. Sadre, and A. Pras.
Inside Dropbox: Understanding Personal Cloud Storage Services. In
Proceedings of the 2012 ACM conference on Internet measurement

conference (IMC 2012), New York, NY, November 14-16 2012.
[16] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,

C. Grimes, and S. Quinlan. Availability in Globally Distributed Storage
Systems. In Proceedings of 9th USENIX Symposium on Operating

Systems Design and Implementation, Vancouver, Canada, Oct 4-6 2010.
[17] S. L. Garfinkel. An Evaluation of Amazon’s Grid Computing Services:

EC2, S3 and SQS. In Tech Report TR-08-07, Harvard University, 2008.
[18] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and

M. Uysal. Pesto: Online Storage Performance Management in Virtual-
ized Datacenters. In Proceedings of the 2nd ACM symposium on Cloud

computing (SoCC 2011), Cascais, Portugal, October 27.28 2011.

[19] W. Hu, T. Yang, and J. N. Matthews. The Good, the Bad and the Ugly of
Consumer Cloud Storage. In ACM SIGOPS Operating Systems Review,
volume 44:3, July 2010.

[20] Y. Hu, H. C. H. Chen, P. P. Lee, and Y. Tang. NCCloud: Applying
Network Coding for the Storage Repair in a Cloud-of-Clouds. In
Proceedings of the 10th USENIX Conference on File and Storage

Technologies (FAST 2012), San Jose, CA, February 14-17 2012.
[21] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C.

Li. An Analysis of Facebook Photo Caching. In Proceedings of the 24th

Symposium on Operating Systems Principles (SOSP 2013), Farmington,
PA, November 2013.

[22] T. Mager, E. Biersack, and P. Michiardi. A Measurement Study of
the Wuala On-line Storage Service. In Proceedings of the IEEE

12th International Conference on Peer-to-Peer Computing (P2P 2012),
Sophia Antipolis, France, Sept 3-5 2012.

[23] M. P. Mesnier, J. Akers, F. Chen, and T. Luo. Differentiated Storage
Services. In Proceedings of the 23rd ACM Symposium on Operating

System Principles (SOSP 2011), Cascais, Portugal, October 23-26 2011.
[24] I. P. Release. Demand from Public Cloud Service Providers and Private

Cloud Adopters will Drive Strong Growth for Full Range of Storage
Solutions, According to IDC. October 11 2011.

[25] M. Vrable, S. Savage, and G. M. Voelker. BlueSky: A Cloud-Backed
File System for the Enterprise. In Proceedings of the 10th USENIX

Conference on File and Storage Technologies (FAST 2012), San Jose,
CA, February 14-17 2012.

[26] E. Walker. Benchmarking Amazon EC2 for High-Performance Scientific
Computing. In ;Login, volume 33, October 2008.

[27] H. Wang, R. Shea, F. Wang, and J. Liu. On the Impact of Virtualization
on Dropbox-like Cloud File Storage/Synchronization Services. In
Proceedings of International Workshop on Quality of Service (IWQoS

2012), Coimbra, Portugal, June 4-5 2012.
[28] G. Yadgar, M. Factor, and A. Schuster. Karma: Know-it-All Replace-

ment for a Multilevel cAche. In Proceedings of the 5th USENIX

Conference on File and Storage Technologies (FAST 07), San Jose, CA,
February 2007. The USENIX Association.

[29] R. Zhang, R. Routray, D. Eyers, D. Chambliss, P. Sarkar, D. Willcocks,
and P. Pietzuch. IO Tetris: Deep Storage Consolidation for the Cloud
via Fine-grained Workload Analysis. In Proceedings of the 4th Inter-

national IEEE Conference on Cloud Computing (IEEE CLOUD 2011),
Washington D.C., July 2011.

APPENDIX

A.1 Data Formats for Embedded Data Classification

RESERVED
(12 Bytes)

V
E

R
_

ID

(1
 B

yt
e

s
)

C
L

S
_
B

Y
T

E
S

(1
 B

yt
e

)

M
A

G
IC

_
S

IG

(2
 B

yt
e

s
)

O
B

J
_
C

L
A

S
S

(C

L
S

_
B

Y
T

E
S

 b
yt

e
s
)

OBJ_DATA
(Variable)

Metadata Section Class Section Data Section

(a) Object-based Classification

N
U

M
_
R

G
E

S

(4
 B

yt
e

s
)

V
E

R
_

ID

(1
 B

yt
e

s
)

RESERVED

(8 Bytes)

C
L

S
_
B

Y
T

E
S

(1
 B

yt
e

)

M
A

G
IC

_
S

IG

(2
 B

yt
e

s
)

RGE_CLASS_TABLE
(NUM_RGES X (CLS_BYTES + 8) bytes)

OBJ_DATA
(Variable)

OFFSET_SECTOR

(4 Bytes)
LEN_SECTORS

(4 Bytes)
CLASS

(CLS_BYTES Bytes)

Metadata Section Class Section Data Section

(b) Range-based Classification

N
U

M
_
B

L
K

S

(4
 B

yt
e

s
)

V
E

R
_

ID

(1
 B

yt
e

s
)

B
L

K
_

S
E

C
T

O
R

S

(4
 B

yt
e

s
)

BLK_CLASS_TABLE
(NUM_BLKS X CLS_BYTES bytes)

OBJ_DATA
(Variable)

C
L

S
_
B

Y
T

E
S

(1
 B

yt
e

)

M
A

G
IC

_
S

IG

(2
 B

yt
e

s
)

Metadata Section Class Section Data Section

R
E

S
E

R
V

E
D

(4

 B
yt

e
s
)

(c) Block-based Classification

Fig. 12. Format of objects with embedded classification

• Object-based Classification – The metadata section con-

tains four components, a 2-byte MAGIC_SIG, which is

a randomly selected magic signature indicating that the

object contains self-describing classification information, a

1-byte VER_ID, which is a version ID specifying which

classification method is used (0 for object-based, 1 for

range-based, and 2 for block-based), a 1-byte CLS_BYTES,

which specifies the size (in bytes) of the class value, and

a 12-byte RESERVED, which is a reserved space for future

extension. The class section contains only 1 classifier, whose

size is CLS_BYTES bytes.
• Range-based Classification – The metadata section con-

tains five components, a 2-byte MAGIC_SIG, a 1-byte

VER_ID, a 1-byte CLS_BYTES, a 4-byte NUM_RGES,

which specifies the number of entries in the class sec-

tion, and an 8-byte RESERVED. The class section contains

NUM_RGES entries, each of which contains three compo-

nents, a 4-byte OFFSET_SECTOR, which is the start offset

of the range in sectors, a 4-byte LEN_SECTORS, which is

the length of the range in sectors, and a CLS_BYTES-byte

classifier, which is the class value of the associated range.
• Block-based Classification – The metadata section contains

six components, a 2-byte MAGIC_SIG, a 1-byte VER_ID,

a 1-byte CLS_BYTES, a 4-byte NUM_BLKS, which spec-

ifies the number of entries in the class section, a 4-byte

BLK_SECTORS, which specifies the size of each block in

sectors, and a 4-byte RESERVED. The class section contains

NUM_BLKS entries, each of which contains a CLS_BYTES-

byte classifier, which is the class value of the corresponding

block of the object.

