
978-1-4799-5671-5/14/$31.00 c©2014 IEEE

DedupT: Deduplication for Tape Systems

Abdullah Gharaibeh†, Cornel Constantinescu∗, Maohua Lu∗, Ramani Routray∗,

Anurag Sharma∗, Prasenjit Sarkar∗, David Pease∗, Matei Ripeanu†

∗IBM Research - Almaden
†The University of British Columbia

Abstract—Deduplication is a commonly-used technique on
disk-based storage pools. However, deduplication has not been
used for tape-based pools: tape characteristics, such as high
mount and seek times combined with data fragmentation re-
sulting from deduplication create a toxic combination that leads
to unacceptably high retrieval times.

This work proposes DedupT, a system that efficiently supports
deduplication on tape pools. This paper (i) details the main
challenges to enable efficient deduplication on tape libraries, (ii)
presents a class of solutions based on graph-modeling of similarity
between data items that enables efficient placement on tapes; and
(iii) presents the design and evaluation of novel cross-tape and
on-tape chunk placement algorithms that alleviate tape mount
time overhead and reduce on-tape data fragmentation.

Using 4.5 TB of real-world workloads, we show that DedupT
retains at least 95% of the deduplication efficiency. We show
that DedupT mitigates major retrieval time overheads, and, due
to reading less data, is able to offer better restore performance
compared to the case of restoring non-deduplicated data.

1 INTRODUCTION

Tape has been the workhorse of large-scale, long term data

storage for decades. Several factors still argue strongly for

tape-based archival in a modern enterprise where regulatory

requirements increasingly demand long-term storage of an

ever-growing amount of data. These factors include longevity,

reliability, and power. Tape media has a confirmed shelf life

measured in decades and a bit error rate that is at least two

orders of magnitude lower than that of inexpensive disk [1].

Perhaps even more importantly in a world where energy is

increasingly a concern, the relatively low power consumption

of tape is a huge advantage [2]. Finally, in a recent report [3],

IDC increased their tape drive unit sales growth forecast over

their prior year’s forecast due to continued strong growth in

tape drive and library sales.

Since tape will continue to play a large part in the storage

landscape for the foreseeable future, technologies that improve

storage efficiency for tape are as important as they are for

disk. One of these technologies is deduplication: a popular

compression method in storage archiving and backup. It is

based on dividing a large data object (file) into smaller

parts (data chunks), and storing only the unique chunks and

replacing the original object by a set of chunk identifiers (e.g.,

hashes) that refer to the unique chunks.

Storage tasks for which tapes are well suited are also ones

where deduplication is a good fit. Tape is generally used for

long-term cold storage of large data, including archival of

desktop and server backups, virtual machine images, database

snapshots, and email (e.g., Google used tape backups to restore

lost Gmail mailboxes [4]). These types of data are highly

deduplicable [5], [6], [7]. This is confirmed by our own

analysis in Section 4.4 which shows a 32% reduction in stor-

age requirements for workloads captured from a commercial

enterprise backup system.

Deduplicating data on tape can result in effectively storing

more data per tape, and, thus, fewer tapes needed to store

a given amount of data. This, in turn, can lead to fewer tape

mounts to retrieve large amounts of data, cutting retrieval times

and saving power, and can also lead to fewer tapes that need

to be shipped off site for disaster recovery or archival.

Enabling data deduplication on tapes, however, has to over-

come two major problems. First, high tape mount overhead:

if the chunks of a file1 end up on more than one tape, then

the cost of multiple tape mounts (which can be as high as

1-2 minutes each) will significantly increase retrieval times.

Second, high tape seek time: chunks of a file that are placed

out of order or far away from each other on tape due to data

fragmentation (a consequence of deduplication) will increase

retrieval time due to tapes comparatively high seek times (an

end-to-end seek takes about 90 seconds). To address these

two challenges, efficient algorithms for cross-tape and on-tape

chunk placement are needed.

The contributions of this work are as follows:

• To the best of our knowledge, this is the first work to

explore solutions for data deduplication on tape libraries.

We identify and address the main challenges for effi-

cient data deduplication on tapes. Our chunk placement

algorithms are able to (i) preserve up to 95% of the

deduplication efficiency while (ii) completely eliminating

major access time overheads, and (iii) improving the

performance of migrating data to tape pools by a factor

proportional to the efficiency of data deduplication, which

can lead to backup time savings in the order of hours.

• We present an innovative graph model for representing

deduplicated data. Our model has a number of impor-

tant properties. First, it exposes the degree of similarity

between files. Second, it enables computing essential

characteristics of the modeled deduplicated data (such as

computing the final deduplicated size of each group of

files after partitioning the original dataset). Finally, the

1This work uses files as the granularity unit since in our experience this
is the granularity at which users attempt to retrieve data from the archive.
However, all the techniques we present would work similarly at coarser
granularities e.g., user-defined data collections.

model produces sparse, low memory footprint graphs, a

key enabler for efficient graph processing.

• We design and evaluate a low-footprint cross-tape chunk

placement algorithm that places all chunks of a file on

the same tape. The cost to achieve this goal is storage

space: some of the chunks that could otherwise benefit

from deduplication, i.e., they could be stored once, may

get replicated across multiple tapes. To minimize this

overhead, we use our graph model and apply clustering

methods to identify clusters of files that share significant

amount of data, and place them together on the same

tape. Using this approach, DedupT retains at least 95%

of the deduplication efficiency. Equally importantly, in

addition to tape deduplication, the algorithm can be

applied to other use-cases such as chunk placement for

deduplicated disk-based archival pools like Virtual Tape

Libraries (VTL), or to reduce failure propagation on disk

pools (if a disk fails, data loss does not spread to other

disks).

• We design and evaluate an on-tape chunk placement algo-

rithm that aims to reduce seek time overhead due to chunk

fragmentation. We demonstrate that even a simple on-tape

placement algorithm for the deduplicated data enables

better restore time compared to restoring an equivalent

non-deduplicated data (up to 40% improvement for our

traces). This improvement is a result of reading less data

from the tape.

We note that our placement algorithms use chunk-based

metadata, which makes them independent of the mode of

backup to tape, that is, the algorithms are oblivious to whether

the backup is full, incremental or differential. This comes at

the expense of some loss in deduplication efficiency across

tapes in the case of incremental backup. Our experiments

however demonstrate that this overhead is minimal.

The rest of this paper presents in Section 2 background on

tape characteristics and related work, the DedupT’s operating

environment in Section 3, the cross-tape chunk placement

algorithm in Section 4, and the on-tape chunk placement

algorithm in Section 5. Section 6 summarizes the results.

2 BACKGROUND

2.1 Tape Characteristics

Tape technology has advanced significantly over the past

decades. Tapes like LTO (Linear Tape Open) [8], have high-

capacity, a high data streaming rate, built-in data compression,

large I/O buffers, and are block-addressable. LTO Generation

5, the current version, has an uncompressed capacity of 1.5TB

and a streaming data rate of 140MB/s; the native compression

ratio for compressible data averages 2:1. Data on LTO is

recorded in a serpentine fashion, meaning that a set of tracks is

written moving forward across the length of the tape, following

which the tape heads are moved slightly across the face of

the tape and data is written back down the tape towards the

beginning. This back and forth movement across the tape

creates a wrap, and current generation LTO tapes have 80

wraps. Figure 1 shows the data layout into 80 warps of 16

tracks each on the LTO-5 tape.

Begin of Tape

End of Tape

Wrap

Tape run

Head seek R/W Head

(16 tracks)

16 tracks

8
0
 w

ra
p

s

Fig. 1. Data layout on LTO-5 tape.

Tape, however, is still an append-only medium; data cannot

be overwritten on a tape without losing access to already-

written data that follows it. In the past this has made it difficult

to implement a sophisticated and high-performance file system

on tape due to the need to store the tape directory at the end

of the data. Starting with LTO Generation 5, this problem has

been addressed by creating the ability to partition the tape

into individually-writable sets of wraps. The Linear Tape File

System (LTFS) [9] uses this capability to record an updatable

index on a small partition on an LTO tape while using the

bulk of the tape for append-only data storage.

The LTFS file system is an appropriate choice for imple-

menting tape-based deduplication. LTFS stores files in block-

based extents, just as most disk file systems do. Files can be

discontinuous on tape, and files can share blocks. When data

in an existing file is updated, the new data is written to the end

of the data partition and the file extent list is updated to reflect

the changed location of the data. This allows for deduplicated

files to be efficiently represented on tape systems.

2.2 Related Work

We are not aware of any refereed publication presenting

a solution for storing and restoring deduplicated data on

tape pools. Data protection solutions from Symantec (Backup

Exec [10]) and EMC (Avamar [11]), which include tape pools

as a back-end disaster recovery storage have a deduplication

option. Still, it is not clear whether the data written on tape is

deduplicated or not (i.e., re-duplicated to original file format

similar to what IBM Tivoli [12] does), and if deduplicated,

how the chunks are placed on the tape pool.

MAID-based disk archival technologies that compete with

tape have been examined in previous work [13]. However,

these technologies acknowledge that they are not yet suitable

for long-term cold storage, and the cost, low energy consump-

tion, shelf-life, and portability of tape, continue to eclipse disk

for peta- and exa-scale long-term enterprise class storage in

real world deployments.

Burns et al. [14] present a solution for managing delta

backups for file versions on tapes. Lillibridge et al. [15]

present a technique for efficient chunk-lookup for large-scale

deduplicated tape images, but does not address the problem of

chunk placement.

Bhagwat et al. [5] in the context of a disk backup system,

consider grouping chunks of similar files (by minhash [16])

into bins. There is no measure of similarity strength employed

to prioritize and bound the bin growth so the bins can grow

big and contain only slightly similar files. With our method

we measure also the strength of the similarity (the amount

of content shared) between files when partitioning into bins.

However, in a distributed and dynamic environment using the

method in [5] eventually combined with our may be a good

solution.

Related literature on deduplication technology has mostly

focused on the efficiency of duplicate detection [17], [18],

[19], design [20] and scalability [21], [22] aspects on disk

storage.

3 OPERATING ENVIRONMENT

Client

Client

Client

Backup Server

Metadata

Database

Storage Hierarchy

DedupT

DedupT

On-Tape Chunk

Placement Advisor

Cross-Tape Chunk

Placement Advisor

Tape Pool

Disk Pool

Fig. 2. Design of a typical data protection solution

The DedupT operating environment is based on the typical

design of enterprise-class data protection and recovery solu-

tions (Figure 2) [12]. Such storage solutions offer a storage-

medium-agnostic interface to client nodes (such as enterprise

application servers) in order to back up and restore data

based on a defined schedule. Client nodes interface with the

system via a component called the backup server, which

performs data protection operations. The system allows users

to define logical groups of files, referred hereafter as filespaces,

to enable easy management and application-level grouping.

Internally, the backup server includes a comprehensive policy

framework that orchestrates data placement on multiple media

types, such as disks and tapes, and migration between them

based on specific criteria. Additionally, the backup server

employs deduplication in disk pools in order to achieve storage

efficiency.

The functional role of DedupT in this operating environment

is to determine which tape and where within that tape a chunk

will be placed when migrating already deduplicated data from

disk pools to tape pools. We refer to these operations as cross-

and on-tape chunk placement, respectively.

DedupT decides on the placement plan by examining

the disk pools deduplication metadata (typically stored in

a scalable database) which offers information about chunk

dependencies between files. To this end, DedupT is agnostic

to the backup mode, whether it is full, differential or incre-

mental, as the operation of identifying deduplicated chunks

in a file is independent of the backup mode from which the

file was obtained. Moreover, DedupT adheres to user-defined

placement constraints (e.g., the files of a filespace must be

placed on the same tape). The placement plan produced by

DedupT is communicated to the backup server, which in its

turn initiates the actual data placement.

4 CROSS-TAPE CHUNK PLACEMENT

The cross-tape chunk placement algorithm has two main

inputs: (i) the deduplication metadata (the chunk maps of

files), and (ii) the tape size(s). The output is the list of chunks

that will be placed on each tape. The rest of this section

discusses the requirements for cross-tape chunk placement

(4.1), the evaluation metrics (4.2), our solution (4.3), and its

evaluation (4.4).

4.1 Requirements

The following are the main requirements for cross-tape

chunk placement:

• All chunks of a file must be available on a single tape. The

idea is to restrict the retrieval of a file to accessing one

tape only, hence reducing tape mounting overhead to the

minimum (i.e., mounting at most one tape when restoring

a file). An added benefit to this restriction is that tapes

will be self-contained. This is useful for two reasons: first,

selfcontained tapes reduce the effect of failures as a file

will always depend on one tape only, and second, since

tapes are usually moved offsite for archival, moving a

file will require moving one tape only (no dependencies

will need to be considered as it would be the case where

deduplication is used and chunks have full placement

freedom).

• Scalable and fast solution. The solution must be able to

scale efficiently with respect to the total data size (e.g., be

able to handle multipetabyte systems). Also, depending

on the frequency with which data is pushed from the disk

pool to the tape pool, the solution must be able to provide

a placement decision in a reasonable time window.

• Cater to specific placement policies. Backup solutions

enable users to define policies that influence data place-

ment. For example, a filespace must exist on a specific

tape. Another example is having the files of a user

placed together on the same tape. In this context, the

solution must be flexible enough to take such policies into

consideration when making chunk placement decisions.

4.2 Success Metrics

The competence of the solution is measured by the follow-

ing metrics:

• Deduplication loss, that is, the amount of data replicated

across tapes. To fulfill the first requirement above, the

solution may need to store some chunks on more than

one tape. For example, if two files share some chunks,

and they end up on two different tapes, then the shared

chunks must be placed on both tapes.

• Transfer-to-tape performance. This refers to the end-to-

end performance of moving data from a disk pool to

a tape pool. This is affected by the time and memory

complexity of the placement algorithm, and the eventual

volume of deduplicated data to be migrated.

• Restore performance. This refers to the time it takes to

restore data. Restore scenarios include restoring a single

file or a group of files (e.g., a database backup filespace

which may include several log and data files).

4.3 Solution: Graph-Based Placement

Our cross-tape chunk placement algorithm uses a graph rep-

resentation to model similarity between files. The motivation

behind this approach is to enable identifying clusters of files

that share significant amount of data. The idea is to place

these clusters together on the same tape to reduce the cost of

replicating chunks across tapes.

Backup Server:

(i)Deduplication Metadata

(ii)Placement Constraints

Graph Generation

(Figure 4)

Graph File

[src dst weight]

F1 F3 2

F1 F4 1

F2 F4 1

Graph partitioning

to aid cross-tape

chunk placement

Chunk-tape

mapping

C1 T1

C2 T1

. .

. .
Cx Ti

Fig. 3. Cross-tape chunk placement high-level process

Figure 3 illustrates the high-level process of our graph-

based cross-tape chunk placement algorithm. The process

includes two high-level phases: (i) graph generation, and (ii)

graph partitioning. The rest of this section elaborates on how

we model deduplicated data as a graph (4.3.1), the graph

generation (4.3.2), and the graph partitioning (4.3.3) processes.

4.3.1 Graph Models:

We identify two main ways to expose data similarity through

a graph representation: chunk-centric and file-centric (Fig-

ure 4). Note that either representation supports both fixed-

and variable-sized chunks.

The chunk-centric model represents both chunks and files

as vertices. Edges exist between files and chunks only: an edge

exists between a file and a chunk if the chunk exists in the

file; hence forming a bipartite graph (Figure 4, left).

The chunk-centric model includes detailed, chunk-level,

sharing information. This information may better inform graph

processing operations (such as graph partitioning to aid data

Fig. 4. Left: Chunk-centric model. Chunks and files are modeled as vertices
in a bipartite graph. An edge exists between a file and a chunk if the chunk
exists in the file. Right: File-centric model. Files represent vertices; while
edges represent sharing between files. Edge weights represent the amount of
sharing, while vertex weights represent the file size (this example assumes
fixed-sized chunks and weights represent number of chunks)

placement). However, most practical graph processing algo-

rithms assume that the graph data structure fits in memory.

Since each unique chunk and file in the system is represented

as a vertex, the resulting graphs are prohibitively large for

realistic data repositories.

For example, assume a 10TB data repository with 1 million

files, divided into 4KB chunks and with 70% unique chunks.

A chunk-centric graph model for this system includes over

1.8 billion vertices and over 1.8 billion edges (as each chunk

is connected to at least one file). Therefore, if both vertices

and edges are represented by 4-byte integers, then the memory

footprint of such a graph would be over 14GB.

The excessive size of the chunk-centric model makes it

impractical. Therefore, we considered another model, dubbed

file-centric, which offers a much lower memory footprint.

The file-centric model represents only files as vertices.

Edges are placed between files that share chunks. Edge

weights represent the amount of sharing (Figure 4, right).

This model summarizes the detailed information offered by

the chunk-centric model: it includes the amount of sharing

rather than which chunks are shared.

Giving up the detailed information produces a relatively

small graph that is proportional in size to the order of number

of files, which typically is orders of magnitude lower than the

number of chunks. For instance, in the example mentioned

earlier, the memory footprint of a file-centric model will be in

the order of a few tens of megabytes.

It is important to mention here that the vertices in our file-

centric graph are connected with a minimal set of edges in the

following sense. Lets say that n files share a chunk, then the

number of edges between this set of files is n − 1. The idea

is to not have duplicate edges that model the sharing of the

same content between files.

This enables an important property of our file-centric graph

model: the ability to approximate – as an upper bound – the

deduplicated size of a set of files (or its corresponding graph

or sub-graph) through a simple graph traversal. In particular,

size can be computed by a breadth-first search (BFS)

traversal that sums the vertices’ weights (which represent

files sizes) and subtracts the edges’ weights (which represent

the duplicates size). We note that for a non-partitioned graph

component2 this is not an approximation but always produces

the correct result.

4.3.2 Building the graph:

One important practical aspect is efficiently building the graph,

particularly identifying the edges, which represent sharing

dependencies, between vertices (i.e., files).

The process takes as input deduplication metadata, partic-

ularly the file-chunk map which identifies the list of chunks

each file is composed of. As output, the process produces a

graph represented as a list of edges, called an edge list. The

edge list represents the key input to the partitioning process

discussed in the next section.

Metadata in database:
file’s –chunk-maps.

(Hash(C1) = H1)

F1 H1
F1 H2

F2 H4

F2 H3

F3 H1

F3 H2
F4 H3

F4 H1

Graph Edge List
[src dst weight]

Graph generation process from deduplication metadata

1

Group

by

Hash

F1 H1

F3 H1
F4 H1

F1 H2

F3 H2

F2 H3

F4 H3
F2 H4

2

Create

edges

e.g. generate
F1-F3 edge

F1 F3 1

F1 F4 1

F1 F3 1

F2 F4 1

3

Group

by

edge

F1 F3 1

F1 F3 1
F1 F4 1

F2 F4 1

4

Reduce
edge

weights

F1 F3 2

F1 F4 1

F2 F4 1

Fig. 5. Generating file-centric graph from dedup metadata. A STAR linking
strategy is used in this example. Note that the edge weights here refers to
number of chunks; in practice, however, they represent number of bytes.

One important requirement for building the graph is scala-

bility: it should scale to handle petabyte-scale systems. There-

fore, scalability-limiting constraints (such as requiring large

memory footprint) should be avoided. Figure 5 illustrates our

process of building the graph. In the following, we detail the

process:

• Group files by hash: the goal of this step is to group

together files that share a chunk. This can be done by

sorting the file-chunk map using the chunk hash as the

sorting index. Several efficient and scalable disk-based

sorting algorithms which do not demand high memory

footprint exist (e.g., ORDER BY SQL clause and the

Linux sort command).

• Create edges: the goal of this step is to create edges

between files that share a chunk. The grouping in the

first step makes this step a simple scan over the ordered

file-chunk map. For our sparse, file-centric graph repre-

sentation, we have tested two heuristics that satisfy the

minimal set requirement outlined above: STAR where

one of the files is linked with every other file, and CHAIN

where the files are linked to each other in a linked list.

For the STAR topology the master node is connected with

n− 1 nodes, so it has degree n− 1, while the rest of the

nodes have degree 1. In the CHAIN topology, on the

other hand, the two end nodes have degree 1 while the

intermediary nodes have degree 2, so the distribution of

node degrees is more balanced. Note that between these

2A component is a maximal subgraph in which there is at least one path
between each two vertices in the subgraph.

two heuristics there are many other ways to link the n

files by a minimal set of edges. We have evaluated the

impact of these two heuristics on the overall partitioning

effectiveness.

This step may produce more than one edge between

any two vertices (consider two files sharing two different

chunks). The next two steps aim to reduce edges between

the same pair of nodes into one.

• Group edges: this step groups together edges between

similar vertices (files). As in the first step, this is done

via sorting.

• Reduce edge weights: this step performs a sum reduction

over the weights of similar edges. This is done via a

single scan over the ordered edge-list that resulted from

the previous step.

It is important to stress here that this graph generation

process does not impose excessive memory requirements. The

performance of the two major operations, hash and edge

grouping, can benefit from additional physical memory, but,

as discussed above, can still be processed efficiently on disk.

Finally, our graph generation process caters to user-defined

placement policies in the form of “filespace FSx must be

placed on tape Ty” (remember that a filespace represents

a group of files). Such placement policies are handled by

representing the group of files that represent the filespace as a

single vertex in the graph. The size of this new filespace-based

vertex is the sum of the sizes of all files in the filespace (after

internal deduplication). Similarly, edges between files in the

filespace and other files are grouped together.

4.3.3 Partitioning the graph:

The goal for partitioning is to divide the graph into a number

of partitions such that each partition can fit into a given tape

size, while reducing the number of chunks replicated across

the resulting partitions (i.e., reducing the edge cuts).

One solution to this problem is to recursively bisect the

graph into two partitions of about equal size, while minimizing

the number of edges that span the partitions. This is an NP-

complete problem [23], but a number of heuristics exist to

address it. The best such heuristics have O(νe) complex-

ity [24], where ν is the number of vertices and e is the

number of edges. Such expensive algorithms can potentially

be a bottleneck, especially when considering large petabyte

scale storage systems.

However, in our case, partitioning is not meant to identify

balanced sized partitions; rather its goal is to identify clusters

of files that share significant amounts of data. To this end, we

propose a simple partitioning heuristic that is based on two

linear-time graph processing algorithms: breadth-first search

and k-core. The concept of k-core of a graph was

introduced by social networks researchers [25], [26].

The algorithm first identifies the connected components

of the graph. The rationale is that separate components do

not share data; hence they can be placed on different tapes

without cutting any edges (no chunks will be replicated). This

step requires linear time as connected components can be

determined through straightforward breadth-first search.

The size of some components, however, might be larger than

what a tape can store, hence the need for further partitioning.

To this end, the second phase of the algorithm partitions the

large-sized components via a variation of the k-core clus-

tering algorithm [27]. In particular, a k-core is a maximal

sub-graph in which each vertex is connected to at least k

other vertices. Maximal here means that no node can be

added to the subgraph while preserving the aforementioned

property. Determining the core decomposition of a graph has

an appealing linear time complexity of O(e).
Since the focus is on the amount of data a file shares rather

than the number of files it shares with, we adopt a variation

of the k-core concept that takes into account the weight

on the edges instead of the degree. This concept is called

p-core [27]. Similar to k-core, p-core is a maximal

subgraph in which the sum of edge weights of a node is at

least p. Computing the p-core decomposition has a similar

linear time complexity to k-core.

F2

F6 F7 F8 F10

F1

F11

F9
F12

F4 F5

F3
10

20

30

10 10

10

5

20

20
2030

30

10 5

15

5

Fig. 6. p-core algorithm in a hypothetical scenario. The files inside the inner
clusters share more data with each other than the files outside. Numbers in
bold: 10, 20 and 30, indicate corness

In particular, the p-cores of a graph form circles (Fig-

ure 6), where core (p + 1) is always a subgraph of core p.

The “coreness” of a vertex is defined as the maximum core

it belongs to. Note that the inner circles contain vertices with

higher coreness.

The core-based partitioning algorithm divides the large-

sized components into smaller partitions such that each par-

tition spans a range of circles. For example, in a bottom-

up partitioning strategy, the first partition includes files with

coreness between [0,x), where x is chosen such that the

partition size fills a tape, the second one between [x,y) and so

on. This partitioning heuristic leads to grouping together files

that share a specific amount of data, hence reducing the chance

of splitting clusters of files that share significant amount of

data. Similarly, the partitioning can proceed top-down, the first

partition being the most tightly connected and descending to

the periphery. In the following evaluation we used the bottom-

up partitioning heuristic. In [28] are presented and analysed

more examples of “content sharing” graph representations and

partitioning strategies.

4.4 Evaluation

4.4.1 Setup:

We evaluate our algorithm using two real workload traces

taken from Tivoli Storage Manager (TSM), a commercial

backup solution from IBM. Deduplication in the traces is

based on variable size chunking that used SHA1 to produce

chunk fingerprints. Table I shows the characteristics of the

workloads.

TABLE I
WORKLOAD SUMMARY

Workload WL1 WL2

Total size 3,052GB 1,532GB

Duplicates(size)3 978GB 460GB

Duplicates(%) 32% 30%

Num. of files 289,295 201,406

Avg. file size 10MB 7.79MB

Median file size 82KB 18KB

Num. of chunks 17,509,025 12,021,126

Avg. chunk size 182KB 102KB

Median chunk size 71KB 52KB

Building the graphs from the two workloads was sufficiently

fast (Table II). The graphs were generated from the workloads

metadata residing in a relational database on a commodity

machine (quad-core Intel processor and 8GB of memory). The

Linux sort command was used for the grouping steps in the

graph generation process described in Section 4.3.2. These

steps accounted for over 90% of the processing time.

TABLE II
GRAPH CHARACTERISTICS

Workload WL1 WL2

Time to generate 5.6min 3.8min

Number of nodes 289,295 201,406

Number of Edges 327,472 246,244

Graph Density4 8e−6 12e−6

Num. of components 166,089 149,083

Size of the largest comp. 695GB 987GB

Table II shows the characteristics of the generated graphs.

The low graph density and edge degree of both workloads

highlights the sparsity of our file-centric graph model.

Figure 7 shows the distribution of component sizes. The plot

shows large number of small components and small number

of large components. The size of the biggest component in

each workload is 22% and 64% of the total size of workloads

WL1 and WL2 respectively.

Unless otherwise noted, the experiments consider a scenario

where the whole workload is placed on as many tapes as

needed of a specific maximum tape size. In other words, the

partition has a maximum size that the algorithm tries to utilize

to produce the lowest number of partitions. All experiments

3Duplicates size = Total size - Unique data size.
4Graph density is the ratio of the number of edges e to the maximum

number possible of edges 1/2 ∗ ν(ν − 1).

d

g

y

g p

d

)

()

Fig. 7. Log-log plot of component sizes distribution

present the results while varying the tape size. Although in

practice tape size does not vary (current typical size is 1.5TB),

the motivation behind varying the tape size is to evaluate the

algorithms behavior for different workload to tape size ratio.

The majority of this section (4.4.2 - 4.4.5) evaluates the

storage overheads. To this end, we define the deduplication

loss as the amount of replicated data across partitions divided

by the total amount of duplicate data in the non-deduplicated

system. The numbers on top of the bars represent the

resulting number of partitions. The last section (4.4.6)

discusses transfer-to-tape and restore performance.

4.4.2 Comparing With Naive Placement:

We compare DedupT with a naı̈ve placement heuristic. The

naive algorithm simply places the files one by one, as long as

there is enough space left, and then the files on the same tape

are deduplicated.

y

Fig. 8. DedupT vs naive placement. Numbers on the bars are the number of
resulting partitions (tapes). Missing bars represent zero dedup loss

Figure 8 shows the results. Small tape sizes force the

algorithms to cut sharing dependencies between files to create

corresponding small partitions. Still, DedupT maintains a

lower than 5% dedup loss, and offers 5 times improvement

over the naive algorithm for the smallest two tape sizes.

As the tape size increases, the deduplication loss decreases

as larger clusters of files can fit in a tape. For the largest two

tapes, DedupT is able to place the whole WL1 without loss in

deduplication as even the biggest component can fit in a tape

without partitioning.

Finally, it is important to stress here that DedupT and

naive algorithms represent examples from the two ends of

the “complexity” spectrum of placement algorithms, where

complexity here refers to all aspects of a solution such as

development and time complexities. Other heuristics in the

middle of this spectrum can be proposed (e.g., bin-packing),

which will offer different complexity storage overhead

tradeoff.

4.4.3 Comparing Linking Strategies :

As discussed in Section 4.3.2, the graph can have different

representations. We evaluate the effect of the two extreme

linking strategies: CHAIN and STAR. As Figure 9 shows, the

difference between the two extreme topologies is insignificant

(1%). This illustrates the robustness of our sparse file-

centric graph model. The reason behind this is the fact that

both representations capture the same collective sharing

information, which is the main director for graph partitioning.

g
Fig. 9. Comparing two linking strategies: CHAIN and STAR

4.4.4 Removing High Frequency Chunks:

Ruling out the high frequency chunks from consideration when

building the graph has the potential to reduce dependencies

between files, hence improving the partitioning result.

Figure 10 shows the chunk frequency distribution for the

bigger workload, WL1. The plot shows close to a power-

law distribution: few high frequency chunks, and many low

frequency chunks.

Fig. 10. Log-log plot of chunk frequency distribution for WL1

Figure 11 shows the partitioning result for WL1 after

removing the most popular chunks and replicating them

directly on all tapes. Removing 10MB or 100MB worth of

high frequency chunks contributes to minor improvement.

Furthermore for larger tape sizes, removing the most popular

chunks contributes nothing. This is because the cost of

replicating the most popular chunks on all tapes out weighs

the gain in reducing dependencies between files.

g
Fig. 11. The effect of removing high frequency chunks from WL1. The None
bar shows the result of partitioning without removing any chunks, while 1MB
shows the result of partitioning after removing 1MB worth of most popular
chunks

4.4.5 Adding Data Incrementally:

A typical scenario in archival systems is periodical data

transfer from the disk pool to the tape pool. In this scenario,

the tape pool will have some old data while new data is pushed

to it. The assumption here is that old tapes are still part of the

tape pool (e.g., has not been shipped offsite yet).

This experiment divides WL1 into 10 batches, which rep-

resent 10 periods of time from the files metadata, and are

pushed to the system one after another. The idea is to emulate

incremental addition of data to the system. The assumption in

this scenario is that data placed on a specific tape from an early

batch cannot be moved to a different tape when placing new

batches, and that for each new batch, a new graph is created

for the files in the batch. To model files placed from previous

batches, we adopt the following approach: each group of files

placed on the same tape is represented as a single vertex in

the new graph. The weight of these new tape-level vertices is

the sum of all weights of the files in the tape (after internal

deduplication). Similarly, edges between the files in a tape and

the files from the new batch are grouped together.

This approach ensures that already placed files stay together

in the same tape in the final partitioning result, while giving

the chance for new files that share significant amount of data

with some old files to be placed together. This is done by

maintaining a specific percentage of free space in each tape

after partitioning each batch.

Figure 12 compares the two scenarios: incrementally

adding the workload versus placing the full workload at once.

The incremental scenario suffers higher deduplication losses

because it makes placement decisions that are based on the

chunk sharing in a batch, which typically is less revealing

compared to the chunk sharing in the whole workload. For

example, two files in a batch that do not share chunks may

end up on two different tapes; however, a later batch may

Fig. 12. Incrementally adding data to the system versus placing the full
workload at once

contain a file that share significant amount of data with both

of them. This new file will likely to be placed in one of the

previous two tapes; hence the data shared with one of the

previous two files will have to be replicated.

4.4.6 Transfer-to-Tape Performance:

In the case of transfer performance (moving data from the

disk pool to the tape pool), the major overhead is the tape

write throughput, which is around 140MB/s [9], so writing

terabytes of data takes hours (∼2 hours for 1TB). Hence,

the few minutes of preprocessing overhead, which includes

generating and partitioning the graph, is negligible. Thus,

when comparing with a system that does not use deduplication,

the critical factor for transfer performance for the deduplicated

system is its ability to preserve the deduplication opportunities.

For our workloads, depending on tape size, DedupT, with less

than 6% deduplication loss, preserves the benefit of transfer

time reduction that deduplication provides. When comparing

with a system that uses deduplication but does not use any

intelligence in data placement and replication to make tapes

self-contained, DedupT would be slightly slower for our

workloads because of replicating some of the chunks. For

example, in the WL1 workload, in the worst case, DedupT

is only 1.3% slower: deduplication loss is 4.5% (Figure 4)

of the 32% duplicate chunks in the data (Table I), which is

equivalent to 1.3% of the total amount of data.

5 ON-TAPE CHUNK PLACEMENT

Tapes high seek times combined with data fragmentation

resulting from deduplication can lead to high restore times if

chunks are not carefully placed; hence, there is a need for an

on-tape chunk placement algorithm.

The placement algorithm has one input: the file-to-chunk

map for the set of files to be placed on the tape. Its output is

the placement order of the unique chunks on a tape.

There are two main restore scenarios that may influence

on-tape chunk placement: (i) restoring an entire tape, and

(ii) restoring a subset of all files. The first scenario is the

traditional way to use tapes. However, the second scenario,

restoring a subset of files from tape-based archival systems

is gaining traction. The size of the restore subset can span a

wide range. The subset size can be small. For example, a social

network application may use tapes to store cold data to save

energy and space. In this context, user requests for cold data

could trigger restore requests for a small number of files (blog

entries, emails, movies, photos, etc.) from tape. The subset

size can also be large. For example, if the tape is used to hold

multiple incremental backups, restoring a single incremental

backup can easily occupy a large portion of the total tape size.

We believe that restoring a subset of files from tape-based

storage will be more common in the near future. New tape

technology, which offer filesystem-like access interface [9],

further encourages such usage scenario.

On-tape data placement for the first scenario is straight-

forward. To utilize the tapes high sequential read throughput,

the chunks can be placed next to each other on the tape in

any order. At restore time, the chunks are copied from the

tape sequentially and placed on a disk-based scratch storage

pool according to their physical offset on the tape (similar

to the Unix dd command). Our cross-tape placement solution

described in Section 4.3 ensures that all the chunks needed to

reconstruct the files are on a single tape (so no other tapes

need to be accessed).

In the scenario where a subset of all files are restored,

fragmentation due to data deduplication can lead to high

restore times. However, as shown in Section 5.3, restoring the

same set of files can be faster from the deduplicated tape than

from the non-deduplicated tape regardless of the size of the

restored files.

The rest of this section focuses on on-tape chunk placement

for the subset-of-files restore scenario. The section presents a

performance characterization of modern tape systems (5.1),

our on-tape chunk placement algorithm (5.2) and evaluation

(5.3).

5.1 Tape Performance Characterization

Tapes exhibit two important characteristics that affect the

performance of retrieving a fragmented file: first, forward seek

time offers roughly the same cost as reading data in the same

direction within a wrap; and, second, short forward seeks are

expensive and must be avoided. This section characterizes the

performance of an LTO-5 tape from this perspective.

Figure 13 shows the seek latency on an LTO-5 tape, while

varying the seek distance; the sequential-read latency for the

same distances is shown for comparison. Our setup provided

a sequential-read throughput of 90 MB/s. The measurements

show that for strides less than 4 MB, seeks can be two

times slower than continuous reads. This is because seeks

have mechanical motion, and our measurements show that the

tape-drive’s data cache is invalidated when a seek request is

performed. For strides greater than 4MB, seek performance is

consistently better, with the exception of 32 MB seek strides.

The exception of 32 MB seek strides is not surprising: LTO-5

drives employ multiple speeds to seek to different scales of

distances [1], and 32 MB happens to be the distance where

the tape drive switches the speed. Further experimentation

showed that large seeks that span multiple tape tracks are much

faster than reading that distance. In our setup a 274 GB seek

Fig. 13. Tape seek and read time while varying the seek or read distance
inside a LTO-5 wrap (18 GB)

takes an average of 47 seconds, at 90 MB/s this range would

take 50 minutes to read. Therefore, an algorithm that tries to

minimize both the number of seeks, and the distance between

fragmented chunks, should improve restore throughput.

There are two approaches to reading two chunks that reside

in the same tape track, but are separated by some unneeded

data: either read all data and discard the unneeded data in

the middle, or read the first chunk and perform a seek to the

second one. We use the former approach when the distance

between two reads is less than 4 MB; the latter approach is

used otherwise.

5.2 Solution

The key to minimizing the restore time of a subset of files

is to reduce the per-file inter-chunk distance. However, for

a deduplicated set of files, the problem of minimizing inter-

chunk distance is difficult because one does not know in

advance the access pattern of files. For example, if we know

a set of files are always accessed together, we can put chunks

of these files close together on the tape to minimize the inter-

chunk distance. However, in practice, it is not easy to identify

the related set of files in advance. In the following discussion,

we assume a file is the basic access unit and each file has the

same access probability.

In this section, we present one simple algorithm to place

chunks: denoted as Simple Placement (SP). The SP algorithm

does not leverage the sharing structure of files, and simply

places the chunks based on a specific file order. We pick the

increasing file size order to guide the chunk placement, the

same as the method proposed by Knuth in [29]. Particularly,

for a chunk in a file, if it previously appeared in the same

tape (by querying the per-tape membership metadata), it is not

placed on the tape again; otherwise, the chunk is appended to

the end of the tape. The membership metadata is implemented

as a hash table keyed by the chunk identifier in the disk

pool. As shown in the evaluation, the SP algorithm performs

better than non-deduplicated data placement regardless of the

restored subset size.

5.3 Evaluation

We use WL1 (Table 1) to evaluate our on-tape chunk

placement algorithm. We use only the largest component

that resulted from the cross-tape placement phase. The non-

deduplicated size of the largest component is 1500 GB, while

the deduplicated size is 746 GB.

Our evaluation setup consists of an LTO-5 tape-drive with a

1.5 TB cartridge, connected via Fibre Channel to a Windows

7 host machine running LTFS. The measured sequential read

bandwidth of this tape-drive was 90 MB/s. To measure and

analyze the restore performance, we carried out the following

experiments.

We picked sets of files to restore from the tape, for restore-

set sizes in the non-deduplicated form ranging from 1 GB

to 400 GB. We refer to the data placement plan for the non-

deduplicated files as the NonDedup placement plan, where the

files are also ordered in the increasing file size order. The files

within a restore-set were picked randomly from the NonDedup

placement plan, but the same restore-set was evaluated against

the SP algorithm.

When reading a restore-set with respect to a placement plan,

a read plan was computed that read all the necessary chunks in

the order of increasing tape-offset, thus all seeks were always

in the direction of the data layout on the tape tracks, and never

against. The read plan also used a read-vs-seek threshold of

4 MB, as mentioned in Section 5.1.

Fig. 14. Restore performance while varying the restore set size

Figure 14 shows that restores from the deduplicated data set

(Dedup) always outperform restores from the non-deduplicated

one (NonDedup), even though deduplication fragments the file

data. This is mainly because the amount of deduplicated data

for Dedup is smaller than that for NonDedup across all restore

set sizes. Although there are more seeks for Dedup than for

NonDedup, the seeks for Dedup were shorter. The figure also

shows that as the restore set increases in size, the performance

difference between Dedup and NonDedup increases. This is

because of improved deduplication savings with larger restore

set, which results in reading less data from tape. For example,

for the restore set size of 1 GB, the space savings due to

deduplication was only 2.5%, while for the restore set size of

300 GB, the space savings due to deduplication is 30%. In

particular, when the restore data size is larger than 100 GB,

the restore time of the SP algorithm is 31% (for 100 GB) to

40% (for 400 GB) shorter than that for the NonDedup case.

5.4 Discussion

We tried multiple alternative data placement plans which

mainly focused on different ways of clustering the shared

chunks, but none of them were consistently better than the

SP algorithm. For this reason, we focused only on the SP

algorithm for the placement of deduplicated data. Due to space

limitations, we do not describe the details of these algorithms.

The straightforward SP algorithm is effective for two rea-

sons. First, duplicate data has spatial locality, which mitigates

the impact of the fragmentation due to data deduplication.

Second, the increasing file order helps DedupT to reduce

global inter-chunk distance. The increasing file order effec-

tively groups the smaller per-file singleton chunks closer to the

first occurrence of the duplicate chunk; hence forming smaller

overall gaps at the global level for those duplicate chunks, and

reducing the average inter-chunk distance.

6 SUMMARY

The amount of archived data is predicted to grow at massive

rates: doubling every two years and up to 50 times by 2020 [3].

Tape-based storage is well positioned to support the archival

load based on longevity, reliability and power. To this end, we

explore the feasibility of combining tape-based archiving with

deduplication. This combination merges the major advantages

of the storage media and the data reduction technique. Tapes

low cost per gigabyte, low bit error rate, performance, ability

to support filesystem-like access, long shelf-life time and small

physical footprint strongly suggests that it will continue to

be a major contender for archival load. At the same time,

deduplications ability to dramatically reduce storage foot-

print further improves storage utilization. This paper proposes

DedupT, a deduplication-based tape system. To the best of

our knowledge, this is the first work to demonstrate that tape-

based systems can fully benefit from the gains offered by

deduplication without major penalties in terms of data retrieval

time. DedupT addresses the main challenges for efficient

data deduplication on tapes: high tape mount overhead and

seek times. Its chunk placement algorithms are able to (i)

preserve up to 95% of the deduplication efficiency while, at

the same time, (ii) completely eliminating major recovery time

overheads, (iii) improving the performance of migrating data

to tape pools by a factor proportional to the efficiency of data

deduplication, (iv), reducing tape wear, and (v) offering the

restore performance that is 31% to 40% better than that of the

non-deduplicated tape .

Disclaimers and Notices

The following terms are trademarks or registered trademarks

of the IBM Corporation in the United States or other countries

or both: IBM, Tivoli Storage Manager (TSM).

REFERENCES

[1] M. S. A. Osuna, R. Sharma and S. Wiedemann, “”ibm system storage
tape library guide for open systems”,” in ”IBM System Storage Tape

Library Guide for Open Systems”. IBM Redbooks, 2011, pp. 59 – 84.
[2] D. Reine and M. Kahn, “In Search of the Long-Term Archiving

Solution Tape Delivers Significant TCO Advantage over Disk,”
http://www.clipper.com/research/TCG2010054.pdf, 2010.

[3] R. Amatruda, “Worldwide Tape Drive 20112015 Forecast Update and
2010 Vendor Shares,” IDC, no. TCG2010054R, 2011.

[4] B. Treynor, “Gmail back soon for everyone ,”
http://gmailblog.blogspot.com/2011/02/gmail-back-soon-for-
everyone.html, 2011.

[5] D. Bhagwat, K. Eshghi, D. D. E. Long, and M. Lillibridge, “Extreme
Binning: Scalable, parallel deduplication for chunk-based file backup,”
in IEEE International Symposium on Modeling, Analysis Simulation of

Computer and Telecommunication Systems, 2009. MASCOTS ’09., Sept
2009, pp. 1–9.

[6] K. Jin and E. L. Miller, “The Effectiveness of Deduplication on
Virtual Machine Disk Images,” in Proceedings of SYSTOR 2009: The

Israeli Experimental Systems Conference, ser. SYSTOR ’09. New
York, NY, USA: ACM, 2009, pp. 7:1–7:12. [Online]. Available:
http://doi.acm.org/10.1145/1534530.1534540

[7] D. Meister and A. Brinkmann, “Multi-level Comparison of Data
Deduplication in a Backup Scenario,” in Proceedings of SYSTOR

2009: The Israeli Experimental Systems Conference, ser. SYSTOR ’09.
New York, NY, USA: ACM, 2009, pp. 8:1–8:12. [Online]. Available:
http://doi.acm.org/10.1145/1534530.1534541

[8] LTO.org, “Ultrium LTO Technology ,” http://www.lto-technology.com,
2014.

[9] D. Pease, A. Amir, L. Villa Real, B. Biskeborn, M. Richmond, and
A. Abe, “The linear tape file system,” in 2010 IEEE 26th Symposium

on Mass Storage Systems and Technologies (MSST), , May 2010, pp.
1–8.

[10] Computer Associates International, Inc., “CA ARCserve Backup,”
http://www.arcserve.com/us/backup.aspx, 2014.

[11] EMC Corporation, “EMC Avamar,”
http://www.emc.com/collateral/software/data-sheet/h2568-emc-avamar-
ds.pdf, 2014.

[12] IBM Corporation, “IBM Tivoli,” http://www.ibm.com/software/tivoli/,
2014.

[13] D. Colarelli and D. Grunwald, “Massive arrays of idle disks for
storage archives,” in Proceedings of the 2002 ACM/IEEE Conference

on Supercomputing, ser. SC ’02. Los Alamitos, CA, USA: IEEE
Computer Society Press, 2002, pp. 1–11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=762761.762819

[14] R. C. Burns and D. D. E. Long, “Efficient Distributed Backup
with Delta Compression,” in Proceedings of the Fifth Workshop

on I/O in Parallel and Distributed Systems, ser. IOPADS ’97.
New York, NY, USA: ACM, 1997, pp. 27–36. [Online]. Available:
http://doi.acm.org/10.1145/266220.266223

[15] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar, G. Trezise,
and P. Camble, “Sparse Indexing: Large Scale, Inline Deduplication
Using Sampling and Locality,” in Proccedings of the 7th Conference

on File and Storage Technologies, ser. FAST ’09. Berkeley, CA,
USA: USENIX Association, 2009, pp. 111–123. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1525908.1525917

[16] MinHash. (2014, May) Wikipedia. [Online]. Available:
http://en.wikipedia.org/wiki/MinHash

[17] C. Policroniades and I. Pratt, “Alternatives for Detecting Redundancy
in Storage Systems Data,” in Proceedings of the Annual Conference

on USENIX Annual Technical Conference, ser. ATEC ’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 6–20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247415.1247421

[18] S. Quinlan and S. Dorward, “Venti: A New Approach to
Archival Data Storage,” in Proceedings of the 1st USENIX

Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1083323.1083333

[19] D. T. Meyer and W. J. Bolosky, “A Study of Practical
Deduplication,” in Proceedings of the 9th USENIX Conference

on File and Stroage Technologies, ser. FAST’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 1–13. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1960475.1960476

[20] F. Guo and P. Efstathopoulos, “Building a High-performance
Deduplication System,” in Proceedings of the 2011 USENIX Conference

on USENIX Annual Technical Conference, ser. USENIXATC’11.
Berkeley, CA, USA: USENIX Association, 2011, pp. 25–38. [Online].
Available: http://dl.acm.org/citation.cfm?id=2002181.2002206

[21] B. Zhu, K. Li, and H. Patterson, “Avoiding the Disk Bottleneck in the
Data Domain Deduplication File System,” in Proceedings of the 6th

USENIX Conference on File and Storage Technologies, ser. FAST’08.
Berkeley, CA, USA: USENIX Association, 2008, pp. 18:1–18:14.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1364813.1364831

[22] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk, W. Kilian,
P. Strzelczak, J. Szczepkowski, C. Ungureanu, and M. Welnicki,
“HYDRAstor: A Scalable Secondary Storage,” in Proccedings of

the 7th Conference on File and Storage Technologies, ser. FAST
’09. Berkeley, CA, USA: USENIX Association, 2009, pp. 197–210.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1525908.1525923

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide

to the Theory of NP-Completeness. New York: W. H. Freeman and
Company, 1979.

[24] M. Newman, “Networks: An introduction,” in Networks: An Introduc-

tion. Oxford University Press, 2010, pp. 59 – 84.
[25] S. B. Seidman, “Network Structure and Minimum Degree,” Social

Networks, vol. 5, no. 3, pp. 269–287, 1983.
[26] J. P. Scott, Social Network Analysis: A Handbook. Los Angeles, USA:

Sage Publications, 2000.
[27] V. Batagelj and M. Zaversnik, “Generalized Cores,”

http://arxiv.org/abs/cs.DS/0202039, 2002.
[28] M. Lu, C. Constantinescu, and P. Sarkar, “Content sharing graphs

for deduplication-enabled storage systems,” Algorithms, vol. 5, no. 2,
pp. 236–260, 2012. [Online]. Available: http://www.mdpi.com/1999-
4893/5/2/236

[29] D. Knuth, “The art of computer programming, second edition,” in The

Art of Computer Programming, Second Edition, 1998, pp. 403 – 404.

