Client-aware Cloud Storage

Feng Chen
Computer Science & Engineering
Louisiana State University

Michael Mesnier
Circuits & Systems Research
Intel Labs

Scott Hahn

Circuits & Systems Research
Intel Labs

Cloud storage service is flourishing

S ogle

Window Cloud Computing ™

EUCALYFI1U> ~ s vaANIX”

\ eee e)
Enterprise Cloud Storage Consumer Cloud Storage

* Personal cloud storage subscriptions reach 500 million in 2012*
* Public/private cloud storage market is predicted to be $22.6 billion by 2015>

[1] http://www.networkworld.com/news/2012/090712-personal-clouds-262231.html
[2] http://www.idc.com/getdoc.jsp?containerld=pruS23097611

QoS in cloud storage — a critical challenge

QoS in today’s cloud storage services
— QoS is a real demand (e.g., Amazon Glacier, SSD-backed EC2 instancel)
— Limitations: one-size-fits-all, coarse grained, and difficult to use

e Differentiated Storage Services [SOSP’11, VLDB’12]

— Flexible, fine grained, and configurable to apps (e.g., database)
— Data classification could enable end-to-end QoS in cloud storage

——

amazon

[1] http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html S0.0l/GB/MOI’]th

Semantic gap further widens in cloud storage

No end-to-end QoS ¢omantic gap

»— GET/PUT READ/WRITE

-~ N

File (priority, users, rating, . Object (name size ...)

@%i?-

Clopelieatiye server

(e.g., Dropbox, S3)

01010111

Byte stream

\}

Client

Storage

REST Interface Block Interface

[Our goal — let semantic information flow together with data from end to end }

An example of many possible use cases ...

25._,¢PM
25-—> SSD

30 _’@ HDD

PUT beatles.mp3

WRITE
, , HTTP SCsl '
_/ OpenStaCk DSS Storage
Client App Cloud storage Storage system
(object creation) (object management) (object storage)
Classify data Generate classified 1/0Os Enforce QoS policies

[Client-awareness can enable many QoS opportunities (performance, reliability, security ..)]

Challenges e

. Client Applications
ﬂ Client -
&

Language specific API
Cloud Storage Server Z

2 =

App Library Layer

-------- e e

REST API

Library API
Syscall API

Page Cache

n Server - Virtual File System
openstack 05 File System (Ext4, XFS ...)

Generic I/O Layer

Device Driver

(intel)‘ Storage 1 Storage System
A typical cloud storage stack

SCSI API

* Semantic info flow must cross multiple layers/interfaces with data
* No support in existing cloud storage for end-to-end semantic info flow

Client-aware cloud storage

* Client — classify data and generate classified HTTP requests

 Server — Modified OpenStack Swift 1.4.6 to handle classified requests

* Application API lib — interface to the DSS-enabled scatter/gather /O syscalls

* Linux OS kernel — modified Linux 3.2.1 kernel with patched Ext4 to handle DSS I/Os
» Storage system — Differentiated Storage Services (RAID-9) module in Linux kernel

e . . Client Applications
Data classification —— | Client Language specific AP

Extract classification info —

SYSCdll AFI

Page Cache
o Virtual File System
Generate classified I|/Os =——> Server0s File System (Ext4)

Generic I/O Layer

Device Driver
Enforces QoS policies —— storage Storage (DSS tiering)

SCSI CMD

Our prototype cloud storage stack in Linux

Outline

* Design & Prototype

* Experimental Evaluation

e Conclusion

Client

Collecting semantic hints on client

* Principle — separating data classification and policy enforcement
— Similar to DiffServ in network scenario for classifying network streams
“What data is” (Client) vs. “How data should be treated” (Storage)

e Class —a numerical value labeling a group of data (i.e., handle, index ...)
* Data classification in client-aware cloud storage

— Object-based classification — classify an entire object (e.g., music)
— Range-based classification — classify a range of data in an object (e.g., I-frames in video)
— Block-based classification — classify each block in an object (e.g., VM disk)

2]0[EJo]o
0 2
7 I 74 I 74
Object-based Range-based Block-based
Classification Classification Classification

Client

How one might classify data

* Manual — classify objects in CLI, or label files in a right-click menu, etc.
e Automatic — apps extract valuable semantic info (e.g., ranking for songs)
* General-purpose — classify data based on file type, size, user group, etc.

I — e O EE|
(1)) a7
[] Info o =
B misc
[] oOther
|:| Regular Meeting
|:| Status
B summary and Memo
[urgent c
g All Categaries.., 5 : mg@ @@@?
Color labeling in MS Outlook Rating info in Apple iTunes

[Client needs to be modified to send classification information to cloud storage }

Client>

Transmitting classifiers to server

e An REST HTTP request (under the hood of Dropbox S3,.

V

$ curl —-X|PUT|-H |“X-Auth-Token: abc” “foo”
//f http://localhost: 8080/v1/Auth_test/cl/foo
operation object URL

e How to transmit classifiers to server

* Object-based

Embed classifiers in header Range-based

Embed classifiers in object
* Block-based

Client>

Embed classifiers in headers

* Object-based classification
— PUT with a new HTTP header “X-DSS-0Object-Class”

$ curl -X PUT -H “X-Auth-Token: abc” -T “foo” \
-H “X-DSS-Object-Class: 25" _\
http://localhost:8080/v1/Auth™ /cl/foo

° Range_based ClaSSiﬁcatiOn Class is just a handle (to lookup

an associated QoS policy)
— PUT with a new HTTP header “X-DSS-Range-Class”

— Range format: <offset>-<len>-<class>

— Multiple ranges can be specified with “” in between

$ curl -X PUT -H “X-Auth-Token: abc” -T “foo” \
-H “X-DSS-Range-Class: 0-64-25,1024-32-26" \
http://localhost:8080/v1/Auth test/cl/foo

[Limitation — the HTTP header size is limited (e.g., 8190 bytes for Apache) }

Client>

Embed (unlimited) classifiers in objects

 Block-based classification

)

— PUT with a new HTTP header “x-pss-object-File: True’

$ curl -X PUT -H “X-Auth-Token: abc” -T “foo.dss” \
-H “X-DSS-Object-File: True” \
http://localhost:8080/v1/Auth test/cl/foo

— Instrument the object with a self-describing format
* Metadata — interpreting the format of class section
* Class — specifying the classes of blocks in the object
* Data — intact content data of the object

—

Jegepefes

foo foo.dss Cloud storage foo Storage

Client>

An example self-describing object format

e T Te [2-]2 [g
Z@_ = é £ | 2 E; EE z £ | Bk cLAss TABLE

BIOCk'based 0@ E m $|E EI m w2 CL}J':- 3 (NUM_BLKS X CLS_BYTES bytes)

. . g - - T == =
classification = [77[5 [27]3 |®
¥
Metadat% Section Class Srection Data Section
o [_|a ?i
nw | ogw | FH= &
. g e £ RESERVED

Object-based g | g B & (12 Bytes) U'E
x| >=| 9= 3 o

classification | = © 2 |

¥ . Y I
Metadata Section Class Section Data Section

Q = | @ it . o=l -l B
w W O w — W

Range-based 02| gL | 52| &£ | RESERVED [RGE CLASS TABLE

. . o0 | wo I s @ (8 Bytes) (NUM_RGES X (CLS_BYTES + 8) bytes)
classification e |>c| 37| 3
!

¥
Metadatli Section Class Section Data S‘{action

Client>Server->Storage

Handling classified requests at server

* Cloud storage server extracts classifiers from classified HTTP requests

* Generate classified I/Os using language-specific (e.g., Python) APls

* Submit I/Os to OS kernel via scatter/gather syscalls (readv/writev)

* OS kernel receives and passes classified I/Os from app to FS, BIO, to DD

* Classifiers are copied to the 5-bit group number of READ/WRITE SCSI CDB

—

Client Applications

Language specific API
Cloud - C e REST Interface (GET/PUT)
OpenStack Swift Server

Library APl (dread/dwrite)

Python Library Layer

Applicatiqﬂassiﬁers— Syscall APl (readv/writev)
Page Cache
File System (Ext4)
Storage _ Generic /O Layer
v Device Driver

SCSI Cmd (READ/WRITE)

Storage System (DSS RAID-9)

Cloud storage server needs to be modified to handle classified requests

Outline

* Experimental Evaluation

e Conclusion

Evaluation Model

* Simulate a typical cloud storage service (e.g., Real WS)

 Compare various storage solutions for cloud storage services
— Bandwidth, latencies, cost efficiency, etc.

private
switch

Proxy
server

(-1 <//°//><//°//> <//,,/>

Storage nodes

http://www.google.com/aclk?sa=l&ai=CytPZPsIhT4CuBInoiAKNxvigC_PTopECy8jN0RmrrqieXwgCEAEgk6z7BWDJBsgBB6oEEk_Q9Tw73_vOMoBCdPqq3lkj8boFEwiBppvxze6tAhWFbEIKHfZ6AHvABQU&sig=AOD64_2CMzSQu8tHBgWvzmgfER3oC2wzFQ&ctype=5&ved=0CAQQ2RI&adurl=http://dna1.mookie1.com/n/104537/108390/clk.atdmt.com/t5hrkn;11;4;;26k2;824c;;23z1qu;;;cak;1;/i/c?0&pq=/M0N/go/355797538/direct/01/&origin=pla
http://www.google.com/aclk?sa=l&ai=CytPZPsIhT4CuBInoiAKNxvigC_PTopECy8jN0RmrrqieXwgCEAEgk6z7BWDJBsgBB6oEEk_Q9Tw73_vOMoBCdPqq3lkj8boFEwiBppvxze6tAhWFbEIKHfZ6AHvABQU&sig=AOD64_2CMzSQu8tHBgWvzmgfER3oC2wzFQ&ctype=5&ved=0CAQQ2RI&adurl=http://dna1.mookie1.com/n/104537/108390/clk.atdmt.com/t5hrkn;11;4;;26k2;824c;;23z1qu;;;cak;1;/i/c?0&pq=/M0N/go/355797538/direct/01/&origin=pla

System setup

e Cluster configuration
— 1 Proxy & 1Client — 2x 8-core Xeon Sandy Bridge 2.9GHz with 128GB memory
— 4 Storage nodes — 2x 6-core Xeon Westmere 3.3 GHz with 24GB memory
— Storage devices — 1x Intel 710 SSD, 1x Seagate Constellation 1TB SATA HDD
— Network setup — 10GbE links for proxy/clients, 1GbE links for storage nodes

Storage
Node 1

Storage

Node 2 Storage

Node 3 Storage
Ssb| Node 4

Client
Node

A typical OpenStack Swift cluster setup

System setup

e Software configuration
— OS: Fedora Core 14
— Patched Linux kernel 3.2.1 and Ext4 for DSS
— Modified OpenStack Swift 1.4.6 for handling classes

» Services — proxy, object, container, account, updater, replicator, auditor
* Proxy service with 32 workers and storage services with 8 workers
* Each storage device is set as an individual zone, 3 replicas for reliability

e Storage node configuration

HDD-only LRU caching DSS caching SSD-only

Case 1: Persistent caching for cloud storage

* Object classification
— Distributions are mostly based on real files (10,711 pictures, 319,073 videos)
— Each object type is given an individual class (USER1-USER5)
— For all object types, large files (>=10MB) are classified to USER7

* DSS Caching policy

— Caching high-priority data first in the order of USER1-USER7
— LRU caching is used for data within the same class

Object Size Files (60%) Picture (35%) Music (4%) Video (0.9%) VMDK (0.1%)

<64KB USER1 (79%) USER2 (17.1%) USER3 (0%) USER4 (0.3%) USERS (0%)
<512KB USER1 (14%) USER?2 (43.6%) USER3 (0%) USER4 (2.8%) USERS (0%)
<1MB USER1 (3%) USER2 (14.5%) USER3 (0.8%) USER4 (4.9%) USERS (0%)
<5MB USER1 (2%) USER2 (20%) USER3 (52.3%) USER4 (32.4%) USERS (0%)
<10MB USER1 (1%) USER2 (3.5%) USER3 (39.6%) USER4 (31.7%) USERS (0%)
>10MB USER7 (0%) USER7 (1.3%) USER7 (7.3%) USER7 (27.9%) USER7 (100%)

Distribution and Classification

Experimental result highlights

% 3.@(7%<‘D$$D-only 350 85% of\iSD-onIy
80 300}
g 70 5X % 250 1 . 6X
2 60k
o [] o | 2% - 2 RS
§ a0; 2 100t
S 20+ |
10}
° 5% 10% 0 5% 10%
Cache Size/Working-set Size (%) Cache Size/Working-set Size (%)
Uploading Bandwidth (MB/sec) Downloading Bandwidth (MB/sec)
0.9 16
¢ 1.4x
o7 E;lIE;)(5 12y o
g o 3x < SSD 2 10 14% of SSD-only
< os5) O HDD 9 5 58D
5 0 @ LRU S gl o
£ 04f m D38 g .l S
T 0.3} E
0.2 (Zuj 4l
0 0 -

5% 10%
Cache Size/Working-set Size (%)

PUT GET

Downloading Latency (Seconds) Cost Effiicency ($/GB/IOPS)

Explaining cache effects

e CACS selectively caches the most important data

— LRU disregards the user-specified data “importance”

Metadata
VMDK
N\

100% W

o®
Q
X

Files

®
o]
X

etadata
MSKﬁ_arg
ideo

lusic
icture

iles

N\

=<<=

U

OJOEmEmc

N
o
2

-

20%

Percentage of Cache Space

0%

DSS

o, ?09/
(o]

LR

U Cache Content

Case 2: Fine-grained traffic control

» Traffic direction policy

— Each object type is given an individual class

— Specified data objects will be directed to SSDs as needed

— The un-specified data objects will be directed to HDDs (UNCLASSIFIED)
— 25 parallel requests for each object type for uploading data

— We do four runs, and each time we add one object type to the SSD

Object Size Files (60%) Picture (35%) Music (4%) Video (1%)

<64KB 79% 17.1% 0% 0.3%
<512KB 14% 43.6% 0% 2.8%
<1MB 3% 14.5% 0.8% 4.9%
<5MB 2% 20% 52.3% 32.4%
<10MB 1% 3.5% 39.6% 31.7%
>10MB 0% 1.3% 7.3% 27.9%

Distribution and Classification

Bandwidth and throughput

450 -
400 - \
T 350
[72)
5 300 | . R :
= 250 | m Video Directing traffic to SSD moves
£ 500l O Pictures — pressure for workloads on HDD
3
° 150 |
@ 100 |
50 -
0 none +Files +Pictures +Music +Video
Speedup
Files Pic Music Video
+Files 3.5x 1.2x 1.1x 1.1x
We also need to be careful -
parallelizing device uses is important +Pictures [EEXEENIES- DI EOX 1.5x
+Music 3.6x 3x 2.3x 26x |

+Video 2.7x 2.4x 2.1x

Distributions of latencies

CDF of Transaction Latencies

100 : . . |
80
9
~ 60
1k}
on
o
E
8
E 40
o
1/ Files -
Music --------
Pictures -«
D 1 1 I Vigeu
0 0.2 0.4 0.6 0.8 1+

Latencies (sec)

Before 1/0 redirection

Distributions of latencies

Files Files + Pictures
100 : : : : : 100 : : : : —
80 - _ i
) .-"'ﬂ“’ =
3 o / : $ af]
® V4 g
5 / ;
e 40 { i 0y _
{ f&‘; I{ ._‘:‘:
7 __
0/ Files —— A 20 Files
L —
.‘5 Pictures ««seeeeen i ictures «eeeeeen
0 i | | | Video o ok | | | Video oo
0 02 04 0.6 0.8 1+ 0 02 04 06 08 1+
Latencies (sec) Latencies (sec)
Files + Pictures + Music Files + Pictures + Music + Video
100 ‘ | — . — 100 | | : ———
80 i
g S
60 x by
5 =]
g z
& [}
[
e 40 i 2
& &
20 Files —— - 20 Files i
: Music -------- Music --------
Pictures «reeeeee Plctyres
0 3 ‘ I I \,."ilde[] [r—— 0 | | | Vlldeo
0 0.2 04 06 08 1+ 0 0.2 04 06 08 1+

Latencies (sec) Latencies (sec)

Conclusion

e Cloud storage brings a critical QoS challenge

— The widening semantic gap makes end-to-end QoS difficult to realize

e A client-aware cloud storage framework
— Client classifies data and transmits data and semantic hints to server
— Cloud storage server handles classified requests and generates 1/Os
— Storage system enforces QoS policy based on data classification

* Client-awareness can provide significant benefits
— 5x bandwidth, 5.5x latency, 14% of the SSD cost
— Other optimizations are also possible (e.g., reliability, security ...)

Thank you!

fchen@csc.lsu.edu
michael.mesnier@intel.com
scott.hahn@intel.com

