
Client-aware Cloud Storage
Feng Chen

Computer Science & Engineering
Louisiana State University

Scott Hahn
Circuits & Systems Research

Intel Labs

Michael Mesnier
Circuits & Systems Research

Intel Labs

Consumer Cloud Storage

Cloud storage service is flourishing

1

• Personal cloud storage subscriptions reach 500 million in 20121

• Public/private cloud storage market is predicted to be $22.6 billion by 20152

[1] http://www.networkworld.com/news/2012/090712-personal-clouds-262231.html
[2] http://www.idc.com/getdoc.jsp?containerId=prUS23097611

Enterprise Cloud Storage

….. …..

QoS in cloud storage – a critical challenge

2

• QoS in today’s cloud storage services
– QoS is a real demand (e.g., Amazon Glacier, SSD-backed EC2 instance

1
)

– Limitations: one-size-fits-all, coarse grained, and difficult to use

• Differentiated Storage Services [SOSP’11, VLDB’12]
– Flexible, fine grained, and configurable to apps (e.g., database)

– Data classification could enable end-to-end QoS in cloud storage

[1] http://techblog.netflix.com/2012/07/benchmarking-high-performance-io-with.html
$0.01/GB/Month

Block Interface

READ/WRITE

Semantic gap further widens in cloud storage

3

Storage

REST Interface

GET/PUT

Client

No end-to-end QoS

File (priority, users, rating, …) Object (name, size …)

Cloud storage server
(e.g., Dropbox, S3)

Our goal – let semantic information flow together with data from end to end

01010111
Byte stream

Application

Semantic gap

An example of many possible use cases …

4

PUT beatles.mp3

HTTP

WRITE

SCSI

30
26

25

Client-awareness can enable many QoS opportunities (performance, reliability, security ..)

Client App
(object creation)

Cloud storage
(object management)

DSS Storage

Storage system
(object storage)

Classify data Generate classified I/Os Enforce QoS policies

PM

SSD

HDD

25

26

30

Challenges

5

• Semantic info flow must cross multiple layers/interfaces with data

• No support in existing cloud storage for end-to-end semantic info flow

REST API

Library API

Syscall API

SCSI API

Client Applications

Language specific API

Cloud Storage Server

Library Layer

Page Cache

Virtual File System

File System (Ext4, XFS ...)

Generic I/O Layer

Device Driver

Storage System

Client

App

OS

Storage

A typical cloud storage stack

Server

Client-aware cloud storage

6

• Client – classify data and generate classified HTTP requests

• Server – Modified OpenStack Swift 1.4.6 to handle classified requests

• Application API lib – interface to the DSS-enabled scatter/gather I/O syscalls

• Linux OS kernel – modified Linux 3.2.1 kernel with patched Ext4 to handle DSS I/Os

• Storage system – Differentiated Storage Services (RAID-9) module in Linux kernel

Data classification

Extract classification info

Generate classified I/Os

Enforces QoS policies

REST API

Library API

Syscall API

SCSI CMD

Client Applications

Language specific API

OpenStack Swift Server

Python Library Layer

Page Cache
Virtual File System

File System (Ext4)

Generic I/O Layer

Device Driver

Storage (DSS tiering)

Client

Server App

Server OS

Storage

Our prototype cloud storage stack in Linux

Outline

7

• Introduction

• Design & Prototype

• Experimental Evaluation

• Conclusion

Collecting semantic hints on client

8

• Principle – separating data classification and policy enforcement
– Similar to DiffServ in network scenario for classifying network streams

– “What data is” (Client) vs. “How data should be treated” (Storage)

• Class – a numerical value labeling a group of data (i.e., handle, index …)

• Data classification in client-aware cloud storage
– Object-based classification – classify an entire object (e.g., music)

– Range-based classification – classify a range of data in an object (e.g., I-frames in video)

– Block-based classification – classify each block in an object (e.g., VM disk)

0

Object-based
Classification

2

Range-based
Classification

Block-based
Classification

ClientServerStorage

2 0 3 0 0

….

How one might classify data

9

• Manual – classify objects in CLI, or label files in a right-click menu, etc.

• Automatic – apps extract valuable semantic info (e.g., ranking for songs)

• General-purpose – classify data based on file type, size, user group, etc.

Rating info in Apple iTunesColor labeling in MS Outlook

Client needs to be modified to send classification information to cloud storage

ClientServerStorage

Transmitting classifiers to server

10

• An REST HTTP request (under the hood of Dropbox, S3, …)

• How to transmit classifiers to server

$ curl –X PUT –H “X-Auth-Token: abc” –T “foo” \

http://localhost:8080/v1/Auth_test/c1/foo

operation

source fileheader

object URL

In-band mode Out-of-band mode

Embed classifiers in header
• Object-based
• Range-based

• Object-based
• Range-based

Embed classifiers in object
• Object-based
• Range-based
• Block-based

• Object-based
• Range-based
• Block-based

ClientServerStorage

Embed classifiers in headers

11

• Object-based classification
– PUT with a new HTTP header “X-DSS-Object-Class”

• Range-based classification
– PUT with a new HTTP header “X-DSS-Range-Class”

– Range format: <offset>-<len>-<class>

– Multiple ranges can be specified with “,” in between

$ curl –X PUT –H “X-Auth-Token: abc” –T “foo” \

-H “X-DSS-Object-Class: 25” \

http://localhost:8080/v1/Auth_test/c1/foo

$ curl –X PUT –H “X-Auth-Token: abc” –T “foo” \

-H “X-DSS-Range-Class: 0-64-25,1024-32-26” \

http://localhost:8080/v1/Auth_test/c1/foo

Limitation – the HTTP header size is limited (e.g., 8190 bytes for Apache)

Class is just a handle (to lookup
an associated QoS policy)

ClientServerStorage

Embed (unlimited) classifiers in objects

12

• Block-based classification

– PUT with a new HTTP header “X-DSS-Object-File: True”

– Instrument the object with a self-describing format
• Metadata – interpreting the format of class section

• Class – specifying the classes of blocks in the object

• Data – intact content data of the object

$ curl –X PUT –H “X-Auth-Token: abc” –T “foo.dss” \

-H “X-DSS-Object-File: True” \

http://localhost:8080/v1/Auth_test/c1/foo

ClientServerStorage

Storage

① ②

foo.dssfoo Cloud storage foo

③ ④

An example self-describing object format

13

Object-based
classification

Range-based
classification

Block-based
classification

ClientServerStorage

Handling classified requests at server

14

• Cloud storage server extracts classifiers from classified HTTP requests

• Generate classified I/Os using language-specific (e.g., Python) APIs

• Submit I/Os to OS kernel via scatter/gather syscalls (readv/writev)

• OS kernel receives and passes classified I/Os from app to FS, BIO, to DD

• Classifiers are copied to the 5-bit group number of READ/WRITE SCSI CDB

Library API (dread/dwrite)

Syscall API (readv/writev)

SCSI Cmd (READ/WRITE)

OpenStack Swift Server

Python Library Layer

Page Cache

File System (Ext4)

Generic I/O Layer

Device Driver

Storage System (DSS RAID-9)

Storage

Applications

Cloud

ClientServerStorage

classifiers

Client Applications

Language specific API
REST Interface (GET/PUT)

Our prototype cloud storage stackCloud storage server needs to be modified to handle classified requests

Outline

15

• Introduction

• Design & Prototype

• Experimental Evaluation

• Conclusion

Evaluation Model

16

• Simulate a typical cloud storage service (e.g., Real WS)

• Compare various storage solutions for cloud storage services
– Bandwidth, latencies, cost efficiency, etc.

Proxy
server

Storage nodes

public
switch

Cloud

private
switch

SSD

SSD

SSD

SSD

http://www.google.com/aclk?sa=l&ai=CytPZPsIhT4CuBInoiAKNxvigC_PTopECy8jN0RmrrqieXwgCEAEgk6z7BWDJBsgBB6oEEk_Q9Tw73_vOMoBCdPqq3lkj8boFEwiBppvxze6tAhWFbEIKHfZ6AHvABQU&sig=AOD64_2CMzSQu8tHBgWvzmgfER3oC2wzFQ&ctype=5&ved=0CAQQ2RI&adurl=http://dna1.mookie1.com/n/104537/108390/clk.atdmt.com/t5hrkn;11;4;;26k2;824c;;23z1qu;;;cak;1;/i/c?0&pq=/M0N/go/355797538/direct/01/&origin=pla
http://www.google.com/aclk?sa=l&ai=CytPZPsIhT4CuBInoiAKNxvigC_PTopECy8jN0RmrrqieXwgCEAEgk6z7BWDJBsgBB6oEEk_Q9Tw73_vOMoBCdPqq3lkj8boFEwiBppvxze6tAhWFbEIKHfZ6AHvABQU&sig=AOD64_2CMzSQu8tHBgWvzmgfER3oC2wzFQ&ctype=5&ved=0CAQQ2RI&adurl=http://dna1.mookie1.com/n/104537/108390/clk.atdmt.com/t5hrkn;11;4;;26k2;824c;;23z1qu;;;cak;1;/i/c?0&pq=/M0N/go/355797538/direct/01/&origin=pla

• Cluster configuration
– 1 Proxy & 1Client – 2x 8-core Xeon Sandy Bridge 2.9GHz with 128GB memory

– 4 Storage nodes – 2x 6-core Xeon Westmere 3.3 GHz with 24GB memory

– Storage devices – 1x Intel 710 SSD, 1x Seagate Constellation 1TB SATA HDD

– Network setup – 10GbE links for proxy/clients, 1GbE links for storage nodes

System setup

17

A typical OpenStack Swift cluster setup

System setup

18

• Software configuration

– OS: Fedora Core 14

– Patched Linux kernel 3.2.1 and Ext4 for DSS

– Modified OpenStack Swift 1.4.6 for handling classes
• Services – proxy, object, container, account, updater, replicator, auditor

• Proxy service with 32 workers and storage services with 8 workers

• Each storage device is set as an individual zone, 3 replicas for reliability

• Storage node configuration

HDD-only SSD-onlyLRU caching DSS caching

Case 1: Persistent caching for cloud storage

19

• Object classification
– Distributions are mostly based on real files (10,711 pictures, 319,073 videos)

– Each object type is given an individual class (USER1-USER5)

– For all object types, large files (>=10MB) are classified to USER7

• DSS Caching policy
– Caching high-priority data first in the order of USER1-USER7

– LRU caching is used for data within the same class

Object Size Files (60%) Picture (35%) Music (4%) Video (0.9%) VMDK (0.1%)

≤64KB USER1 (79%) USER2 (17.1%) USER3 (0%) USER4 (0.3%) USER5 (0%)

≤512KB USER1 (14%) USER2 (43.6%) USER3 (0%) USER4 (2.8%) USER5 (0%)

≤1MB USER1 (3%) USER2 (14.5%) USER3 (0.8%) USER4 (4.9%) USER5 (0%)

≤5MB USER1 (2%) USER2 (20%) USER3 (52.3%) USER4 (32.4%) USER5 (0%)

≤10MB USER1 (1%) USER2 (3.5%) USER3 (39.6%) USER4 (31.7%) USER5 (0%)

>10MB USER7 (0%) USER7 (1.3%) USER7 (7.3%) USER7 (27.9%) USER7 (100%)

Distribution and Classification

Experimental result highlights

20

Uploading Bandwidth (MB/sec) Downloading Bandwidth (MB/sec)

Downloading Latency (Seconds)

87% of SSD-only

5x
3.6x < HDD 85% of SSD-only

1.6x

3x < SSD
5.5x

Cost Effiicency ($/GB/IOPS)

14% of SSD-only
1.4x

Explaining cache effects

21

• CACS selectively caches the most important data

– LRU disregards the user-specified data “importance”

Cache Content

VMDK
Metadata

Files

Case 2: Fine-grained traffic control

22

• Traffic direction policy
– Each object type is given an individual class

– Specified data objects will be directed to SSDs as needed

– The un-specified data objects will be directed to HDDs (UNCLASSIFIED)

– 25 parallel requests for each object type for uploading data

– We do four runs, and each time we add one object type to the SSD

Object Size Files (60%) Picture (35%) Music (4%) Video (1%)

≤64KB 79% 17.1% 0% 0.3%

≤512KB 14% 43.6% 0% 2.8%

≤1MB 3% 14.5% 0.8% 4.9%

≤5MB 2% 20% 52.3% 32.4%

≤10MB 1% 3.5% 39.6% 31.7%

>10MB 0% 1.3% 7.3% 27.9%

Distribution and Classification

Bandwidth and throughput

23

We also need to be careful –
parallelizing device uses is important

Speedup

Files Pic Music Video

+Files 3.5x 1.2x 1.1x 1.1x

+Pictures 4x 3.1x 1.5x 1.5x

+Music 3.6x 3x 2.3x 2.6x

+Video 2.7x 2.4x 2.1x 1.8x

Directing traffic to SSD moves
pressure for workloads on HDD

Distributions of latencies

24

Before I/O redirection

+

Files + Pictures + Music

+

Files

Files + Pictures + Music + Video

+

Files

Files + Pictures

+

Files

Files

+

Files

Distributions of latencies

25

Conclusion

26

• Cloud storage brings a critical QoS challenge
– The widening semantic gap makes end-to-end QoS difficult to realize

• A client-aware cloud storage framework
– Client classifies data and transmits data and semantic hints to server

– Cloud storage server handles classified requests and generates I/Os

– Storage system enforces QoS policy based on data classification

• Client-awareness can provide significant benefits
– 5x bandwidth, 5.5x latency, 14% of the SSD cost

– Other optimizations are also possible (e.g., reliability, security …)

27

Thank you!

fchen@csc.lsu.edu
michael.mesnier@intel.com

scott.hahn@intel.com

