Automatic Generation of Behavioral Hard Disk Drive Access Time Models

Adam Crume¹ Carlos Maltzahn¹ Lee Ward² Thomas Kroeger² Matthew Curry²

¹University of California, Santa Cruz {adamcrume, carlosm}@cs.ucsc.edu

²Sandia National Laboratories, Livermore, CA {lee, tmkroeg, mlcurry}@sandia.gov

June 6, 2014

Use cases:

- System simulations
- File system design
- Quality of service / predictable performance

Complexity, part 1

Rotational latency = 8.33ms max at 7200 RPM

Additionally:

- Queueing
- Scheduling
- Caching
- Readahead
- Write-back

Short term goals (this presentation):

- Automated
- Fast

Long term goals (future work):

- Future-proof
- Device-independent

Offline vs. online machine learning

- System simulations (offline)
- File system design (offline)
- Quality of service / predictable performance (offline/online)

Existing machine learning approaches: demerit

Existing machine learning approaches: average in time slice

For each time slice:

$$\left. \begin{array}{ccc} r_0 & \rightarrow & prediction_0 \\ r_1 & \rightarrow & prediction_1 \\ \vdots & & \vdots \\ r_n & \rightarrow & prediction_n \end{array} \right\} \rightarrow \text{average} \rightarrow \text{compare with real average}$$

Existing machine learning approaches: predict average

For each time slice:

$$\left. \begin{array}{c} r_0 \\ r_1 \\ \vdots \\ r_n \end{array} \right\} \rightarrow \text{aggregate} \rightarrow \text{predict average} \rightarrow \text{compare with real average} \\ \end{array} \right.$$

All aggregate. None predict individual latencies with low error.

Hard part? Access times.

Characteristics:

- Random
- Read-only
- Single-sector
- Full utilization
- First serpentine

Minimizes:

- Caching
- Readahead
- Write-back
- Transfer time
- Request arrival time sensitivity
- Track length variation

Workload emphasizes access time (which is a hard problem by itself) and de-emphasizes everything else. Other workloads are future work.

Access time breakdown

• Why are access times hard to predict?

- Rotational layout
- Serpentines
- Sector sparing
- Skew

• Why are access times hard to predict?

- Rotational layout
- Serpentines
- Sector sparing
- Skew
- What do these have in common?
 - Periodicity!

Generic machine learning algorithms cannot directly predict periodic functions well.

Access time function

Full table is 1 billion by 1 billion entries, would take approximately 500 million years to capture data and 3.5 exabytes to store it. *Extremely* sparse sampling is required, must compute on the fly.

Input augmentation

$$\begin{pmatrix} a \\ \sin(2\pi a/p_1) \\ \cos(2\pi a/p_1) \\ \sin(2\pi a/p_2) \\ \cos(2\pi a/p_2) \\ \vdots \\ b \\ \sin(2\pi b/p_1) \\ \cos(2\pi b/p_1) \\ \sin(2\pi b/p_2) \\ \cos(2\pi b/p_2) \\ \vdots \end{pmatrix}$$

(a is the start sector, b is the end sector)

Fourier transform

Interdependence

- Usually, f(x) = tanh(x) (or similar). Final output may use f(x) = x.
- Training: given input x_i and desired output y*, adjust w_i and b such that y = y*

(a is the start sector, b is the end sector)

Neural net with shared weights

(a is the start sector, b is the end sector)

Decision trees

- Periods to include
- Maximum depth
- Minimum instance count per leaf
- Minimum variance proportion
- Prune or not
- Pruning folds
- Ensemble size

Neural nets

- Periods to include
- Layer sizes
- Initial weight distributions
- Learning rate
- Momentum

What's optimal?

Genetic algorithm overview:

- Opulation initialized with random configurations
- 2 Each configuration evaluated by training and evaluating model

Go to step 2, repeat until error is low

Equivalent to Formula * Advantages Disadvantages

 L_2 Mean Squared Error $\sum_i (\hat{y}_i - y_i)^2$ Smooth Assumes Gaussian noise

*Note: The actual formula for the L_2 norm is $\sqrt{\sum_i (\hat{y}_i - y_i)^2}$, but the above has identical optima and is easier to use.

Crume, Maltzahn, Ward, Kroeger, Curry Hard Drive Access Times

L_1 versus L_2 , empirically

Comparison of L_1 versus L_2 norm for neural nets with subnets. (A narrow cluster along the diagonal y = x is better.) High errors are seen at extreme values due to discontinuities in the access time function.

Results

RMS errors for predictions over the first 237,631 sectors (94 tracks) with a random read workload.

- Periodicity information improves multiple algorithms
- High-level assumption, likely to apply to many devices
- Machine learning of per-request latencies is possible