Abdullah Gharaibeh*, Cornel Constantinescu, Maohua Lu, Ramani Routray, Anurag Sharma,
Prasenjit Sarkar, David Pease and Matei Ripeanu*

IBM Research — Almaden, * University of British Columbia

DedupT: Deduplication for Tape Systems

Document number
© 2014 IBM Corporation

Outline:

»The Problem
= Background, Motivation &Challenges

»The Solution
= Cross-tape Chunk Placement & Evaluation
= On-tape Chunk Placement & Evaluation

» Summary
= Main Results

© 2014 IBM Corporation

Why dedup for tapes:

» Tapes will continue to play a large part in the storage landscape.
= Great features: longevity, reliability, power and recently filesystem-like access.

» Storage tasks tapes are good at (archival, backup, database snapshots,
virtual images) is where data is highly deduplicable.

Challenges for dedup on tapes:

» High tape mount overhead:
= If the chunks of a file end up on more than one tape then the retrieval
time significantly increases (due to the multiple tape mounts).

» High tape seek time:
= chunks of a file that are placed out-of-order will increase retrieval time
(an end-to-end seek takes ~90 seconds).

3 © 2014 IBM Corporation

DedupT Solution:

“** A sparse, low memory graph model for representing deduplicated data.

= Exposes the degree of similarity (amount of content sharing) between objects (ex. files).
= Enables efficient partitioning of a large set of deduplicated files, into tape size partitions.
= Allows for fast computation of deduplicated partition sizes.

Chunk - centric File - centric

< A simple on-tape chunk placement algorithm — that reduces seek time
overhead due to chunk fragmentation.

4 © 2014 IBM Corporation

DedupT Placement in a typical Data Protection Solution

‘ Client \ Backup Server ’_,,f-*"”// DedupT
| Client | [DedupT J (
; t \ Cross-Tape Chunk
-\ Placement Advisor
\ o
etadata \
Database \ (
- N On-Tape Chunk
\\ Placement Advisor

\C ~/

Disk Pool

[0)|[0)|[e)

Tape Pool

Storage Hierarchy

5 © 2014 IBM Corporation

Outline:

>

»The Solution
= Cross-tape Chunk Placement & Evaluation

© 2014 IBM Corporation

Cross-Tape Chunk Placement

Backup Server:
(i) Deduplication Metadata

(i) Placement Constraints File-Centric graph

: Chunk-tape
[src dst weight] Graph partitioning mapping
Graph Generation to aid cross-tape Cl1T1
(Slide 4) F1 F3 2 N chunk placement C2 T1
¥ 3 | > F1OF4 1 | >
~ F2 F4 1) -
. Cx Ti

-

> All chunks of a file must be available on a single tape.
» Scalable (to many petabyte systems) and fast.

» Cater to specific placement policies (ex. all the files of a user placed together).

7 © 2014 IBM Corporation

Building File-centric Graph from Deduplication Metadata

Metadata in database:
file’s —chunk-maps.

(Hash(C1) = H1) Graph generation process from deduplication metadata
S5 geneate Graph Edge List

H1 F1 HL 37 FI-F3edge [src dst weight]
H2 F3 H1 F1 F31 \
H4 F1 F3 1

Group 4 H1 F1 F4 1 P F1 F3 2
H3 °UPE1 H2 Create GroupF1 F4 1Reduce F1 F4 1
H1 B by F1 F3 1 edge

F3 H2 edges by F2 F4 1 = 2 F4 1

H2 Hash) H3 F4 1 edge weights
H3 » F4 H3 » »
H1 F2 H4

8 © 2014 IBM Corporation

Partitioning the Graph into Tape-size Partitions

File-centric graphs usually show \%{Zﬂ o &,%fg VL Wy) i?g{"};ﬁ%
many isolated clusters with one or Y PN B A5F v

few large. \v% o

Next is a file-centric graph
representation of a folder with 432

files (that share at least one R . o e o e o o s
\7’7\7??7}?7 F A
A Y R S L L
AR G A A A A Y |
VAR S R S S Y R (R S S
VR S G A S R A S Y |
VA A A S S A Y Y A
VAR S A S A S N A S

O All chunks of a file must be available on a single tape.

0 Reduce the number of chunks replicated across the resulting partitions (edge cuts).

9 © 2014 IBM Corporation

Partitioning the Graph into Tape-size Partitions — cont.

» Phasel: We identify the clusters (connected components) of the graph.
— Separate components do not share data so they can be placed on different tapes (as
needed) without “cutting” any edges (chunks replicated).

» Phase?2: Partition the large-sized components using the k-core decomposition of them.

Y
o

r

« The core (k+1) is always a subgraph of core k. The coreness of a vertex is the maximum core it
belongs to.

* In a bottom-up strategy, the first partition includes files with coreness between [0, x), where X is
chosen such that the partition size fills the tape; the second partition is between [x, y) and so on... .

10 © 2014 IBM Corporation

Evaluation

Workload summary (Table 1):

Workload wL1 WL2
Total Size 3,052 GB 1,532GB
Duplicates Size 978GB 460GB
Duplicates (%) 32% 30%
Num. of Files 289,295 201,406
Avg. File Size 10MB 7.79MB
Median File Size 82KB 18KB
Num. of Chunks 17,509,025 | 12,021,126
Avg. Chunk Size 182KB 102KB
Median Chunk Size 71KB 52KB
Graph characteristics (Table 2):
Workload WL1 WL2
Time to Generate 5.6 min 3.8 min
Number of Vertices 289,295 201,406
Number of Edges 327,472 246,244
Graph Density 8.00E-06 1.20E-05
Number of Components 166,089 149,083
Size of the Largest Comp. 695 GB 987 GB

11

© 2014 IBM Corporation

Evaluation-cont.

Component (cluster) sizes distribution:

O

—e— WL1
o WL2

1e+08

Component Size (KB)
1e+04

1e+00

1e+00 1e+02 1e+04
Rank

12 © 2014 IBM Corporation

Evaluation — cont.

Comparing DedupT with Naive Placement:

o

16

0 WL1-Naive
1 W WL1-DedupT
1 WL2-Naive
9 8 7 WL2-DedupT
7 2
v
o
Q
S o | 8
[4
()
4
w - | 11 p)
6
6 4 3
o - Sf_lzzgzz 2 1.1
200 400 800 1600
Tape Size (GB)

Dedup loss = amount of replicated chunks due to partitioning / duplicates size

13 © 2014 IBM Corporation

Evaluation — cont.

14

Comparing two linking strategies: CHAIN and STAR:

Dedup loss (%)

200

,
6
4 o 3
3377
400 800

Tape Size (GB)

0 WL1-CHAIN
m WL1-STAR
0 WL2-CHAIN
7z WL2-STAR

227y
1600

© 2014 IBM Corporation

Evaluation — cont.

Chunk Popularity Distribution

w O
o
$ -
~ Few chunks are very popular but most show-up only few times.
=t
o
58]
g fuso Y
8
L oy
o
+
L1F]
o
o
+ - O
E I L] 1 L]
1e+00 1e+02 1e+04 1e+06

Rank

Log-log plot of chunk frequency distribution for WL1

15

© 2014 IBM Corporation

Evaluation — cont.

Results of Replicating the Popular Chunks on All Tapes:

=
m —
2323
2p 22
- © -
2 W None
o m 1MB
@ 110212 1502 O 10MB
— u O 100MB
g- <t - O 1GB
o
L
- 6666
6
o —
o 33333 22222

100 200 400 800 1600
Tape Size (GB)

16 © 2014 IBM Corporation

Evaluation — cont.

Adding Data Incrementally (WL1 workload):

o
[
13 O Incremental workload
W Full workload
w |
T 6
2
[7)]
w
o o
a .
S5
S
A 3
o 11
6
. 3 2 2
': 1
200 400 800 1600

Tape Size (GB)
= WL1 was divided into 10 batches (representing 10 periods of time from the files metadata)
and pushed one after the other.

= All the files already placed on a tape are aggregated into a single vertex in the new graph
model for the next batch insertion (vertex weight = sum of deduplicated file weights, edges also
aggregated).

17 © 2014 IBM Corporation

Outline:

>

» The Solution

= On-tape Chunk Placement & Evaluation
>

18

© 2014 IBM Corporation

On Tape Chunk Placement

Motivation:

Tape high seek time and combined with data fragmentation due to deduplication can lead to
high restore times if chunks are not “carefully” placed on tape.

Restore scenarios:

O Restore entire tape(s) — the traditional way of using tapes

» On-tape placement is straightforward — chunks can be read sequentially at high speed
in any order, and buffered in a disk-based scratch storage for the tape.

= Qur cross-tape placement solution ensures that all chunks needed to reconstruct the
files are on one tape.

0 Restore a subset of files — gaining traction
» Our Simple Placement algorithm turns out to work pretty well in practice.

19 © 2014 IBM Corporation

On Tape Chunk Placement — cont.

Tape Performance Characterization

mﬂ!
ma
=2
pE=
- ﬂfﬂ/
w0 3B o
e
[
S o
m -
L
@
£ -
-

o =" —o— Seek Time
sle” -8~ Read Time
o

f 2 4 8 16 32 64 128 256 512 2048 8192

Stride Length (MB)

20

© 2014 IBM Corporation

On Tape Chunk Placement — cont.

Simple Placement algorithm (for restoring subsets of files):

Q Place the files (their chunks) on the tape in increasing order of file sizes. It uses the file to
chunk map for each tape (from the cross-tape placement).

U For restoring (a subset of files), a read plan is created that reads all necessary chunks in the
order of increasing tape offset (so all seeks are in the direction of data layout).

» The read plan also uses the reed vs. seek threshold of 4 MB (as shown on previous slide).

21 © 2014 IBM Corporation

On Tape Chunk Placement — cont.

Restore Performance while varying Restore Set Size

= Dedup- Simple Placement

LAl

1 100 200
F{estore Set Size (GB

100 150 200

Time (minutes)

L

50

= The files in a Restore Set were picked randomly and same sets were used for both methods.
= Although there were more seeks for Dedup than for NonDedup, the seeks for Dedup were shorter.

= As Restore Set Size increases the difference is mostly due to less data (due to deduplication).
(For 1GB restore set size deduplication was only 2.5% while for 300GB it was 30%.)

22 © 2014 IBM Corporation

Summary:

Q This is the first work to demonstrate that tape based systems can fully benefit from the gains
offered by deduplication without major penalties in terms of data retrieval.

0 We addressed the main challenges for efficient data dedup on tapes:
» High tape mount overhead
= Seek time

O Our chunk placement algorithms are able to preserve up to 95% of dedup efficiency while:
» completely eliminating the above major recovery time overheads.
= improving performance of migrating data to tape pools (proportional with dedup efficiency).
» reducing tape wear
= offering restore performance 30% — 40% better than that of non-deduplicated tape.

23 © 2014 IBM Corporation

Backups

24 © 2014 IBM Corporation

On Tape Chunk Placement — cont.

Data layout on LTO-5 Tape

16 tracks
Begin of Tape Head seek R/W Head Wrap
et (16 tracks) i
— o ' End of Tape
t —j‘
*— —?
— —
— é
=
i =
— —
—

Tape run

25 © 2014 IBM Corporation

Zooming into the largest component:
Partition by file popularity: yellow (min degree=1), green(2), red(3) and blue(4)

/

e

b

© 2014 IBM Corporation

