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Why dedup for tapes:

» Tapes will continue to play a large part in the storage landscape.
= Great features: longevity, reliability, power and recently filesystem-like access.

» Storage tasks tapes are good at (archival, backup, database snapshots,
virtual images) is where data is highly deduplicable.

Challenges for dedup on tapes:

» High tape mount overhead:
= If the chunks of a file end up on more than one tape then the retrieval
time significantly increases (due to the multiple tape mounts).

» High tape seek time:
= chunks of a file that are placed out-of-order will increase retrieval time
(an end-to-end seek takes ~90 seconds).
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DedupT Solution:

“** A sparse, low memory graph model for representing deduplicated data.

= Exposes the degree of similarity (amount of content sharing) between objects (ex. files).
= Enables efficient partitioning of a large set of deduplicated files, into tape size partitions.
= Allows for fast computation of deduplicated partition sizes.

Chunk - centric File - centric

< A simple on-tape chunk placement algorithm — that reduces seek time
overhead due to chunk fragmentation.
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DedupT Placement in a typical Data Protection Solution
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Outline:

>

»The Solution
= Cross-tape Chunk Placement & Evaluation
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Cross-Tape Chunk Placement

Backup Server:
(i) Deduplication Metadata

(i) Placement Constraints File-Centric graph

: Chunk-tape
[src dst weight] Graph partitioning mapping
Graph Generation to aid cross-tape Cl1T1
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> All chunks of a file must be available on a single tape.
» Scalable (to many petabyte systems) and fast.

» Cater to specific placement policies (ex. all the files of a user placed together).

7 © 2014 IBM Corporation



Building File-centric Graph from Deduplication Metadata

Metadata in database:
file’s —chunk-maps.

(Hash(C1) = H1) Graph generation process from deduplication metadata
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Partitioning the Graph into Tape-size Partitions
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O All chunks of a file must be available on a single tape.

0 Reduce the number of chunks replicated across the resulting partitions (edge cuts).
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Partitioning the Graph into Tape-size Partitions — cont.

» Phasel: We identify the clusters (connected components) of the graph.
— Separate components do not share data so they can be placed on different tapes (as
needed) without “cutting” any edges (chunks replicated).

» Phase?2: Partition the large-sized components using the k-core decomposition of them.

Y
o

r

« The core (k+1) is always a subgraph of core k. The coreness of a vertex is the maximum core it
belongs to.

* In a bottom-up strategy, the first partition includes files with coreness between [0, x), where X is
chosen such that the partition size fills the tape; the second partition is between [x, y) and so on... .
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Evaluation

Workload summary (Table 1):

Workload wL1 WL2
Total Size 3,052 GB 1,532GB
Duplicates Size 978GB 460GB
Duplicates (%) 32% 30%
Num. of Files 289,295 201,406
Avg. File Size 10MB 7.79MB
Median File Size 82KB 18KB
Num. of Chunks 17,509,025 | 12,021,126
Avg. Chunk Size 182KB 102KB
Median Chunk Size 71KB 52KB
Graph characteristics (Table 2):
Workload WL1 WL2
Time to Generate 5.6 min 3.8 min
Number of Vertices 289,295 201,406
Number of Edges 327,472 246,244
Graph Density 8.00E-06 1.20E-05
Number of Components 166,089 149,083
Size of the Largest Comp. 695 GB 987 GB

11

© 2014 IBM Corporation



Evaluation-cont.

Component (cluster) sizes distribution:
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Evaluation — cont.

Comparing DedupT with Naive Placement:
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Dedup loss = amount of replicated chunks due to partitioning / duplicates size
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Evaluation — cont.

14

Comparing two linking strategies: CHAIN and STAR:
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Evaluation — cont.

Chunk Popularity Distribution
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Log-log plot of chunk frequency distribution for WL1
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Evaluation — cont.

Results of Replicating the Popular Chunks on All Tapes:
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Evaluation — cont.

Adding Data Incrementally (WL1 workload):
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= WL1 was divided into 10 batches (representing 10 periods of time from the files metadata)
and pushed one after the other.

= All the files already placed on a tape are aggregated into a single vertex in the new graph
model for the next batch insertion (vertex weight = sum of deduplicated file weights, edges also
aggregated).
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» The Solution

= On-tape Chunk Placement & Evaluation
>
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On Tape Chunk Placement

Motivation:

Tape high seek time and combined with data fragmentation due to deduplication can lead to
high restore times if chunks are not “carefully” placed on tape.

Restore scenarios:

O Restore entire tape(s) — the traditional way of using tapes

» On-tape placement is straightforward — chunks can be read sequentially at high speed
in any order, and buffered in a disk-based scratch storage for the tape.

= Qur cross-tape placement solution ensures that all chunks needed to reconstruct the
files are on one tape.

0 Restore a subset of files — gaining traction
» Our Simple Placement algorithm turns out to work pretty well in practice.
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On Tape Chunk Placement — cont.

Tape Performance Characterization
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On Tape Chunk Placement — cont.

Simple Placement algorithm (for restoring subsets of files):

Q Place the files (their chunks) on the tape in increasing order of file sizes. It uses the file to
chunk map for each tape (from the cross-tape placement).

U For restoring (a subset of files), a read plan is created that reads all necessary chunks in the
order of increasing tape offset (so all seeks are in the direction of data layout).

» The read plan also uses the reed vs. seek threshold of 4 MB (as shown on previous slide).
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On Tape Chunk Placement — cont.

Restore Performance while varying Restore Set Size

= Dedup- Simple Placement

LAl

1 100 200
F{estore Set Size (GB

100 150 200

Time (minutes)

L

50

= The files in a Restore Set were picked randomly and same sets were used for both methods.
= Although there were more seeks for Dedup than for NonDedup, the seeks for Dedup were shorter.

= As Restore Set Size increases the difference is mostly due to less data (due to deduplication).
(For 1GB restore set size deduplication was only 2.5% while for 300GB it was 30%.)
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Summary:

Q This is the first work to demonstrate that tape based systems can fully benefit from the gains
offered by deduplication without major penalties in terms of data retrieval.

0 We addressed the main challenges for efficient data dedup on tapes:
» High tape mount overhead
= Seek time

O Our chunk placement algorithms are able to preserve up to 95% of dedup efficiency while:
» completely eliminating the above major recovery time overheads.
= improving performance of migrating data to tape pools (proportional with dedup efficiency).
» reducing tape wear
= offering restore performance 30% — 40% better than that of non-deduplicated tape.
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Backups
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On Tape Chunk Placement — cont.

Data layout on LTO-5 Tape
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Zooming into the largest component:
Partition by file popularity: yellow (min degree=1), green(2), red(3) and blue(4)
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