
© 2014 IBM Corporation

DedupT: Deduplication for Tape Systems

Document number

Abdullah Gharaibeh*, Cornel Constantinescu, Maohua Lu, Ramani Routray, Anurag Sharma,
Prasenjit Sarkar, David Pease and Matei Ripeanu*

IBM Research – Almaden, * University of British Columbia

© 2014 IBM Corporation2

Outline:

The Problem

 Background, Motivation &Challenges

The Solution

Cross-tape Chunk Placement & Evaluation

On-tape Chunk Placement & Evaluation

 Summary

Main Results

© 2014 IBM Corporation3

Why dedup for tapes:

 Tapes will continue to play a large part in the storage landscape.
 Great features: longevity, reliability, power and recently filesystem-like access.

 Storage tasks tapes are good at (archival, backup, database snapshots,

virtual images) is where data is highly deduplicable.

Challenges for dedup on tapes:

 High tape mount overhead:

 If the chunks of a file end up on more than one tape then the retrieval

time significantly increases (due to the multiple tape mounts).

 High tape seek time:

 chunks of a file that are placed out-of-order will increase retrieval time

(an end-to-end seek takes ~90 seconds).

© 2014 IBM Corporation4

DedupT Solution:

 A sparse, low memory graph model for representing deduplicated data.
 Exposes the degree of similarity (amount of content sharing) between objects (ex. files).

 Enables efficient partitioning of a large set of deduplicated files, into tape size partitions.

 Allows for fast computation of deduplicated partition sizes.

 A simple on-tape chunk placement algorithm – that reduces seek time

overhead due to chunk fragmentation.

Chunk - centric File - centric

© 2014 IBM Corporation5

DedupT Placement in a typical Data Protection Solution

© 2014 IBM Corporation6

Outline:

The Problem

 Background & Motivation

The Solution

Cross-tape Chunk Placement & Evaluation

On-tape Chunk Placement & Evaluation

 Summary

Main Results

© 2014 IBM Corporation7

Cross-Tape Chunk Placement

Backup Server:
(i) Deduplication Metadata
(ii) Placement Constraints

Graph Generation
(Slide 4)

File-Centric graph
[src dst weight]

F1 F3 2
F1 F4 1
F2 F4 1

Graph partitioning
to aid cross-tape
chunk placement

Chunk-tape
mapping
C1 T1
C2 T1
. .
. .
Cx Ti

 All chunks of a file must be available on a single tape.

 Scalable (to many petabyte systems) and fast.

 Cater to specific placement policies (ex. all the files of a user placed together).

© 2014 IBM Corporation8

Building File-centric Graph from Deduplication Metadata

Metadata in database:
file’s –chunk-maps.

(Hash(C1) = H1)

F1 H1
F1 H2
F2 H4
F2 H3
F3 H1
F3 H2
F4 H3
F4 H1

Graph Edge List
[src dst weight]

Graph generation process from deduplication metadata

1

Group
by

Hash

F1 H1
F3 H1
F4 H1
F1 H2
F3 H2
F2 H3
F4 H3
F2 H4

2

Create
edges

e.g. generate
F1-F3 edge

F1 F3 1
F1 F4 1
F1 F3 1
F2 F4 1

3

Group
by

edge

F1 F3 1
F1 F3 1
F1 F4 1
F2 F4 1

4

Reduce
edge

weights

F1 F3 2
F1 F4 1
F2 F4 1

© 2014 IBM Corporation9

Partitioning the Graph into Tape-size Partitions

 All chunks of a file must be available on a single tape.

 Reduce the number of chunks replicated across the resulting partitions (edge cuts).

File-centric graphs usually show
many isolated clusters with one or
few large.

Next is a file-centric graph
representation of a folder with 432
files (that share at least one
chunk):

© 2014 IBM Corporation10

Partitioning the Graph into Tape-size Partitions – cont.

 Phase1: We identify the clusters (connected components) of the graph.

– Separate components do not share data so they can be placed on different tapes (as

needed) without “cutting” any edges (chunks replicated).

 Phase2: Partition the large-sized components using the k-core decomposition of them.

F2

F6 F7 F8 F10

F1

F11

F9 F12

F4 F5

F310

20

30

10 10

10

5

20

20
2030

30

10 5

15

5

• The core (k+1) is always a subgraph of core k. The coreness of a vertex is the maximum core it

belongs to.

• In a bottom-up strategy, the first partition includes files with coreness between [0, x), where x is

chosen such that the partition size fills the tape; the second partition is between [x, y) and so on… .

© 2014 IBM Corporation11

Evaluation

Workload WL1 WL2

Total Size 3,052 GB 1,532GB

Duplicates Size 978GB 460GB

Duplicates (%) 32% 30%

Num. of Files 289,295 201,406

Avg. File Size 10MB 7.79MB

Median File Size 82KB 18KB

Num. of Chunks 17,509,025 12,021,126

Avg. Chunk Size 182KB 102KB

Median Chunk Size 71KB 52KB

Workload summary (Table 1):

Workload WL1 WL2

Time to Generate 5.6 min 3.8 min

Number of Vertices 289,295 201,406

Number of Edges 327,472 246,244

Graph Density 8.00E-06 1.20E-05

Number of Components 166,089 149,083

Size of the Largest Comp. 695 GB 987 GB

Graph characteristics (Table 2):

© 2014 IBM Corporation12

Evaluation-cont.

Component (cluster) sizes distribution:

© 2014 IBM Corporation13

Evaluation – cont.

Comparing DedupT with Naïve Placement:

Dedup loss = amount of replicated chunks due to partitioning / duplicates size

© 2014 IBM Corporation14

Evaluation – cont.

Comparing two linking strategies: CHAIN and STAR:

© 2014 IBM Corporation15

Evaluation – cont.

Chunk Popularity Distribution

Log-log plot of chunk frequency distribution for WL1

Few chunks are very popular but most show-up only few times.

© 2014 IBM Corporation16

Evaluation – cont.

Results of Replicating the Popular Chunks on All Tapes:

© 2014 IBM Corporation17

Evaluation – cont.

Adding Data Incrementally (WL1 workload):

 WL1 was divided into 10 batches (representing 10 periods of time from the files metadata)
and pushed one after the other.

 All the files already placed on a tape are aggregated into a single vertex in the new graph
model for the next batch insertion (vertex weight = sum of deduplicated file weights, edges also
aggregated).

© 2014 IBM Corporation18

Outline:

The Problem

 Background & Motivation

The Solution

Cross-tape Chunk Placement & Evaluation

On-tape Chunk Placement & Evaluation

 Summary

Main Results

© 2014 IBM Corporation19

On Tape Chunk Placement

Restore scenarios:

 Restore entire tape(s) – the traditional way of using tapes

 On-tape placement is straightforward – chunks can be read sequentially at high speed

in any order, and buffered in a disk-based scratch storage for the tape.

 Our cross-tape placement solution ensures that all chunks needed to reconstruct the

files are on one tape.

 Restore a subset of files – gaining traction

 Our Simple Placement algorithm turns out to work pretty well in practice.

Tape high seek time and combined with data fragmentation due to deduplication can lead to

high restore times if chunks are not “carefully” placed on tape.

Motivation:

© 2014 IBM Corporation20

On Tape Chunk Placement – cont.

Tape Performance Characterization

© 2014 IBM Corporation21

On Tape Chunk Placement – cont.

 Place the files (their chunks) on the tape in increasing order of file sizes. It uses the file to

chunk map for each tape (from the cross-tape placement).

 For restoring (a subset of files), a read plan is created that reads all necessary chunks in the

order of increasing tape offset (so all seeks are in the direction of data layout).

 The read plan also uses the reed vs. seek threshold of 4 MB (as shown on previous slide).

Simple Placement algorithm (for restoring subsets of files):

© 2014 IBM Corporation22

On Tape Chunk Placement – cont.

Restore Performance while varying Restore Set Size

 The files in a Restore Set were picked randomly and same sets were used for both methods.

 Although there were more seeks for Dedup than for NonDedup, the seeks for Dedup were shorter.

 As Restore Set Size increases the difference is mostly due to less data (due to deduplication).

(For 1GB restore set size deduplication was only 2.5% while for 300GB it was 30%.)

© 2014 IBM Corporation23

Summary:

 This is the first work to demonstrate that tape based systems can fully benefit from the gains

offered by deduplication without major penalties in terms of data retrieval.

 We addressed the main challenges for efficient data dedup on tapes:

 High tape mount overhead

 Seek time

 Our chunk placement algorithms are able to preserve up to 95% of dedup efficiency while:

 completely eliminating the above major recovery time overheads.

 improving performance of migrating data to tape pools (proportional with dedup efficiency).

 reducing tape wear

 offering restore performance 30% – 40% better than that of non-deduplicated tape.

© 2014 IBM Corporation24

Backups

© 2014 IBM Corporation25

On Tape Chunk Placement – cont.

Data layout on LTO-5 Tape

© 2014 IBM Corporation

Zooming into the largest component:
Partition by file popularity: yellow (min degree=1), green(2), red(3) and blue(4)

