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Storage Consolidation
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Benefits

• Efficient usage of storage resources

• Sharing support 

• Increased manageability

• Reduced cost 

Block-level storage

• Direct virtual disk access through block interface

File-level storage

• Direct filesystem sharing through file interface



Storage Multitenancy

Goal

• Storage infrastructure shared among different tenants

Requirements

• Scalability: Support enormous number of end users

• Isolation: Isolate the user identities and access control of 

different tenants

• Sharing: Flexible data sharing within or between tenants

• Compatibility: Compatibility with existing applications

• Manageability: Flexible resource management

Research focus

• Efficient and secure multitenancy in VM filesystems
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Motivation

Problem of multitenancy

• Shared FS namespace 

• Crosstalk between tenants

• Complicated security

Native multitenancy at the filesystem level

• Clean way to isolate multiple tenants

• Shared hardware, operating system, fileservers

• Configurable isolation, sharing, performance, manageability
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Prior approaches

Centralized

• The principals’ identities of all tenants centrally maintained

— Poor scalability, isolation and manageability

Peer-to-peer

• The principals of each tenant managed locally

• Tenants communicate to publicize their principals’ identities

— Overhead to periodically synchronize the tenants

Mapping

• Local principal IDs mapped to global unique IDs

— Mapping overhead, sharing complications, security violations
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The Dike Approach

Hierarchical identification and authentication

• The tenants manage their principals

• The provider manages the tenants

Native multitenant authorization

• Separate ACLs per tenant and provider

• Namespace isolation through filesystem views

Efficient permission management and storage

• Shared common permissions

• Inheritance of permissions
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Identification

Principals

• Tenant principals: Use/manage tenant resources

• Native FS principals: Manage the FS

Tenant Authentication Server (TAS)

• Certifies local clients and principals

Filesystem Authentication Server (FAS)

• Certifies filesystem services, tenants, native principals
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Authentication

Metadata ticket

• Securely specifies tenant principal

• Provides access to MDS

Data ticket

• Securely specifies tenant principal

and permissions

• Provides access to OSDs
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(1) Principal authenticated by TAS 

(2) Principal requests FS access 

(3) Client contacts TAS 

(4) Client receives Metadata ticket
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Authorization

Access control isolation

• Separate ACLs per tenant, provider

• Metadata accessible through views

Filesystem view

• Used by native principals to 
manage tenants

Tenant view

• Used by tenants to access or manage tenant resources

File sharing

• Private to a principal

• Shared across principals of one or more tenants
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Common Permissions

Goal

• Reduce filesystem load by reducing ACLs

Per tenant permission inheritance

• Permissions can be inherited to child 
files/folders

Per tenant common permissions

• Child files can share parent’s ACL

ACLs

• Tree folder ACLs: Folder permissions

• Tree file ACLs: Shared child files permissions

• Private file ACLs: Child file permissions explicitly set by user 
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Security Analysis

Captured credential

• Fresh tamperproof credentials cannot be forged

Compromised tenant principal account

• Compromised tenant view is isolated

• Attack limited to principal’s private or shared files

• Cross-tenant policy violation is prohibited

Attack by revoked tenant

• Restricted through deleted tenant view

• Tenant cannot access other views

Compromised provider administrator account

• Handle via good practices (e.g., restricted remote access)
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Prototype
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Implemented on CephFS

Session

• Tenant identified by client

• Session limited to one tenant

Compromised tenant principal account

• Tenant view: Extended Attributes (EAs)

• Filesystem view: Regular fields

• EAs with tenant permissions not

directly accessed by clients

Capabilities

• Include principal and tenant identifiers

• Sent to clients with tenant file access



Experimentation Environment

Configuration: AWS EC2 Instances

• m1.xlarge: x3, 4 VCPU, 15 GB RAM, Linux 3.9.3

• t1.micro: x32, 1 VCPU, 615 MB RAM, Linux 3.9.3

Filesystem configuration

• Ceph/Dike: m1.xlarge, 1xOSD+MON, 1xOSD+MDS, 1xOSD

• Gluster/Heka: m1.xlarge, 3 fileservers

• Replication factor 3

Microbenchmark

• mdtest

• 48000 created files and folders
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Results

Dike Client scalability

• 1  32 clients: Similar to Ceph

Dike Tenant scalability

• 1k  5k tenants: 2% extra overhead
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Results

Dike limited overhead

• 1k tenants overhead: up to 14% 

• 5k tenants overhead: up to 16%

ID mapping multitenancy too costly

• 1k tenants overhead: up to 49% 

• 5k tenants overhead: up to 84%
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Dike native multitenancy
Limited overhead
Scalable to thousands tenants



Conclusions

Native filesystem multitenancy with sharing support

• Hierarchical identification scheme

• Namespace isolation: Per tenant and provider ACLs

• Per tenant common permissions and inheritance

Performance and security analysis

• Limited multitenancy overhead up to 16%

• Dike scalable to several thousand tenants

• Tenant principals not able to violate cross-tenant policy

Future work

• I/O intensive application experimentation

• Weaker trust assumptions
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Backup
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Comparison of Interfaces
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Benefits
Block

Interface

File

Interface

Compatibility 

Isolation  

Sharing 

Consistency, Performance 

Disaster recovery, migration  

Thin Provisioning  

Searchability 

Snapshoting, Versioning  



Dike compared to Ceph
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Pool-level multitenancy

• Objects organized in per tenant pools

• No support for sharing files among tenants

• In Dike tenants can securely share the same pool

Centralized Identity management

• Keystone integration

• Poor scalability, isolation and manageability

• Dike: Hierarchical identity management scheme

ACLs

• Earlier versions of Ceph support Posix ACLs

• Single ACL for all tenants leads to poor isolation

• Dike: Separate ACLs per tenant and provider


