
Department of Computer Science and Engineering

University of Ioannina, Greece

Virtualization Aware Access Control 

for Multitenant Filesystems

Giorgos Kappes, Andromachi Hatzieleftheriou, 
Stergios V. Anastasiadis

IEEE 30th International Conference on Massive Storage Systems and Technology (MSST 2014)



Storage Consolidation

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 2

Benefits

• Efficient usage of storage resources

• Sharing support 

• Increased manageability

• Reduced cost 

Block-level storage

• Direct virtual disk access through block interface

File-level storage

• Direct filesystem sharing through file interface



Storage Multitenancy

Goal

• Storage infrastructure shared among different tenants

Requirements

• Scalability: Support enormous number of end users

• Isolation: Isolate the user identities and access control of 

different tenants

• Sharing: Flexible data sharing within or between tenants

• Compatibility: Compatibility with existing applications

• Manageability: Flexible resource management

Research focus

• Efficient and secure multitenancy in VM filesystems

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 3



Motivation

Problem of multitenancy

• Shared FS namespace 

• Crosstalk between tenants

• Complicated security

Native multitenancy at the filesystem level

• Clean way to isolate multiple tenants

• Shared hardware, operating system, fileservers

• Configurable isolation, sharing, performance, manageability

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 4

FS NATIVE USERS

Shared File System

TENANT1

UID: 1000
GID: 1000

UID: 1100

TENANTN

UID: 1000
GID: 1000

UID: 1050

GID: 1000
UID: 2000

UID: 1000



Prior approaches

Centralized

• The principals’ identities of all tenants centrally maintained

— Poor scalability, isolation and manageability

Peer-to-peer

• The principals of each tenant managed locally

• Tenants communicate to publicize their principals’ identities

— Overhead to periodically synchronize the tenants

Mapping

• Local principal IDs mapped to global unique IDs

— Mapping overhead, sharing complications, security violations

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 5



The Dike Approach

Hierarchical identification and authentication

• The tenants manage their principals

• The provider manages the tenants

Native multitenant authorization

• Separate ACLs per tenant and provider

• Namespace isolation through filesystem views

Efficient permission management and storage

• Shared common permissions

• Inheritance of permissions

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 6



Identification

Principals

• Tenant principals: Use/manage tenant resources

• Native FS principals: Manage the FS

Tenant Authentication Server (TAS)

• Certifies local clients and principals

Filesystem Authentication Server (FAS)

• Certifies filesystem services, tenants, native principals

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 7

TENANT1

Users1

Clients

Tenant 

Authentication 

Server

FILESYSTEM SERVERS

MDS OSD OSD

Filesystem 

Authentication 

Service

Filesystem 

Authentication 

Server

TENANTN

UsersN

Clients

Tenant 

Authentication 

Server



Authentication

Metadata ticket

• Securely specifies tenant principal

• Provides access to MDS

Data ticket

• Securely specifies tenant principal

and permissions

• Provides access to OSDs

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 8

(1) Principal authenticated by TAS 

(2) Principal requests FS access 

(3) Client contacts TAS 

(4) Client receives Metadata ticket

(5) Client contacts MDS

(6) MDS issues Data ticket

(7) Client contacts OSD

(8) Client accesses data

S
te

p
s

(2) 
Connect

(3) Request

Clients

Tenant 

Authentication 

Server

Tenant principals

Tenant 

Authentication 

Server

(8
) 

D
a
ta

Authenticate

Native principals

T
E

N
A

N
T

S
P

R
O

V
ID

E
R

OSD OSDMDS

(7
) 

D
a
ta

tic
ke

t



Authorization

Access control isolation

• Separate ACLs per tenant, provider

• Metadata accessible through views

Filesystem view

• Used by native principals to 
manage tenants

Tenant view

• Used by tenants to access or manage tenant resources

File sharing

• Private to a principal

• Shared across principals of one or more tenants

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 9

Tenant1 Policy

Tenant2 Policy

... ...

TenantN Policy

Authorization 

Request

Authorization 

Decision

Client

TENANT1

Metadata 

Ticket

Tenant1 Policy

Tenant2 Policy

... ...

TenantN Policy

MDS

Data Ticket

Per file access policy



Common Permissions

Goal

• Reduce filesystem load by reducing ACLs

Per tenant permission inheritance

• Permissions can be inherited to child 
files/folders

Per tenant common permissions

• Child files can share parent’s ACL

ACLs

• Tree folder ACLs: Folder permissions

• Tree file ACLs: Shared child files permissions

• Private file ACLs: Child file permissions explicitly set by user 

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 10

Folder

Folder

Tenanti Tenanti

Tree Folder 

ACLs

Tree File

ACLs

Tenanti Tenanti

Tree Folder 

ACLs

Tree File

ACLs

Private File ACL

Tenantk



Security Analysis

Captured credential

• Fresh tamperproof credentials cannot be forged

Compromised tenant principal account

• Compromised tenant view is isolated

• Attack limited to principal’s private or shared files

• Cross-tenant policy violation is prohibited

Attack by revoked tenant

• Restricted through deleted tenant view

• Tenant cannot access other views

Compromised provider administrator account

• Handle via good practices (e.g., restricted remote access)

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 11



Prototype

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 12

Implemented on CephFS

Session

• Tenant identified by client

• Session limited to one tenant

Compromised tenant principal account

• Tenant view: Extended Attributes (EAs)

• Filesystem view: Regular fields

• EAs with tenant permissions not

directly accessed by clients

Capabilities

• Include principal and tenant identifiers

• Sent to clients with tenant file access



Experimentation Environment

Configuration: AWS EC2 Instances

• m1.xlarge: x3, 4 VCPU, 15 GB RAM, Linux 3.9.3

• t1.micro: x32, 1 VCPU, 615 MB RAM, Linux 3.9.3

Filesystem configuration

• Ceph/Dike: m1.xlarge, 1xOSD+MON, 1xOSD+MDS, 1xOSD

• Gluster/Heka: m1.xlarge, 3 fileservers

• Replication factor 3

Microbenchmark

• mdtest

• 48000 created files and folders

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 13



Results

Dike Client scalability

• 1  32 clients: Similar to Ceph

Dike Tenant scalability

• 1k  5k tenants: 2% extra overhead

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 14



Results

Dike limited overhead

• 1k tenants overhead: up to 14% 

• 5k tenants overhead: up to 16%

ID mapping multitenancy too costly

• 1k tenants overhead: up to 49% 

• 5k tenants overhead: up to 84%

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 15

Dike native multitenancy
Limited overhead
Scalable to thousands tenants



Conclusions

Native filesystem multitenancy with sharing support

• Hierarchical identification scheme

• Namespace isolation: Per tenant and provider ACLs

• Per tenant common permissions and inheritance

Performance and security analysis

• Limited multitenancy overhead up to 16%

• Dike scalable to several thousand tenants

• Tenant principals not able to violate cross-tenant policy

Future work

• I/O intensive application experimentation

• Weaker trust assumptions

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 16



Backup

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 17



Comparison of Interfaces

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 18

Benefits
Block

Interface

File

Interface

Compatibility 

Isolation  

Sharing 

Consistency, Performance 

Disaster recovery, migration  

Thin Provisioning  

Searchability 

Snapshoting, Versioning  



Dike compared to Ceph

G. Kappes, Department of Computer Science & Engineering, University of Ioannina, Greece 19

Pool-level multitenancy

• Objects organized in per tenant pools

• No support for sharing files among tenants

• In Dike tenants can securely share the same pool

Centralized Identity management

• Keystone integration

• Poor scalability, isolation and manageability

• Dike: Hierarchical identity management scheme

ACLs

• Earlier versions of Ceph support Posix ACLs

• Single ACL for all tenants leads to poor isolation

• Dike: Separate ACLs per tenant and provider


