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Storage Consolidation

Benefits

Efficient usage of storage resources
Sharing support

Increased manageability

Reduced cost

Block-level storage
» Direct virtual disk access through block interface

File-level storage
» Direct filesystem sharing through file interface
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Storage Multitenancy

Goal

« Storage infrastructure shared among different tenants

Requirements
 Scalability: Support enormous number of end users

Isolation: Isolate the user identities and access control of
different tenants

Sharing: Flexible data sharing within or between tenants
Compatibility: Compatibility with existing applications
Manageability: Flexible resource management

Research focus
« Efficient and secure multitenancy in VM filesystems
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Problem of multitenancy
» Shared FS namespace
« Crosstalk between tenants
« Complicated security
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Native multitenancy at the filesystem level
« Clean way to isolate multiple tenants

« Shared hardware, operating system, fileservers

« Configurable isolation, sharing, performance, manageability
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Prior approaches

Centralized
« The principals’ identities of all tenants centrally maintained
— Poor scalability, isolation and manageability |

Peer-to-peer
« The principals of each tenant managed locally
« Tenants communicate to publicize their principals’ identities
— Overhead to periodically synchronize the tenants |

Mapping
» Local principal IDs mapped to global unique IDs
— Mapping overhead, sharing complications, security violations |
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The Dike Approach

Hierarchical identification and authentication
* The tenants manage their principals
« The provider manages the tenants

Native multitenant authorization
» Separate ACLs per tenant and provider
* Namespace isolation through filesystem views

Efficient permission management and storage
« Shared common permissions
 Inheritance of permissions
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Principals
« Tenant principals: Use/manage tenant resources
» Native FS principals: Manage the FS

Tenant Authentication Server (TAS)
» Certifies local clients and principals

Filesystem Authentication Server (FAS)
« Certifies filesystem services, tenants, native principals

G. Kappes, Department of Computer Science & Engineering, University of loannina, Greece 7



Authentication

Metadata ticket

« Securely specifies tenant principal
* Provides access to MDS

Data ticket

« Securely specifies tenant principal
and permissions

* Provides access to OSDs

(1) Principal authenticated by TAS
(2) Principal requests FS access

(3) Client contacts TAS
(4)

Steps

Client receives Metadata ticket

Tenant principals

Tenant
Authentication
Server

A
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Tenant
Authentication
Server
Native principals

Client contacts MDS
MDS issues Data ticket
Client contacts OSD
Client accesses data
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Authorization

Access control isolation TE:fNTl
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Tenant view Per file access policy
 Used by tenants to access or Manage tenant resources

File sharing
* Private to a principal
« Shared across principals of one or more tenants
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Common Permissions

Goal =
* Reduce filesystem load by reducing ACLs v __'_'j
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* Tree folder ACLs: Folder permissions
* Tree file ACLs: Shared child files permissions
* Private file ACLs: Child file permissions explicitly set by user
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Security Analysis

Captured credential
* Fresh tamperproof credentials cannot be forged

Compromised tenant principal account
« Compromised tenant view is isolated
» Attack limited to principal’s private or shared files
» Cross-tenant policy violation is prohibited

Attack by revoked tenant
« Restricted through deleted tenant view
« Tenant cannot access other views

Compromised provider administrator account
» Handle via good practices (e.g., restricted remote access)
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Prototype

Tenant view

Permissions
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+ Tenant view: Extended Attributes (EAs) —
 Filesystem view: Regular fields “ MBS

« EAs with tenant permissions not W@
directly accessed by clients o (cienty <

Capabilities Implemented on CephFS

* Include principal and tenant identifiers
« Sent to clients with tenant file access
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Experimentation Environment

Configuration: AWS EC2 Instances
 m1.xlarge: x3, 4 VCPU, 15 GB RAM, Linux 3.9.3
* t1.micro: x32, 1 VCPU, 615 MB RAM, Linux 3.9.3

Filesystem configuration
« Ceph/Dike: m1.xlarge, 1xOSD+MON, 1xOSD+MDS, 1x0OSD
* Gluster/Heka: m1.xlarge, 3 fileservers
» Replication factor 3

Microbenchmark

 mdtest
* 48000 created files and folders
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mdtest / AWS

Ceph vs Dike
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Dike Client scalability
1 > 32 clients: Similar to Ceph

Dike Tenant scalability
« 1k = 5k tenants: 2% extra overhead
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mdtest / AWS
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File operations Folder operations

ID mapping multitenancy too costly
» 1k tenants overhead: up to 49%
» 5k tenants overhead: up to 84%
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Native filesystem multitenancy with sharing support
» Hierarchical identification scheme
« Namespace isolation: Per tenant and provider ACLs
* Per tenant common permissions and inheritance

Performance and security analysis
« Limited multitenancy overhead up to 16%
» Dike scalable to several thousand tenants
« Tenant principals not able to violate cross-tenant policy

Future work
« |/0 intensive application experimentation
« Weaker trust assumptions
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Backup
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Comparison of Interfaces

Benefits Block File
Interface Interface

Compatibility 4

Isolation v v
Sharing v
Consistency, Performance v
Disaster recovery, migration v v
Thin Provisioning v v
Searchability v
Snapshoting, Versioning v v
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Dike compared to Ceph

Pool-level multitenancy
« Objects organized in per tenant pools
* No support for sharing files among tenants
* In Dike tenants can securely share the same pool

Centralized Identity management
» Keystone integration
 Poor scalability, isolation and manageability
» Dike: Hierarchical identity management scheme

ACLs

« Earlier versions of Ceph support Posix ACLs
 Single ACL for all tenants leads to poor isolation
» Dike: Separate ACLs per tenant and provider
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