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[Patterson et al., SIGMOD ’88]

RAID

» RAID is known to protect data against disk failures and

latent sector errors

* How it works? Encodes k data chunks into m parity chunks, such
that the k data chunks can be recovered from any k out of
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n=8 disks

= = = = = =) = -
4 &8 4444

D, D, D, D, Dy Ds P, P,

<=8 sectors+

= =

k=6 data m=2 parity
chunks chunks 2




Silent Data Corruptions

Silent data corruptions:

» Data Is stale or corrupted without indication from
disk drives - cannot be detected by RAID

» Generated due to firmware or hardware bugs or
malfunctions on the read/write paths

» More dangerous than disk failures and latent
sector errors

[Kelemen, LCSC ’07; Bairavasundaram et al., FAST ’08; Hafner et al., IBM JRD 2008] 3



Silent Data Corruptions

> Lost write: * Stale

> Torn write: - Stale

» Misdirected writes/reads:

Case 1: Aligned Case 2: Unaligned Case 1: Aligned Case 2: Unaligned
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Silent Data Corruptions

Consequences:

» User read.:
« Corrupted data propagated to upper layers

» User write:
 Parity pollution

» Data reconstruction

« Corruptions of surviving chunks propagated to
reconstructed chunks



Integrity Protection

» Protection against silent data corruptions:

« Extend RAID layer with integrity protection, which
adds integrity metadata for detection

* Recovery is done by RAID layer

» Goals:

 All types of silent data corruptions should be detected

« Reduce computational and I/O overheads of
generating and storing integrity metadata

« Reduce computational and I/O overheads of
detecting silent data corruptions



Our Contributions

» A taxonomy study of existing integrity primitives
on I/O performance and detection capabillities

» An integrity checking model

» Two |/O-efficient integrity protection schemes
with complementary performance gains

> Extensive trace-driven evaluations



Assumptions

» At most one silently corrupted chunk within a
stripe

» If a stripe contains a silently corrupted chunk,
the stripe has no more than m-1 failed chunks
due to disk failures or latent sector errors

[ Otherwise, higher-level RAID is needed! ]

m-1=1




How RAID Handles Writes?

» Full-stripe writes:

« Parity chunks are computed directly from data chunks to be
written chunks (no disk reads needed)

» Partial-stripe writes:

« RMW (Read-modify-writes) = for small writes
* Read all touched data chunks and all parity chunks
« Compute the data changes and the parity chunks
« Write all touched data chunks and parity chunks
« RCW (Reconstruct-writes) - for large writes
* Read all untouched data chunks
« Compute the parity chunks
« Write all touched data chunks and parity chunks



Existing Integrity Primitives

» Self-checksumming / Physical identity iroukov et at., FasT 08
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» Data and metadata are read in a single disk I/O
» Inconsistency implies data corruption

» Cannot detect stale or overwritten data
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Existing Integrity Primitives

» Version Mirroring xrioukov et al, FAST ‘0g]

Version number of D,

» Keep a version number in the same data chunk
and m parity chunks

» Can detect lost writes

» Cannot detect corruptions
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Existing Integrity Primitives

» Checksum I\/Iirroring [Hafner et al., IBM JRD 2008]
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Checksum of D,

» Keep a checksum in the neighboring data chunk
(buddy) and m parity chunks

» Can detect all silent data corruptions

» High 1/O overhead on checksum updates

12



Comparisons

No additional I/O overhead

| Detection Capabilities for Different Types of Silent Data Corruptions
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Additional I/O overhead

Question: How to integrate integrity primitives into
I/O-efficient integrity protection schemes?
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Integrity Checking Model

misdirected write, and
misdirected read
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‘ Misdirected write and

» Two types of disk reads:
« First read: sees all types of silent data corruptions
- Subsequent reads: see a subset of types of silent data corruptions

» Observation: A simpler and lower-overhead integrity

checking mechanism is possible for subseguent-reads
14



Checking Subsequent-Reads

Seen by subsequent-reads
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No additional 1/O overhead

» Subsequent-reads can be checked by self-checksumming

and physical identity without additional 1/Os

» Integrity protection schemes to consider:
 PURE (checksum mirroring only), HYBRID-1, and HYBRID-2
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Integrity Protection Schemes

Physical identi

Version number:

> Hybrid-1
* Physical identity + self-checksumming + version mirroring
« A variant of the scheme in [Krioukov et al., FAST '08]
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Integrity Protection Schemes

Physical identi

Checksum

Checksum <«

> Hybrid-2
* Physical identity + self-checksumming + checksum mirroring
« A NEW scheme
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Additional I/0O Overhead for a
Single User Read/Write

User Read User Write
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outperform Pure in complementary I/O advantages

Both Hybrid-1 and Hybrid-2 Hybrid-1 and Hybrid-2 provide
subsequent-reads for different write sizes
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Choosing the Right Scheme

guﬁ rite n+1 :
> |If 5 < PHL W —m, choose Hybrid-1
chunk
gu: rite n—+1 -
> |If 5 s { 5 W —m, choose Hybrid-2
chunk

« Swrite = average write size of a workload (estimated
through measurements)

° Schunk: = RAID chunk size

« The chosen scheme is configured in the RAID layer
(offline) during initialization
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Evaluation

» Computational overhead for calculating integrity
metadata

» 1/O overhead for updating and checking integrity
metadata

» Effectiveness of choosing the right scheme

20



Computational Overhead

» Implementation:

 GF-Complete [Plank et al., FAST’13]
and Crcutil libraries

» Testbed:

* |ntel Xeon E5530 CPU @ 2.4GHz
with SSE4.2

> Overall results:

« ~4GB/s for RAID-5
« ~2.5GB/s for RAID-6

» RAID performance is
bottlenecked by disk I/Os,
rather than CPU
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Increased Percentage ( %)

/O Overhead

> Trace-driven simulation

« 12 workload traces from production Windows servers
[Kavalanekar et al., ISWC "08]

« RAID-6 with n=8 for different chunk sizes
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l ncreased Percentage ( %)

/O Overhead

» Pure can have high I/O overhead, by up to 43.74%

» 1/0O overhead can be kept at reasonably low (often below 15%) using
the best of Hybrid-1 and Hybrid-2, due to I/O gain in subsequent reads

» More discussions in the paper
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» Accuracy rate: 34/36 = 94.44%

» For the two Iinconsistent cases, the 1/0O overhead difference

between Hybrid-1 and Hybrid-2 is small (below 3%)
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Implementation Issues

» Implementation in RAID layer:

« Leverage RAID redundancy to recover from silent
data corruptions

» Open Issues:

« How to keep track of first reads and subsequent
reads?

 How to choose between Hybrid-1 and Hybrid-2 based
on workload measurements?

« How to integrate with end-to-end integrity protection?
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Conclusions

» A systematic study on I/O-efficient integrity
protection schemes against silent data
corruptions in RAID systems

» Findings:
* Integrity protection schemes differ in 1/O overheads,
depending on the workloads

« Simpler integrity checking can be used for
subsequent reads

» Extensive evaluations on computational and 1/O
overheads of integrity protection schemes
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