Toward I/O-Efficient Protection Against
Silent Data Corruptions in RAID Arrays

Minggiang Li and Patrick P. C. Lee
The Chinese University of Hong Kong

MSST 14

[Patterson et al., SIGMOD ’88]

RAID

» RAID is known to protect data against disk failures and

latent sector errors

* How it works? Encodes k data chunks into m parity chunks, such
that the k data chunks can be recovered from any k out of

n=k+m chunks
n=8 disks

= = = = = =) = -
4 &8 4444

D, D, D, D, Dy Ds P, P,

<=8 sectors+

= =

k=6 data m=2 parity
chunks chunks 2

Silent Data Corruptions

Silent data corruptions:

» Data Is stale or corrupted without indication from
disk drives - cannot be detected by RAID

» Generated due to firmware or hardware bugs or
malfunctions on the read/write paths

» More dangerous than disk failures and latent
sector errors

[Kelemen, LCSC ’07; Bairavasundaram et al., FAST ’08; Hafner et al., IBM JRD 2008] 3

Silent Data Corruptions

> Lost write: * Stale

> Torn write: - Stale

» Misdirected writes/reads:

Case 1: Aligned Case 2: Unaligned Case 1: Aligned Case 2: Unaligned

!
: . i
Write A3 m Target chunk | H Read A: Target chunk | (
Ne B | = 1 e B
!
!
!

!
|
| S S

Target - | \H . Target

locat%on \\ X\,‘/ : | A\ B | - location:
: B | -

EY -
Misdirected Misdirected ™ .
” ' q ! i e location: %/V/ \\i\&

location:
(a) Misdirected writes (b) Misdirected reads

Silent Data Corruptions

Consequences:

» User read.:
« Corrupted data propagated to upper layers

» User write:
 Parity pollution

» Data reconstruction

« Corruptions of surviving chunks propagated to
reconstructed chunks

Integrity Protection

» Protection against silent data corruptions:

« Extend RAID layer with integrity protection, which
adds integrity metadata for detection

* Recovery is done by RAID layer

» Goals:

 All types of silent data corruptions should be detected

« Reduce computational and I/O overheads of
generating and storing integrity metadata

« Reduce computational and I/O overheads of
detecting silent data corruptions

Our Contributions

» A taxonomy study of existing integrity primitives
on I/O performance and detection capabillities

» An integrity checking model

» Two |/O-efficient integrity protection schemes
with complementary performance gains

> Extensive trace-driven evaluations

Assumptions

» At most one silently corrupted chunk within a
stripe

» If a stripe contains a silently corrupted chunk,
the stripe has no more than m-1 failed chunks
due to disk failures or latent sector errors

[Otherwise, higher-level RAID is needed!]

m-1=1

How RAID Handles Writes?

» Full-stripe writes:

« Parity chunks are computed directly from data chunks to be
written chunks (no disk reads needed)

» Partial-stripe writes:

« RMW (Read-modify-writes) = for small writes
* Read all touched data chunks and all parity chunks
« Compute the data changes and the parity chunks
« Write all touched data chunks and parity chunks
« RCW (Reconstruct-writes) - for large writes
* Read all untouched data chunks
« Compute the parity chunks
« Write all touched data chunks and parity chunks

Existing Integrity Primitives

» Self-checksumming / Physical identity iroukov et at., FasT 08

D, D, D, D Py P,

e T
EENEEEEN
=

=

» Data and metadata are read in a single disk I/O
» Inconsistency implies data corruption

» Cannot detect stale or overwritten data

10

Existing Integrity Primitives

» Version Mirroring xrioukov et al, FAST ‘0g]

Version number of D,

» Keep a version number in the same data chunk
and m parity chunks

» Can detect lost writes

» Cannot detect corruptions

11

Existing Integrity Primitives

» Checksum I\/Iirroring [Hafner et al., IBM JRD 2008]

.----""""l--‘llI

Checksum of D,

» Keep a checksum in the neighboring data chunk
(buddy) and m parity chunks

» Can detect all silent data corruptions

» High 1/O overhead on checksum updates

12

Comparisons

No additional I/O overhead

| Detection Capabilities for Different Types of Silent Data Corruptions

- - g ..1 Irec W . .|.1 Ir I i
Integrity Primitives [ost Torn Misdirected rite Misdirected read
. : . . Unaligned . Un-
write | write | Aligned = Aligned .
Front-part | End-part < aligned
Self- ’
checksumming i Self- v v v v
Physical heckir
“hysi checking Y Y Y Y
identity |
Version
o v
MIirroring ‘
Checksum §
. v v v v v v v
MIrroring

Additional I/O overhead

Question: How to integrate integrity primitives into
I/O-efficient integrity protection schemes?

13

Integrity Checking Model

misdirected write, and
misdirected read

-‘

misdirected read

-‘.

Subsequent-
read

__/

Lost write, torn write, e .
‘ Misdirected write and

» Two types of disk reads:
« First read: sees all types of silent data corruptions
- Subsequent reads: see a subset of types of silent data corruptions

» Observation: A simpler and lower-overhead integrity

checking mechanism is possible for subseguent-reads
14

Checking Subsequent-Reads

Seen by subsequent-reads

Detection Capghiliﬁpq for Different T}'ppc of Yilant NData Pnrrllpﬁnnc | [ntegrity Protection Schemes
Integrity Primitives Lost Torn Misdirected wrile Misdirected read PURE || HYBRID-I HYBRID-2
write | write | Aliened Unaligned Aligned Un- () () (W)
g Front-part | End-part = aliened
Self-
checksumming Self- v v v v & o
Physical checking
identity v v v v & .
mirroring Cross- v *
Ch_ea‘:ks‘um checking & v Y v v v v N N
mirroring

No additional 1/O overhead

» Subsequent-reads can be checked by self-checksumming

and physical identity without additional 1/Os

» Integrity protection schemes to consider:
 PURE (checksum mirroring only), HYBRID-1, and HYBRID-2

15

Integrity Protection Schemes

Physical identi

Version number:

> Hybrid-1
* Physical identity + self-checksumming + version mirroring
« A variant of the scheme in [Krioukov et al., FAST '08]

16

Integrity Protection Schemes

Physical identi

Checksum

Checksum <«

> Hybrid-2
* Physical identity + self-checksumming + checksum mirroring
« A NEW scheme

17

Additional I/0O Overhead for a
Single User Read/Write

User Read User Write
O PURE
¢>HYBRID-1 (first-read)

ot
&

2
& 801 HHYBRID-1 (subsequent-read)
-E \ -+ HYBRID-2 (first-read)
s 607 4 <HYBRID-2 (subsequent-read)
—
= 40 @ Switch point:
E @ witch point:
z - & n o \H O
= 200 NV T,
2 %
g Y (3) 4 5 6
of Touched Data Chunks # of Toucned Data Chunks

outperform Pure in complementary I/O advantages

Both Hybrid-1 and Hybrid-2 Hybrid-1 and Hybrid-2 provide
subsequent-reads for different write sizes

10

Choosing the Right Scheme

guﬁ rite n+1 :
> |If 5 < PHL W —m, choose Hybrid-1
chunk
gu: rite n—+1 -
> |If 5 s { 5 W —m, choose Hybrid-2
chunk

« Swrite = average write size of a workload (estimated
through measurements)

° Schunk: = RAID chunk size

« The chosen scheme is configured in the RAID layer
(offline) during initialization

19

Evaluation

» Computational overhead for calculating integrity
metadata

» 1/O overhead for updating and checking integrity
metadata

» Effectiveness of choosing the right scheme

20

Computational Overhead

» Implementation:

 GF-Complete [Plank et al., FAST’13]
and Crcutil libraries

» Testbed:

* |ntel Xeon E5530 CPU @ 2.4GHz
with SSE4.2

> Overall results:

« ~4GB/s for RAID-5
« ~2.5GB/s for RAID-6

» RAID performance is
bottlenecked by disk I/Os,
rather than CPU

Chunk Size=4 KB
80004

700W
600

)

2 5000
% A v A d
< 400Gy OPURE (sse_cre)
§_ 3000] <>HYBRID-1 (sse_crc)

5000 ==HYBRID-2 (sse_crc)

100@.-EEEEEEEEEE g g Bl i B S o |
| Bare-bones) PURE ‘B HYBRID-1 - HYBRID-2 |
0

4 8 17 16 20 74 lh 2K 4h Sh 16h %2& 64h

n Chunk Size (# of Bytes)

(a) RAID-5
Chunk Size=4 KB

¥

y Yl O PI"RE (sse c‘rc)
Y O-HYBRID 1 (sse_crc)
==HYBRID-2 (sse_crc)

=4 E,E..E..E-E-E--E“E'

Speed (MB/s)
[&)
=
=
[=]

logoﬁ_ EEEEEE

PURE {3 HYBRID-1 - HYBRID-2 |

|=A=Bare—b0nes

4 8 12 16 20 24 1K 2K 4K SK 16K 32K 64K
n Chunk Size (# of Bytes)

(b) RAID-6

Increased Percentage (%)

/O Overhead

> Trace-driven simulation

« 12 workload traces from production Windows servers
[Kavalanekar et al., ISWC "08]

« RAID-6 with n=8 for different chunk sizes

Chunk Size =2 KB - PURE
[JHYBRID-1

e Lamede) el 5,

DAP-DS TPC-E LM.-TBE MSNJBEFS MSN-CFS DTRS TPC-C DAP-PS WBS RAD-BE RAD-AS
Chunk Size =4 KB

50 —
40—
30—
20
0-— DAP-DS TPC-E LM-TBE MSNIJBEFS MSNLCFS DﬁRS rPt C BS R,ui BE Rm AS
Chunk Size =

50

40 -
30
20
DAP-DS TPC-E LMITBE MSNJBEFS

MSN_CFS DTRS TPC-C DAP-PS WBS RAJﬂu BE RAD-AS

l ncreased Percentage (%)

/O Overhead

» Pure can have high I/O overhead, by up to 43.74%

» 1/0O overhead can be kept at reasonably low (often below 15%) using
the best of Hybrid-1 and Hybrid-2, due to I/O gain in subsequent reads

» More discussions in the paper

. , ’ K
Chunk Size =2 KB - PURE
[|HYBRID-1
h ﬂ l_’_\ J_l_w l_’_\ i_’_\ J_l_\ .
DAP-DS TPC-E LMJTBE MSNJBEFS MSN-CFS DTRS TPC-C DAP-PS Exch WBS R.ui BE RAD-AS
Chunk Size =4 KB
50 -
40
30—
20 —
0 DAPDSs TPC-E LMITBE MSNIBEFS MSN-CFS DTRS TPC-C DAP-PS Exch VBS RAJi BE RADS AS
0 Chunk Size =8 KB
. o 43.74%
40 —
30
20—
0= DAPDs TPC-E LM-TBE MSNIJBEFS MSNLCFS DTRS rpt C DAP-PS Exch whs RA]i BE RAD-AS

tage (%o

ed Percen

Choosing the Right Scheme

0o Chunk Size =2 KB - PURE
0
40— [HYBRID-1

m W

gg : [|HYBRID-2
gy = s =
0-— TPC-E LM- FIBE MSNJBEFS MSN.CFS DTRS TPC-C DAP-PS WBS RA]i BE

Chunk Size =4 KB

50
40

RAD-AS

i

30—
20
il _ L m | I—!_\ h ﬂT I—W J_l_\ -
0 DAPDSs TPC-E LMITBE MSNIBEFS MSN-CFS DTRS TPC-C DAP-PS WBS RAD-BE

Chunk Size =8 KB

RAD-AS

50 —
40
30
20—
0 DAP-DS TPC-E LM-TBE MSNIJBEFS MSNLCFS DTRS rptc BS RAJiBE RAD-AS

» Accuracy rate: 34/36 = 94.44%

» For the two Iinconsistent cases, the 1/0O overhead difference

between Hybrid-1 and Hybrid-2 is small (below 3%)

24

Implementation Issues

» Implementation in RAID layer:

« Leverage RAID redundancy to recover from silent
data corruptions

» Open Issues:

« How to keep track of first reads and subsequent
reads?

 How to choose between Hybrid-1 and Hybrid-2 based
on workload measurements?

« How to integrate with end-to-end integrity protection?

25

Conclusions

» A systematic study on I/O-efficient integrity
protection schemes against silent data
corruptions in RAID systems

» Findings:
* Integrity protection schemes differ in 1/O overheads,
depending on the workloads

« Simpler integrity checking can be used for
subsequent reads

» Extensive evaluations on computational and 1/O
overheads of integrity protection schemes

26

