
1

Toward I/O-Efficient Protection Against

Silent Data Corruptions in RAID Arrays

Mingqiang Li and Patrick P. C. Lee

The Chinese University of Hong Kong

MSST ’14

RAID

 RAID is known to protect data against disk failures and

latent sector errors

• How it works? Encodes k data chunks into m parity chunks, such

that the k data chunks can be recovered from any k out of

n=k+m chunks

2

[Patterson et al., SIGMOD ’88]

Silent Data Corruptions

Silent data corruptions:

Data is stale or corrupted without indication from

disk drives  cannot be detected by RAID

Generated due to firmware or hardware bugs or

malfunctions on the read/write paths

More dangerous than disk failures and latent

sector errors

3[Kelemen, LCSC ’07; Bairavasundaram et al., FAST ’08; Hafner et al., IBM JRD 2008]

Silent Data Corruptions

 Lost write:

Torn write:

Misdirected writes/reads:

4

Stale

Stale

(a) Misdirected writes (b) Misdirected reads

updated

Silent Data Corruptions

Consequences:

User read:

• Corrupted data propagated to upper layers

User write:

• Parity pollution

Data reconstruction

• Corruptions of surviving chunks propagated to

reconstructed chunks

5

Integrity Protection

Protection against silent data corruptions:

• Extend RAID layer with integrity protection, which

adds integrity metadata for detection

• Recovery is done by RAID layer

Goals:

• All types of silent data corruptions should be detected

• Reduce computational and I/O overheads of

generating and storing integrity metadata

• Reduce computational and I/O overheads of

detecting silent data corruptions

6

Our Contributions

A taxonomy study of existing integrity primitives

on I/O performance and detection capabilities

An integrity checking model

Two I/O-efficient integrity protection schemes

with complementary performance gains

Extensive trace-driven evaluations

7

Assumptions

At most one silently corrupted chunk within a

stripe

 If a stripe contains a silently corrupted chunk,

the stripe has no more than m-1 failed chunks

due to disk failures or latent sector errors

8

Otherwise, higher-level RAID is needed!

D0 D1 D2 D3 D4 D5 P0 P1

m-1=1

How RAID Handles Writes?

 Full-stripe writes:

• Parity chunks are computed directly from data chunks to be

written chunks (no disk reads needed)

 Partial-stripe writes:

• RMW (Read-modify-writes)  for small writes

• Read all touched data chunks and all parity chunks

• Compute the data changes and the parity chunks

• Write all touched data chunks and parity chunks

• RCW (Reconstruct-writes)  for large writes

• Read all untouched data chunks

• Compute the parity chunks

• Write all touched data chunks and parity chunks

9

Existing Integrity Primitives

Self-checksumming / Physical identity

10

Data and metadata are read in a single disk I/O

 Inconsistency implies data corruption

Cannot detect stale or overwritten data

[Krioukov et al., FAST ’08]

Existing Integrity Primitives

Version Mirroring

11

Keep a version number in the same data chunk

and m parity chunks

Can detect lost writes

Cannot detect corruptions

[Krioukov et al., FAST ’08]

Existing Integrity Primitives

Checksum Mirroring

12

[Hafner et al., IBM JRD 2008]

Keep a checksum in the neighboring data chunk

(buddy) and m parity chunks

Can detect all silent data corruptions

High I/O overhead on checksum updates

Comparisons

13

Question: How to integrate integrity primitives into

I/O-efficient integrity protection schemes?

Additional I/O overhead

No additional I/O overhead

Integrity Checking Model

 Two types of disk reads:

• First read: sees all types of silent data corruptions

• Subsequent reads: see a subset of types of silent data corruptions

 Observation: A simpler and lower-overhead integrity

checking mechanism is possible for subsequent-reads
14

Checking Subsequent-Reads

 Subsequent-reads can be checked by self-checksumming

and physical identity without additional I/Os

 Integrity protection schemes to consider:

• PURE (checksum mirroring only), HYBRID-1, and HYBRID-2

15

Seen by subsequent-reads

No additional I/O overhead

15

Integrity Protection Schemes

16

 Hybrid-1

• Physical identity + self-checksumming + version mirroring

• A variant of the scheme in [Krioukov et al., FAST ’08]

Integrity Protection Schemes

17

 Hybrid-2

• Physical identity + self-checksumming + checksum mirroring

• A NEW scheme

Additional I/O Overhead for a

Single User Read/Write

18

Both Hybrid-1 and Hybrid-2

outperform Pure in

subsequent-reads

Hybrid-1 and Hybrid-2 provide

complementary I/O advantages

for different write sizes

Switch point:

Choosing the Right Scheme

 If choose Hybrid-1

 If choose Hybrid-2

19

• = average write size of a workload (estimated

through measurements)

• = RAID chunk size

• The chosen scheme is configured in the RAID layer

(offline) during initialization

Evaluation

Computational overhead for calculating integrity

metadata

 I/O overhead for updating and checking integrity

metadata

Effectiveness of choosing the right scheme

20

Computational Overhead

 Implementation:
• GF-Complete [Plank et al., FAST’13]

and Crcutil libraries

 Testbed:
• Intel Xeon E5530 CPU @ 2.4GHz

with SSE4.2

 Overall results:
• ~4GB/s for RAID-5

• ~2.5GB/s for RAID-6

 RAID performance is

bottlenecked by disk I/Os,

rather than CPU

21

I/O Overhead

Trace-driven simulation

• 12 workload traces from production Windows servers

• RAID-6 with n=8 for different chunk sizes

22

[Kavalanekar et al., IISWC ’08]

I/O Overhead

23

 Pure can have high I/O overhead, by up to 43.74%

 I/O overhead can be kept at reasonably low (often below 15%) using

the best of Hybrid-1 and Hybrid-2, due to I/O gain in subsequent reads

 More discussions in the paper

43.74%

Choosing the Right Scheme

24

 Accuracy rate: 34/36 = 94.44%

 For the two inconsistent cases, the I/O overhead difference

between Hybrid-1 and Hybrid-2 is small (below 3%)

Implementation Issues

 Implementation in RAID layer:

• Leverage RAID redundancy to recover from silent

data corruptions

Open issues:

• How to keep track of first reads and subsequent

reads?

• How to choose between Hybrid-1 and Hybrid-2 based

on workload measurements?

• How to integrate with end-to-end integrity protection?

25

Conclusions

A systematic study on I/O-efficient integrity

protection schemes against silent data

corruptions in RAID systems

Findings:

• Integrity protection schemes differ in I/O overheads,

depending on the workloads

• Simpler integrity checking can be used for

subsequent reads

Extensive evaluations on computational and I/O

overheads of integrity protection schemes

26

