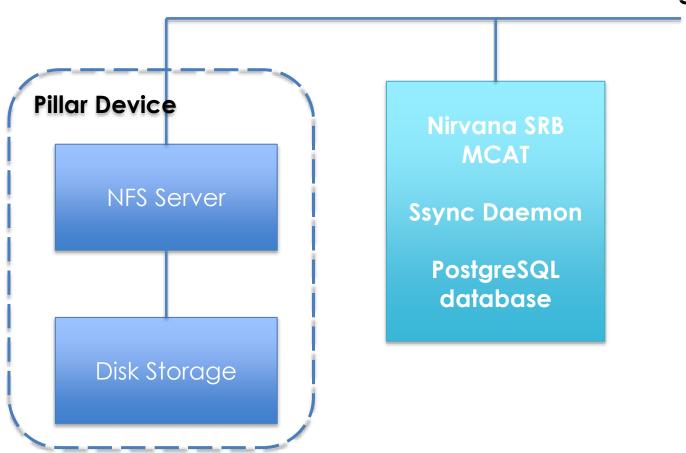

Storage Data Analysis with Nirvana SRB

Presented for 2014 IEEE MSST Conference Santa Clara, CA June 2-6 2014

Explosion of Data Growth from Experiments, Computer Simulations, and Advanced Sensors

Challenge: User Data Rests On Expensive High Performance Storage System That Affects Tokamak Experiments

- Pillar Axiom Storage (now Oracle) was bought in 2008
- Three major partitions exported via NFS v3
 - /u (user home directory) 23 TB used
 - /data (work / scratch space) 21 TB used
 - /vidata (visualization) 17 TB used
- Limited visibility to what is stored in Pillar, forcing SysAdmin to back up everything
- Compute jobs that produces lots of small files slow down compute resource crucial to experiments on D-3D Fusion Reactor
- We call this type of unmanaged storage Data Junkyard


Using Nirvana SRB To Inventory And Analyze The Junkyard

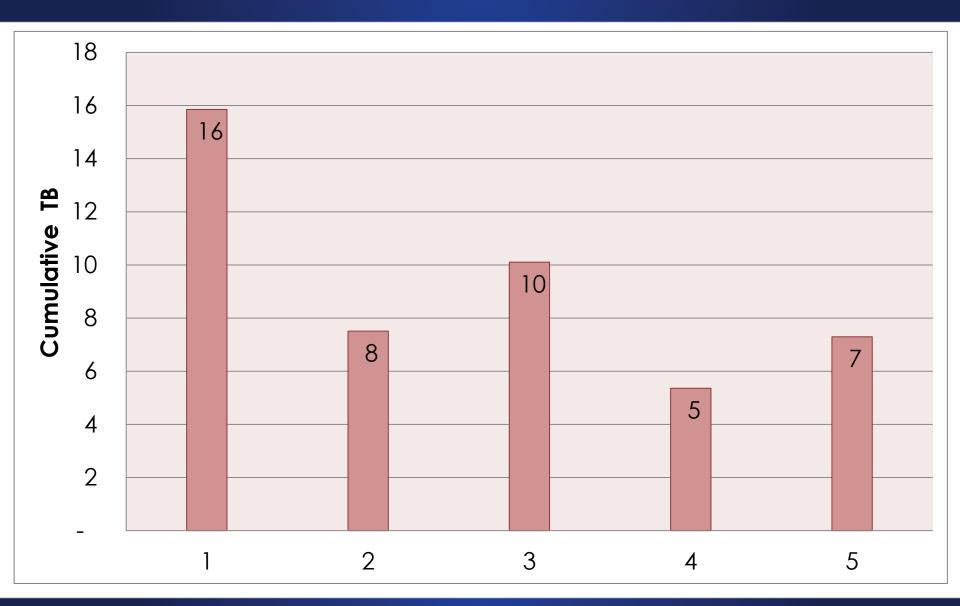
- Build Nirvana SRB application server
- Exports 3 NFS filesystems to SRB application server
- Use Nirvana SRB fast multithreaded synchronization daemon to register user file metadata
- Analysis queries and reports against Nirvana SRB Metadata Catalog
- Analysis reports basis for:
 - Remediation of duplicates and other conditions with individual users
 - Creating Information Lifecycle Management policy proposals for the next quarter, year, etc.
 - Migrate accessed files to less expensive data-store technology
 - Bulk data protection and DR capacity planning

System Block Diagram

Gigabit Network

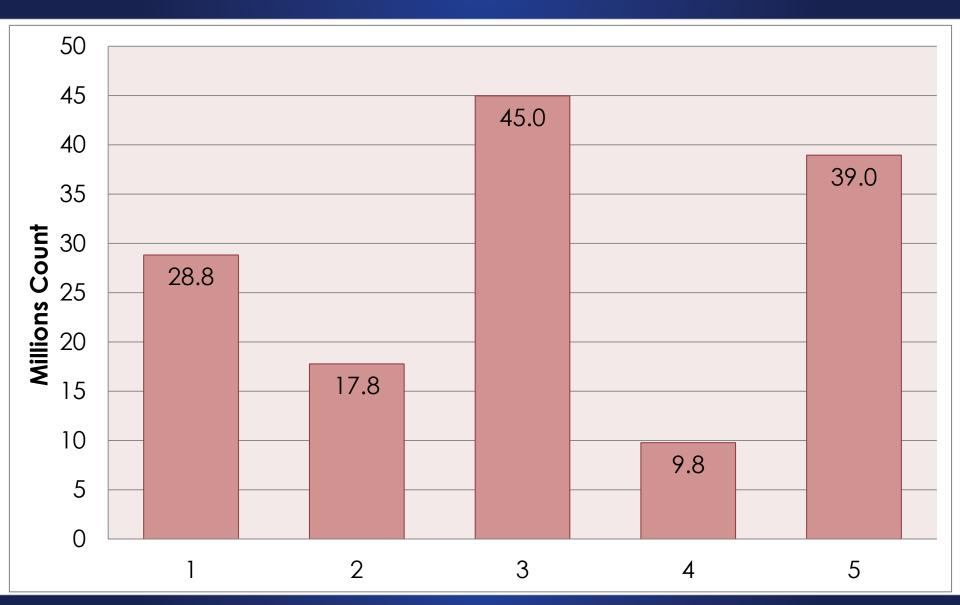
Analysis: Summary File Inventory

Location	Total TB	Count	Avg Size
/U	23	70,664,216	332 KB
/data	20	66,421,040	316 KB
/vidata	17	215,288	82.9 MB
Total	60	137,300,544	


Analysis: Top 10 Users By File Count

User	TB Total Use	Count	Avg Size
1	3.64	39,376,868	92 KB
2	0.13	4,145,415	31 KB
3	1.30	3,282,744	396 KB
4	1.81	1,883,409	961 KB
5	1.66	1,605,967	1 MB
6	0.80	1,516,296	520 KB
7	0.36	1,092,901	329 KB
8	2.21	902,696	2.4 MB
9	0.12	901,450	133 KB
10	0.06	767,108	78 KB

Analysis: File Type Inventory


Type Designator	Total TB	Count	Avg Size
EFIT	2.88	36x10 ⁶	80 KB
GAProfile	1.53	24x10 ⁶	64 KB
CINE	10.68	5,400	197 MB
CIN	3.65	3,200	1.1 GB

Analysis: Cumulative TB By Last Access Age In Years

Analysis: Cumulative File Count By Last Access Age In Years

Analysis Capability Enables...

- Nirvana SRB gives us ability to identify top 10 users of codes that generate thousands of small files per run
 - Affects overall system responsiveness
- Nirvana SRB gives us ability to locate the knee of the curve to set archival policy based on last access age
- Nirvana SRB gives us
 - The business evidence to justify less expensive second tier storage for WORM data (video files CIN, CINE)
 - The mechanism to migrate the data from high \$\$/TB Pillar disk using Nirvana SRB ILM automation
- Nirvana SRB gives us hard data evidence for
 - Negotiating a quota policy and/or data-store hardware funding with the user communities
 - Designing next generation data store

Lessons Learned

- Tune Linux for SSD storage
 - Deadline scheduler, fifo_batch, no barrier, no atime, swappiness, PGSQL work_mem
- Nirvana SRB Ssync registered an average of 600 files / second
 - Full scan took 2.6 days
- Nirvana SRB application server HW was under-powered
 - Nirvana SRB known to be capable of 2 X or better than this perf
 - NFS mount did not help
 - Better: 2 sockets with at least 64 GB DRAM for Nirvana Metadata
 Catalog service + Nirvana SRB filesystem scanner
 - Better: 2 sockets with at least 128GB DRAM for RDBMS
- Over all CINE files, SRB found 940 duplicates files occupying 1.23 TB total
- Over all CIN files, SRB found 521 duplicate files occupying 298 GB total

Thank You!

