

# Anode

Empirical Detection of Performance Problems in Storage Systems

Vipul Mathur, Cijo George, Jayanta Basak Advanced Technology Group, NetApp India Go further, faster®



# Motivation

NetApp<sup>®</sup>

- Hard to detect, diagnose and fix performance problems in computing systems
  - Storage systems are no different
  - Addressing component failure is easy in comparison!
- Affects user satisfaction
  - Data unavailability/ downtime
  - Typical complaint: "system is slow"
  - Performance issues take 10x longer to close than others

# **Challenges**

- Is there a problem?
  - Thousands of metrics to gather and analyze
  - Systems and workloads are unique: no universal thresholds
- Where is the problem?
  - Larger the system, harder it becomes to pinpoint affected parts
- Exactly when does the problem manifest?
  - Multiple workloads and differing activity cycles
  - Performance problems can be intermittent

# Sample Metrics from Actual Incident





©2014 NetApp, Inc. All rights reserved.

Anode | MSST 2014

# Anode Approach

- Improve productivity and effectiveness of experts
- Do not try to replace them!

- Use time-series analysis to process metrics
- Detect anomalies based on past behavior
- Pin-point affected parts
- Identify time-periods when impact is felt
- Find top symptoms experienced

## Anode System

**NetApp**<sup>®</sup> Upload Collected Measurements Measurements Database Baseline ( <mark>k</mark>) Summarization The Internet Anomaly Detection Deployed Aggregation Storage Systems and Scoring Detection

- Metrics collected internally by storage systems deployed in field data centers
- Measurement data gathered in Anode data center
- Analyzed in batch mode
- Results made available to admins/ support personnel

©2014 NetApp, Inc. All rights reserved.

Advice

**Anode System** 

## Metrics from a Storage System





# Anode Methodology

Our solution



# **Overview**

- NetApp<sup>®</sup>
- Key Observation: Metrics repeat with weekly periodicity
  - Driven by commonly observed daily user load fluctuations
- 1. Baseline Summarization: Extract range of expected values for each hour of the week based on historical values
- 2. Anomaly Detection: Use the baseline summary to detect anomalies in individual metrics
- 3. Aggregation and Scoring: Use combinations of several metrics to make a robust assessment of performance

## **Anomaly Detection Overview**

**NetApp**<sup>®</sup>



3. Compare with assessment range to flag anomalies

**NetApp**<sup>®</sup>

Weeks #1 to #7 segmented and stacked



**NetApp**<sup>°</sup>

Week summary based on weeks #1 to #4



NetApp<sup>®</sup>

#### Anomaly flags in week #7



**NetApp**<sup>°</sup>

Anomaly magnitudes in week #7



©2014 NetApp, Inc. All rights reserved.

Anode | MSST 2014

# Aggregation

- Single metrics can have random spikes/ noise
  - spurious alerts/ false positives
- Add robustness: combine anomalies across metrics
- Typically need to assess object/ instance; not each metric
- Aggregation Sets: sets of metrics to aggregate together
  - e.g. CPU:#:\* or system:system:\*
- Aggregation Method: combine anomaly flags & magnitudes
  - mean, median, weighted sum, OR, AND, ...
- Percentile thresholds on combined magnitude

#### NetApp<sup>®</sup>

Aggregated anomaly magnitude across all system-level counters



#### **NetApp**<sup>•</sup>

Aggregated anomaly flags across all system-level counters



# **Scoring and Ranking**

- Anomaly magnitudes are normalized
  - Comparable across metrics/ aggregation sets/ nodes
- Assign numeric score to each anomaly assessment
  - Anomaly duration; Cumulative magnitude; Avg. count
- Sort by score to get rank
  - − Per metric → "top symptoms"
    - E.g. system-wide cache hit rate and partition X read latency showing highest anomalies → maybe workload on X changed to less cacheable
  - Per instance aggregation set  $\rightarrow$  find "most affected" parts



# Laboratory Validation

Experiments conducted in a controlled environment



# Lab Experiment Setup

NetApp<sup>®</sup>

- Client load generator emulates concurrency patterns derived from actual deployed systems
- Trigger several types of disruptions to create performance anomalies
  - Internal workload
  - Failed disk: degraded RAID
  - RAID reconstruction
- Measure impact on client



### Lab Experiment: Sample Run



©2014 NetApp, Inc. All rights reserved.

### Lab Experiment: Anomaly Detection



Problem Timeline Anomaly Magnitude ——

Partition Level - Weighted Sum / Quantile 75



Flagged Anomalies



## Lab Validation: Summary Stats

#### **NetApp**<sup>°</sup>



- True Positive Rate (TPR)
  - Ideally 1
- False Positive Rate (FPR)
  - Ideally 0
- Precision and Accuracy
  - Ideally 1



©2014 NetApp, Inc. All rights reserved.

Value

### Lab Validation: TPR & FPR Distribution

Anode | MSST 2014



©2014 NetApp, Inc. All rights reserved.

 Reminder: stats are for hour-by-hour assessment of 24 exp

Chosen Assessment Partition-level Weighted Sum with 75<sup>th</sup> Percentile Threshold

- TPR is high in most experiments
- FPR is low across all experiments
  - No FPR > 0.25



# **Field Validation**

Analysis of actual customerreported performance issues



# "Ground-Truth" for Comparison?

- Anode assesses performance impact on hourly basis but reported cases only have open and close date
  - How do we compare the two?

- Performance impact may
  - start before case is opened (usually does)
  - be intermittent, not continuous while case is open
  - stop before case is closed (fix done)

**NetApp**<sup>®</sup>



- F- before start of anomalies remain F-
- F- after start of anomalies become T-
- F+ after close of case remain F+
- F+ before start of case become T+

### Field Validation: Summary Stats

#### NetApp<sup>®</sup>



Reminder: These are median values across 423 actual reported cases

Chosen assessment performs well in field validation too

 Drill-down available to support personnel

# NetApp<sup>\*</sup> Summary

- We designed a time-series data analysis pipeline to speed up detection and initial triage of performance problems
- Anode gives accurate indications of when and where a performance problem occurred in a storage system
- The core technique is generic and may be extended to any similar system
- Paves the way for quicker diagnosis and fixing of performance problems





Vipul.Mathur@netapp.com



©2014 NetApp, Inc. All rights reserved.

Anode | MSST 2014

#### **Sample Metrics from Actual Incident NetApp**<sup>®</sup> Response Time by Protocol (milliseconds) **Incident Reported** nfs iscsi **Anode Flagged** 100 80 60 40 20 0 Jul 31, 1:30PM Aug 5, 11:30PM Aug 11, 9:30AM Aug 16, 7:30PM Aug 22, 5:30AM Aug 27, 2:30PM Sep 2, 12:30AM Sep 7, 10:30AM Sep 12, 8:30PM Sep 18, 5:30, M Sep 23, 3:30PM Sep 29, 1:30AM Throughput by Protocol (ops/sec) NES ISCSI 3000 2400 1800 1200 600 Jul 31, 1:30PM Aug 5, 11:30PM Aug 11, 9:30AM Aug 16, 7:30PM Aug 22, 5:30AM Aug 27, 2:30PM Sep 2, 12:30AM Sep 7, 10:30AM Sep 12, 8:30PM Sep 18, 5:30AM Sep 23, 3:30PM Sep 29, 1:30AM

©2014 NetApp, Inc. All rights reserved.

Anode | MSST 2014

### **Field Validation: TPR & FPR Distribution**

