
A Protected Block Device for
Persistent Memory

Feng Chen

Computer Science & Engineering

Louisiana State University

Michael Mesnier

Circuits & Systems Research

Intel Labs

Scott Hahn

Circuits & Systems Research

Intel Labs

Persistent memory (PM)

2

Volatile,
byte-addressable,
XIP, load/store,
fast,
temporal storage

Memory

Persistent,
block-addressable,
no-XIP, read/write,

slow,
permanent storage

Storage

PM
(Protection, persistence)

Unique characteristics

• Memory-like features – fast, byte-addressable

• Storage-like features – non-volatile, relatively endurable

How should we adopt this new technology in the ecosystem?

Phase Change Memory Memristor STT-RAM

Read Write Endurance Volatility

DRAM 60ns 60ns >1016 Yes

PCM 50-85ns 150ns-1µs 108-1012 No

Memristor 100ns 100ns 108 No

STT-RAM 6ns 13ns 1015 No

NAND Flash 25µs 200-500µs 104-105 No

Design philosophy

Why not an idealistic approach – redesigning the OS

• Too many implicit assumptions in the existing OS design

• Huge amount of IP asset surrounding the existing eco-system

• Commercial users need to be warmed up to (radical) changes
• E.g., new programming models (NV-Heaps, CDDS, Mnemosyne)

3

We need an evolutionary approach to a revolutionary technology

Two basic usage models of PM

Memory based model

• Similar to DRAM (as memory)

• Directly attached to the high-speed memory bus

• PM is managed by memory controller and close to the CPU

Storage based model

• A replacement of NAND flash in SSDs

• Attached to the I/O bus (e.g. SATA, SAS, PCI-E)

• PM is managed by I/O controller and distant from the CPU

4

Memory model vs. storage model

Compatibility

• Memory model requires changes (e.g., data placement decision)

Performance

• Storage model has lower performance (lower-speed I/O bus)

Protection

• Memory model has greater risk of data corruption (stray pointer writes)

Persistence

• Memory model suffers data loss during power failure (CPU cache effect)

5

How can we get the best of both worlds?

Performance Protection Persistence Compatibility

Memory model High Low Low Low

Storage model Low High High High

A hybrid memory-storage model for PM

6

Physically managed (like memory), logically addressed (like storage)

Hybrid PMBD Architecture

CPU

Memory
Controller

I/O
Controller

I/O Bus

SSD

HDD HDD

Memory Bus (LOAD/STORE)

DRAM PM

Physical Architecture Logical Architecture

CPU

Block Device Interface (Read/Write)

Memory

PM SSD HDD HDD

Benefits of a hybrid PM model

Compatibility

• Block-device interface no changes to applications or operating systems

Performance

• Physically managed by memory controller no slow I/O bus involved

Protection

• An I/O model for PM updates no risk of stray pointer writes

Persistence

• Persistence can be enforced in one entity with persistent writes and barriers

7

Performance Protection Persistence Compatibility

Memory model High Low Low Low

Storage model Low High High High

Hybrid Model High High High High

System design and prototype

8

Design goals

Compatibility – minimal OS and no application modification

Protection – protected as a disk drive

Persistence – as persistent as a disk drive

Performance – close to a memory device

9

Compatibility via blocks

PM block device (PMBD) – No OS, FS, or application modification

• System BIOS exposes a contiguous PM space to the OS

• PMBD Driver provides a generic block device interface (/dev/nva)

• All reads/writes are only allowed through our PM device driver

• Synchronous reads/writes no interrupts, no context switching

10

Making PM protected (like disk drives)

Destructively buggy code in kernel

• An example – Intel e1000e driver in Linux Kernel 2.6.27 RC*

• A kernel bug corrupts EEPROM/NVM of Intel Ethernet Adapter

We need to protect the kernel (from itself!)

• One address space for the entire kernel

o All kernel code is inherently trusted (not a safe assumption)

• A stray pointer in the kernel can wipe out all persistent data stored in PM

o No storage “protocol” to block unauthorized memory access

Protection model – Use HW support in existing architecture

• Key rule – PMBD driver is the only entity performing PM I/Os

o Option 1: Page table based protection (various options explored)

o Option 2: Private mapping based protection (our recommendation)

11

Compatibility
Protection

* https://bugzilla.kernel.org/show_bug.cgi?id=11382

Protection mechanisms

12

Compatibility
Protection

Receiving a block write from
OS

Translate the block write to
PM page write

Enable PTE “R/W” bit of the
page

Perform the write

PT-based Protection

Disable PTE “R/W” bit of the
page

Receiving a block read/write
from OS

Translate block read/write
to PM page read/write

Map corresponding PM page

Perform the read/write

Unmap the PM page

Private Mapping Protection

open

close

access

Protection mechanisms

 Option 1 – Page table based protection

• All PM pages are mapped initially and shared among CPUs

• Protection is achieved via PTE “R/W” bit control (read-only)

• High performance overhead (TLB shootdowns)

13

Compatibility
Protection

Page Table EntryPage Table

Protection mechanisms

 Option 2 – Private (per core) memory mappings

• A PM page is mapped into kernel space only during access

• Multiple mapping entries p[N], each is corresponding to one CPU

• Processes running on CPU i use mapping entry p[i] to access PM page

• No PTE sharing across CPUs no TLB shootdown needed

14

Compatibility
Protection

The benefits of private mappings

15

• Private mapping overhead is small, relative to no protection

o Reads (83-100%) and writes (79-99%)

o Private mapping effectively removes overhead of writes with PT

16.5x
faster

90% of “No protection”

Compatibility
Protection

Other benefits of private mappings

• Protection for both reads & writes – only authorized I/O

o Small window of vulnerability – only active pages visible (one per CPU)

• scalable O(1) solution – only a page is mapped for each CPU

o Small page table size – 1 PTE per core (regardless of PM storage size)

oe.g., in contrast, 1 TB fully mapped PM requires 2GB for the page table

oLess memory consumption, shorter driver loading time

o Small TLB size requirement – only 1 entry is needed for each core

oMinimized TLB pollution (at most one entry in the TLB)

16

CompatibilityCompatibility
Protection

Small TLB

Private mapping based protection provides high scalability

Making PM persistent (like disk drives)

Applications and OS require support for ordered persistence

• Writes must complete in a specific order

o The order of parallel writes being processed is random on the fly

o Many applications rely on strict write ordering – e.g., database log

• The OS specifies the order (via write barrier), the device enforces it

Implications to PMBD design for persistence

• All prior writes must be completed (persistent) upon write barriers

• CPU cache effects must be addressed (like a disk cache)
o Option 1 – Using uncachable or write-through – too slow

o Option 2 – Flushing entire cache – ordinary stores, wbinvd in barriers

o Option 3 – Flushing cacheline after a write – ordinary stores, clflush/mfence

o Option 4 – Bypassing cache – NT store, movntq/sfence (our recommendation)

17

Compatibility
Protection
Persistence

Performance of write schemes

18

• NT-store+sfence performs best in most cases – up to 80% of the
performance upper bound (no protection/no ordered persistence)

80% of “no protection or
ordered persistence”

Compatibility
Protection
Persistence

Recalling our goals

 Compatibility – the block-based hybrid model

 Protection – private memory mapping for protection

 Persistence – non-temporal store + sfence + write barriers

 Performance – Low overhead for protection and persistence

19

Macro-benchmarks & system implications

20

Experimental setup

Xeon X5680 @ 3.3GHz (6 cores) x2

4GB main memory

PM (16GB DRAM)

OS – Fedora Core 13 (Linux 2.6.34)

File System – Ext4

21

Macrobenchmark workloads

22

name
Read Data

(%)
Write Data

(%)
Data Set Size

(MBs)
Total Amount

(MB)
Description

devel 61.1 38.9 2,033 3,470 FS sequence ops: untar, patch, tar, diff …

glimpseindex 94.5 5.5 12,504 6,019
Text indexing engine. Index 12GB linux source code

files.

tar 53.1 46.9 11,949 11,493
Compressing 6GB linux kernel source files into one

tar ball.

untar 47.8 52.2 11,970 11,413 Uncompressing a 6GB linux kernel tar ball

sfs-14g 92.6 7.4 11,210 146,674
SpecFS (14GB): 10,000 files, 500,000 transactions,

1,000 subdir.

tpch (all) 90.3 9.7 10,869 78,126
TPC-H Query (1-22): SF 4, PostgreSQL 9, 10GB data

set

tpcc 36.2 63.9 11,298 98K-419K
TPC-C: PostgreSQL 9, 80 WH, 20 connections, 60

seconds

clamav 99.7 0.3 14,495 5,270 Virus scanning on 14GB files generated by SpecFS

Comparing to flash SSDs and hard drives

• PMBD outperforms flash SSDs and hard drives significantly

• Relatively performance speedup is workload dependent

23

110x faster than HDD
5.7x faster than SSD

1.8x faster than HDD

Comparing to memory-based file systems

24

• tmpfs and ramfs outperforms legacy disk-based file systems on PMBD

• Both provide no protection, no persistence, no journaling, and no extra memcpy

• Relative speedup is workload dependent and bounded (10%~3.1x)

10%

XFS is 3.1x slower
than tmpfs

A FS for PM could provide better performance, but actual benefits depend

18% 16%

Ext2 is 2x slower
than tmpfs

TPC-H

Performance sensitivity to R/W asymmetry

25

TPC-C

Write Slowdown
(10-50x)

Read Slowdown
(1-10x)

• PM speeds emulated by injecting delays proportional to DRAM speed

• App. performance is not proportional to read/write speed (TPC-H: 26%)

• Performance sensitivity is workload dependent (TPC-H: RD, TPC-C: WR)

26% slower 3.2x lower

Performance sensitivity to R/W asymmetry is highly workload dependent

Conclusions

• We propose a hybrid model for PM

o Physically managed like memory, logically addressed like storage

• We have developed a protected block device for PM (PMBD)

o Compatibility – a block device driver

o Protection – private memory mapping

o Persistence – non-temporal store + sfence + write barriers

o Performance – performance close to raw memory performance

• Our experimental studies on PM show that

o Protection and persistence can be achieved with relatively low overhead

o FS and R/W asymmetry of PM affect application performance differently

o PM performance can be well exploited with a hybrid solution with small overhead

26

PMBD: Open-source for public downloading

27

https://github.com/linux-pmbd/pmbd

28

Thank you!
Contact:

fchen@csc.lsu.edu
michael.mesnier@intel.com

scott.hahn@intel.com

