

Data Layout and Management for Shingled Magnetic Recording

Ahmed Amer, JoAnne Holliday, Andy Hospodor, Darrell Long, Ethan Miller, Jehan-Francois Paris, Thomas Schwarz

INTRODUCTION

SHINGLED WRITING

Thermal Stability vs. Writability

REDIRECTION SCHEMES

BASIC REMAPPING SCHEMES

- BANDS vs. Random Update Areas
- Log-structuring
 - Circular Logs
 - Segmented Logs
 - Hybrids and Hierarchies

LOG-ACCESS & RANDOM ACCESS ZONES

LOGICAL VIEW

- Append-only or destructive overwrite
- Divide into bands
- Allowing for an intra-band gap of k tracks
 - · allows update-in-place of the band
- · With adjustable bands, an SWD is logically similar to
 - tape with very flexible partition sizes
 - flash with variable bank sizes

LOG-ACCESS & RANDOM ACCESS ZONES

CIRCULAR LOG

LOGS VS SEGMENTS

Example: Compacting Bands 2 & 6

In-band compaction with circular logs

Compaction of bands to new segments

WORKLOAD EFFECTS

3 MAJOR WORKLOAD ELEMENTS

- READ Operations
- WRITE Operations
- UPDATE Operations
 - WRITE Operations to previously written blocks.
 - It is no longer adequate to gauge the update rate as equivalent to a write rate.

BASIC RELOCATION SCHEMES

- SCHEME 0: NONE no relocation necessary
- SCHEME 1: PURE LOGGING logging with no overheads
- SCHEME 2: RE-ORGANIZATION with no memory limit
- SCHEME 3: RE-ORGANIZATION with memory limit

WUR - WORKLOAD

- Heavy update workload
- Most writes are unique writes to different blocks
- Very few reads or non-update writes

WUR - WORKLOAD

Scheme 0 - Normal disk
 Scheme 1 - SWD write at the end
 Scheme 2 - SWD update-in-place enough memory
 Scheme ³ - SWD update-in-place limited memory

UWR - WORKLOAD

- Heavy update workload
- Most writes are repeated writes to the same blocks
- Very few reads or non-update writes

UWR - WORKLOAD

Scheme 0 - Normal disk
 Scheme 1 - SWD write at the end
 Scheme 2 - SWD update-in-place enough memory
 Scheme ³ - SWD update-in-place limited memory

U+WR - WORKLOAD

- Heavy update workload
- Most writes are repeated writes to the same blocks
- Very few reads or non-update writes

U+WR - WORKLOAD

Scheme 0 - Normal disk
 Scheme 1 - SWD write at the end
 Scheme 2 - SWD update-in-place enough memory
 Scheme ³ - SWD update-in-place limited memory

RRR - WORKLOAD

- Heavy read workload
- Very few writes

RRR - WORKLOAD

NVRAM BUFFERING

TDMR IMPACT

- TDMR = increased density (+)
- TDMR = increased latency (-)
 - Multiple rotational delays will be incurred
 - Functionally = Increased perceived seek times

CONCLUSIONS

- Shingled Writing is a promising new recording technology
- Redirection and log-structuring of writes
 - Circular logs or Segment-based band division
 - In-band or intra-band cleaning
- Self-sufficient and hybrid usage options
 - Metadata separation results support object-based interfaces and hybrid usage
 - Self-sufficient usage feasible with appropriate workloads
- While application is dominant factor, general purpose usage appears promising

INTERLEAVED WORKLOADS & INTERFACES

INTERFACE IMPACT

Block Level

- Transparent implementation
- Drop-in device replacement

Object Level

- Meta-data vs. data
- Reduced activity (free space awareness)
- File Level (& Application-specific)

SANTA CLARA UNIVERSITY

Evaluating the behavior of shingled disks when used in an array configuration or when faced with heavily interleaved workloads from multiple sources.

Initial Findings

- Heavily interleaved workloads can have a dramatic negative impact on disk activity.
- Reducing interleaving has a significant positive effect.

SANTA CLARA UNIVERSITY

Workload-Based Evaluation

Striped workload

- using composite of four workloads
- workload mix varied by adjusting a random interleave

Pure workload

- disks arranged in sequence
- time-varying workload, but not interleaving

Dedicated workload

- disks dedicated to individual workload sources
- unlike "pure" and "striped" workloads: no interleaving per-disk

The measurement is total track switches across four disks

SANTA CLARA UNIVERSITY

- O Disk Layout Options (in lieu of basic striped arrays):
- Dedicated disks and bands
- Workload differentiation

INTERFACE IMPACT

- Block Level
- Object Level
- File Level (& Application-specific)
 - Object semantic knowledge + name-space awareness
 - Application-specific optimizations

QUESTIONS?