
Congming Gao, Liang Shi, Mengying Zhao, Chun Jason

Xue, Kaijie Wu, Edwin H.-M.Sha

Chongqing University, China

City University of Hong Kong, Kowloon, Hong Kong

 Background and Related Work

 Parallel Issue Queuing For Parallelism

Exploration

◦ Access Conflict Detection

◦ Parallel Issue Queuing (PIQ)

 Experiment And Analysis

 Conclusions

P
e

rf
o

rm
a

n
ce

 I
m

p
ro

v
e

m
e

n
t

Controller

Chip Chip Chip Chip

Channel Level Parallelism

Chip Chip Chip Chip

Channel

1

2

3

4

1

Chip Level Parallelism

2

Die

Plane

Plane

3

4
Die Level Parallelism

Plane Level Parallelism

Chip Chip Chip Chip

Host interface

1

1

FTL

Logical Address

Physical Address

FTL DA GC WL

2
2

Data Allocation

1

2

9

10

5

6

13

14

3

4

11

12

7

8

15

16

Channel1

Channel2

Chip

Die
Plane

Channel First

Chip Second

Die Third

Plane Last

[Jung et al. USENIX HotStorage'12]

3

4

3 4

Gabage Collection collects the invalid pages;

Wear leveling prolongs the flash lifespan

NOOP

1 2 3 4 5

Pending Queue

Chip4

Chip0

Chip5

Chip1

Chip6

Chip2

Chip7

Chip3

CH0 CH1 CH2 CH3

Controller

……

Short Issue Time Interval

Access

Conflict

Performance Degradation!!!

Access conflict is highly correlated with the issue time of I/O requests and

location of data(Chip Level).

Time

Transfer Process

Transfer Process

Transfer Process

R1:

R2:

R3:

Short Time Interval

Same Chip

Waiting

Short Time Interval

Different Chip
R1

R2

R1

R3

Process in
Parallel

Access
Conflict

Performance

Degradation!!!

NOOP

0

10

20

30

40

50

60

N
u

m
b

er
 o

f
U

ti
li

ze
d

 C
h

ip
s

Chip utilization on a typical SSD with 8 channels and 8 chips per channel organization

The chip utilizations of the various benchmarks are mostly below 20%

Poor Chip Utilization!!!

20%

NOOP

0

20

40

60

80

100

P
ec

en
ta

g
e
s

o
f

C
o
n

fl
ic

ti
o
n

s
(%

)

The percentages of conflict read and write requests to the total I/O requests

Read Requests Write Requests

0

5

10

15

20

25

L
a
te

cn
y
 I

n
cr

ea
se

s
(

X
 T

im
es

) The performance degradation induced from access conflicts

Read Latency Write Latency

The access conflicts among requests commonly exist in applications

The performance degradation induced by access conflicts for

different applications.

Matching

Pattern

Exploration of Parallelism

[1] Z. Chen, N. Xiao, and F. Liu. Sac: rethinking the cache replacement policy for ssd-based storage systems. In

SYSTOR’12, pages 13:1–13:12, 2012.

[2] M. Jung, E. H. Wilson, III, and M. Kandemir. Physically addressed queueing (paq): improving parallelism in

solid state disks. In ISCA’12, pages 404–415, 2012.

[3] S. K. Park, Y. Park, G. Shim, and K. H. Park. Cave: Channel-aware buffer management scheme for solid state

disk. In SAC’11, pages 346–353, 2011.

[4] J. Seol, H. Shim, J. Kim, and S. Maeng. A buffer replacement algorithm exploiting multi-chip parallelism in solid

state disks. In CASES’09, pages 137–146, 2009.

1. Seol et al. [4] and Park et al. [3] proposed to exploit the multi-channels of SSDs from

the view of write buffers to improve the write performance.

But, They did not solve the access conflict problem.

2. Jung et al. [2] proposed a read resource contention aware approach, physical address

queuing under FTL, to issue more I/O requests to the SSDs.

But, PAQ requires hardware modification and only solves the read conflict problem.

3. Chen et al. [1] first proposed a buffer cache management approach for SSDs to solve

the read conflict problem by exploiting the read parallelism of SSDs.

But, Their works are only able to solve the conflict problem when the conflicts have taken place.

Moreover, their works only solve the read conflict problem.

Scheduler of SSD

[1] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh. Disk schedulers for solid state drivers. In EMSOFT’09,

pages 295–304, 2009.

[2] S. Park and K. Shen. Fios: A fair, efficient flash i/o scheduler. In FAST’12, pages 13–13, 2012.

[3] K. Shen and S. Park. Flashfq: A fair queueing i/o scheduler for flash based ssds. In ATC’13, pages 67–78,

2013.

[4] A. S. Tanenbaum and A. Tannenbaum. Modern operating systems,

volume 2. Prentice hall Englewood Cliffs, 1992.

1. Traditional I/O schedulers for HDD include NOOP, Deadline, Anticipate, and

Completely Fair Queuing (CFQ) [4].

But, none of them work efficiently on SSDs [1].

2.Kim et al.[1] first proposed an I/O scheduler for SSDs with the awareness of read/write

interferences. They proposed to bundle write requests and schedule read requests first

to reduce the impact of slow write operations on read performance.

3. Park et al.[2] and Shen et al.[3] proposed two schedulers to achieve fairness among

multi-tasks on SSDs.

But, Their works are proposed to improve the performance of SSDs from the view of fairness, none

of their works proposed to solve the access conflict problem.

 Background and Related Work

 Parallel Issue Queuing For Parallelism Exploration
◦ Access Conflict Detection

◦ Parallel Issue Queuing (PIQ)

 Experiment And Analysis

 Conclusions

Chip Chip Chip Chip

I/O SchedulerHost
System

Controller

FTL WLDA GC

Storage

physical address of data in
SSDs is unknown to the host

system.

Location of Request Data

Access Conflict Detection

Parallel Issue Queuing(PIQ)

unknown

How to get location of data?

1

2

Logical Sector Number(LSN)

Data Allocation Scheme[1][2][3][4]

C

C

N)%1
Size_Page

SS)Size_SectorLSN(
(last_chip

N)%
Size_Page

SSLSN
(first_chip








 









 


[1] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren. Exploring and exploiting the multilevel parallelism inside

ssds for improved performance and endurance. IEEE Transactions on Computers, 62(6):1141–1155, 2013.

[2] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and S. Zhang. Performance impact and interplay of ssd parallelism

through advanced commands, allocation strategy and data granularity. In ICS’11, pages 96–107, 2011.

[3] M. Jung and M. Kandemir. An evaluation of different page allocation strategies on high-speed ssds. In

FAST’12, pages 9–9, 2012.

[4] J.-Y. Shin, Z.-L. Xia, N.-Y. Xu, R. Gao, X.-F. Cai, S. Maeng, and F.-H. Hsu. Ftl design exploration in

reconfigurable high-performance ssd for server applications. In ICS’09, pages 338–349, 2009.

Assume:

Request=(Type,LSN,Sector_Number,T)=(r,14854,2,0.02332);

SS=512B,Page_Size=4KB,NC=8.

chip_first=0,chip_last=1;
Location Vector

V(Ri)=(11000000)=192

Channel First

Chip Second

Die Third

Plane Last

Conflict Detection

1 2 3 4 5

Pending Queue

……

1

4

2

12

Request ID

LSN

Request Size

Location Vector

2

13

2

6612

Conflict =

Conflict Detection

& = 0000 0100

Assume: chip number=8

0000 1100

0000 0110

Access Conflict

 Background and Related Work

 Parallel Issue Queuing For Parallelism Exploration
◦ Access Conflict Detection

◦ Parallel Issue Queuing (PIQ)

 Experiment And Analysis

 Conclusions

Pending Queue

R0

3

R1

6

W0

12

R2

12

W1

6

W2

3
Request ID

Location Vector

Read Write

Separation

R0

3

R2

12

R1

6

W0

12

W1

6

W2

3

Conflict Detection

R0

R2

15

R1

6

W0

W2

15

W1

6

Request Batch

Batch Vector

All requests in a batch can be serviced in parallel

Batches are issued in the order of creation time
?

Batch Conflict Detection

R0

3

R1

6

R2

12

3 6

Conflict Detection

……R3

14

Read Pending Queue

Batch Vector

Batch

123Conflict = & = 0000 0000

Assume: chip number=8

0000 0011

0000 1100

No Access Conflict

Update Batch

123New Batch Vector = | = 0000 1111 = 15

R0

R2

15

 Background and Related Work

 Parallel Issue Queuing For Parallelism Exploration
◦ Access Conflict Detection

◦ Parallel Issue Queuing (PIQ)

 Experiment And Analysis

 Conclusions

 A trace drive simulator is used to verify the
proposed framework.

 Traces include a set of carefully selected MSR
Cambridge traces from servers.

 Comparison among: NOOP, RWS, PIQ_R, PIQ_W,
PIQ
◦ NOOP: Traditional I/O Scheduler

◦ RWS: read requests and write requests separated into
two sub queues.

◦ PIQ_R: read requests separated into batches.

◦ PIQ_W: write requests separated into batches.

◦ PIQ: Our proposed I/O scheduler.

Read Performance

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
li

ze
d

 R
ea

d
 L

a
te

n
cy

NOOP RWS PIQ_R PIQ

20%

0

5

10

15

20

25

P
er

ce
n

ta
g
e

o
f

P
ri

o
ri

ti
ze

d

R
ea

d
 (

%
)

Critical
Movement

Noncritical
Movement

RWS

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
il

iz
ed

 W
ri

te
 L

a
te

n
cy

NOOP RWS PIQ_W PIQ

Write Performance

42%

1

1 Caused by RWS

Waiting Time

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
li

ze
d

 R
ea

d
 W

a
it

T
im

e

NOOP RWS PIQ_R PIQ

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

a
li

ze
d

 W
ri

te
 W

a
it

T
im

e

NOOP RWS PIQ_R PIQ

Read

Write

21.0%

48.4%

The performance improvement is achieved by the reduction of waiting time!

Chip Utilization

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
o
rm

a
li

ze
d

 C
 h

ip
 U

ti
li

za
ti

o
n

 NOOP RWS PIQ_R PIQ_W PIQ

23%

Sensitive Studies

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

ze
d

 W
ri

te
 L

a
te

n
cy

1 2 4 8 16 32 64 128 256 512

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li

ze
d

 R
ea

d
 L

a
te

n
cy

1 2 4 8 16 32 64 128 256 512

I/O queue length is varied from 1 to 512

64

64

 Background and Related Work

 Parallel Issue Queuing For Parallelism Exploration
◦ Access Conflict Detection

◦ Parallel Issue Queuing (PIQ)

 Experiment And Analysis

 Conclusions

 Proposed an I/O scheduler which is designed
to reduce the access conflicts of SSDs.
◦ Proposed an access conflict detection approach.

◦ Proposed a parallel issue queuing approach to
exploit the parallelism of SSDs.

 Experiment results show that the proposed
approach is very efficient in performance
improvement.

