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Access conflict is highly correlated with the issue time of I/O requests and 

location of data(Chip Level).
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Exploration of Parallelism

[1] Z. Chen, N. Xiao, and F. Liu. Sac: rethinking the cache replacement policy for ssd-based storage systems. In 

SYSTOR’12, pages 13:1–13:12, 2012.

[2] M. Jung, E. H. Wilson, III, and M. Kandemir. Physically addressed queueing (paq): improving parallelism in 

solid state disks. In ISCA’12, pages 404–415, 2012.

[3] S. K. Park, Y. Park, G. Shim, and K. H. Park. Cave: Channel-aware buffer management scheme for solid state 

disk. In SAC’11, pages 346–353, 2011.

[4] J. Seol, H. Shim, J. Kim, and S. Maeng. A buffer replacement algorithm exploiting multi-chip parallelism in solid 

state disks. In CASES’09, pages 137–146, 2009.

1. Seol et al. [4] and Park et al. [3] proposed to exploit the multi-channels of SSDs from 

the view of write buffers to improve the write performance.

But, They did not solve the access conflict problem.

2. Jung et al. [2] proposed a read resource contention aware approach, physical address 

queuing under FTL, to issue more I/O requests to the SSDs.

But, PAQ requires hardware modification and only solves the read conflict problem.

3. Chen et al. [1] first proposed a buffer cache management approach for SSDs to solve 

the read conflict problem by exploiting the read parallelism of SSDs.

But, Their works are only able to solve the conflict problem when the conflicts have taken place. 

Moreover, their works only solve the read conflict problem. 



Scheduler of SSD

[1] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh. Disk schedulers for solid state drivers. In EMSOFT’09, 

pages 295–304, 2009.

[2] S. Park and K. Shen. Fios: A fair, efficient flash i/o scheduler. In FAST’12, pages 13–13, 2012.

[3] K. Shen and S. Park. Flashfq: A fair queueing i/o scheduler for flash based ssds. In ATC’13, pages 67–78, 

2013.

[4] A. S. Tanenbaum and A. Tannenbaum. Modern operating systems,

volume 2. Prentice hall Englewood Cliffs, 1992.

1. Traditional I/O schedulers for HDD include NOOP, Deadline, Anticipate, and 

Completely Fair Queuing (CFQ) [4].

But, none of them work efficiently on SSDs [1].

2.Kim et al.[1] first proposed an I/O scheduler for SSDs with the awareness of read/write 

interferences. They proposed to bundle write requests and schedule read requests first 

to reduce the impact of slow write operations on read performance.

3. Park et al.[2] and Shen et al.[3] proposed two schedulers to achieve fairness among 

multi-tasks on SSDs.

But, Their works are proposed to improve the performance of SSDs from the view of fairness, none 

of their works proposed to solve the access conflict problem. 
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How to get location of data?
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Assume:

Request=(Type,LSN,Sector_Number,T)=(r,14854,2,0.02332);

SS=512B,Page_Size=4KB,NC=8.

chip_first=0,chip_last=1;
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 A trace drive simulator is used to verify the 
proposed framework.

 Traces include a set of carefully selected MSR 
Cambridge traces from servers.

 Comparison among: NOOP, RWS, PIQ_R, PIQ_W, 
PIQ
◦ NOOP: Traditional I/O Scheduler

◦ RWS: read requests and write requests separated into 
two sub queues.

◦ PIQ_R: read  requests separated into batches.

◦ PIQ_W: write requests separated into batches.

◦ PIQ: Our proposed I/O scheduler.
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Waiting Time
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The performance improvement is achieved by the reduction of waiting time!



Chip Utilization
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Sensitive Studies
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 Proposed an I/O scheduler which is designed 
to reduce the access conflicts of SSDs.
◦ Proposed an access conflict detection approach.

◦ Proposed a parallel issue queuing approach to 
exploit the parallelism of SSDs.

 Experiment results show that the proposed 
approach is very efficient in performance 
improvement.




