CR5M: A Mirroring-Powered Channel-RAID5 Architecture for An SSD

Yu Wang¹, Wei Wang², Tao Xie², Wen Pan¹, Yanyan Gao¹, Yiming Ouyang¹, ¹Hefei University of Technology ²San Diego State University

The 30th International Conference on Massive Storage Systems and Technology (MSST 2014), California, 2014

Outline

Introduction

• Design and implementation

• Experimental results

• Conclusions

- High performance
- Low-power consumption
- High shock resistance
- Small physical size

- Increasing Flash Capacity Density
 - Smaller geometries of flash memory cell
 45nm~20nm
 - More bits each cell store
 SLC~TLC
- Decreasing Endurance and Reliability
 - SLC ~100k P/E cycles
 - MLC ~10k P/E cycles

- Flash Memory Errors
 - Transient (or soft) Errors
 - Permanent (or hard) Errors
- ECC (Error Correction Code)
 - Per 256 to 512 bytes, ECC typically can
 - Detect two bit errors
 - Correct one bit error

Errors beyond that range may be unrecoverable.

ECC are incapable of correcting these errors:

- Word line errors
- Block or die errors
- Multiple-bit transient errors

RAID

RAID has successfully been implemented in

- HDD arrays
- SSD arrays

Im and Shin proposed a Delayed Partial Parity Scheme for Reliable and High-Performance Flash Memory SSD (MSST2010)

Kadav et al. presented Diff-RAID, a new RAID variant that distributes parity unevenly across SSDs to create age disparities within arrays (ACM Transactions on Storage 2010)

• HDD+SSD hybrid arrays

Channel-RAID (CR) - Requirement

 Cases where only one SSD car reliability is critical.
 Such as:

- a) Wireless Healthcare System
- b) Mobile Military Application

Channel-RAID (CR) - Feasibility

- The multi-channel structure provides an opportunity to implement RAID into a single SSD
 - CR1 (Channel-RAID1)
 - CR4 (Channel-RAID4)
 - CR5 (Channel-RAID5)

CR5 (Channel-RAID5)

• Striping size is adjusted to (N-1) page size N means the number of channels.

CR5 (Channel-RAID5)

- Full-Stripe Write: no extra read operation
- Partial-Stripe Write
 - RMW (Read-Modify-Write): reads the old data of the updates and its associated parity.
 - RCW (Read-Reconstruct-Write): reads the rest part of the stripe (i.e., the data that are not going to be updated).

The method whose pre-read operation number is less will be selected.

Limitations of CR5 SSD

• Decreased Lifetime

• Degraded Performance

• Vulnerability

CR5M (Mirroring-Powered Channel-RAID5)

• The key feature: an extra chip is introduced to each channel serve as a mirroring chip.

MW (Mirroring Write)

• MW concurrently writes both the original update and a copy of it onto its destination chip and the mirroring chip.

Revised Mapping Table

 Mirroring Address (MA) is appended to each entry. Its value tells the existence of mirroring data for current entry.

Workflow of CR5M

Experimental Setup

• The Characteristics of Traces

Trace Name	Write Ratio (%)	Ave.Size (KB)	Access Rate (req/sec.)	Duration (mins.)
Financial1	77.88	3.46	129	515
Radius9	88.46	6.8	57	35.2
ATTO	47.45	23.1	792.4	2.5
Build	45.71	6.5	372	15
Exchange	46.43	12.5	166	15

• The Varied Experiment Parameters

Conf.	Pure SSD	CR1	CR4 & CR5	CR5M
SSD1	4cl-6cp	8cl-6cp	4cl-6cp	4cl-7cp
SSD2	6cl-4cp	12cl-4cp	6cl-4cp	6cl-5cp
SSD3	8cl-3cp	16cl-3cp	8cl-3cp	8cl-4cp

cl: the channel numberin an SSDcp: the chip number oneach channel

Performance Evaluation on SSD1

Ē

Performance Evaluation on SSD2

Ē

Performance Evaluation on SSD3

Ē

The Impact Of Write Percentage

CR5M outperforms CR5 by up to 24.1%.

The Impact Of Average Request Size

CR5M outperforms CR5 by up to 31.7%.

Parity Pre-Read Overhead

• On average CR5M reduces the number of pre-reads by 56%.

Wear-Leveling Evaluation

• CR5M can reduce the number of writes per channel by 14% compared with CR5.

Conclusions

- ECC scheme has its own capacity limitation, above which it can no longer work.
- We implement several common RAID structures in the channel level of a single SSD to understand their impact on an SSD's performance.
- We propose a new data redundancy architecture for a single SSD called CR5M
- We largely extend the validated SSD simulator SSDSim
- Experimental results demonstrate that CR5M outperforms CR5 by up to 25.8%.

Future Work

• We will implement and study the channel-RAID architecture on a hardware evaluation board.

Acknowledgments

 This work is sponsored in part by the U.S. National Science Foundation under grant CNS-(CAREER)-0845105 and Key Technologies R&D Program of Anhui Province (China)-11010202190.

Thank you!

h