
Möbius: A High Performance 
Transactional SSD with Rich Primitives

Wei Shi, Dongsheng Wang,

Zhanye Wang, Dapeng Ju

Tsinghua University



Summary
• Challenge: Software transaction processing schemes might not be 

suitable for a out-of-place update NAND SSD

• Our goal: propose a new high performance transactional SSD 
architecture with rich primitives

• Observation
• Serialized transaction processing: caused by ordered transaction recovery
• Long recovery time: caused by scanning unfinished transactions
• Extra Sudden Power-Off Recovery (SPOR) logic: lived in SSD FTL

• Key Ideas
• Atom file: to abstract transaction into a “file”
• DAG commit protocol: by skipping unnecessary scanning 
• Recovery logic combination: by combining SPOR with transaction aborting

• Möbius: a new transactional SSD architecture
• Rich primitives: support both static and dynamic transactions
• Avoid unnecessary scanning by DAG verification method
• Recover FTL and transaction processing logic after power failures 

• Results: Möbius expect to save 4~29 times of recovery time and offer 
a 67% higher throughput than other transactional SSD designs



Outline

•Motivations

•Möbius Design

• Implementation

• Evaluations

•Conclusions



Jim Gray (I)

• Atomicity

• Consistency

• Isolation

• Durability

What is a transaction?

A serial of operations must succeed
or fail as a complete unit.



Software transaction processing schemes

b) Shadow paging

a) Write-ahead logging (WAL)

• InnoDB (MySQL)
• PostgreSQL
• JBD (Ext 3 and Ext 4)

• ZFS



Jim Gray (II)

•Tape is Dead

•Disk is Tape

•Flash is Disk



NAND Flash SSDs

SSD Components

NAND flash packages

Host interface controller

Microprocessor

DRAM (buffers + FTL cache)

Flash controllers



NAND Flash SSDs
Write (p, RED)

Write (p, GREEN)

• Allocating a physical page

• Updating mapping table

• Allocating a physical page

• Updating mapping table

Out-of-place Write



Existing Transactional SSD Designs

•TxFlash (without persistent FTL)

•Atomic-Write

•LightTx

•MARS (NVM SSD)



11

0

18

1

6

0

8

0

3

1

7

0

6

1

8

0

PPN 8 9 10 11

7

0

2

1

12 13 14 15 16 17

LPN

Tx4 Tx5 Tx6 Tx7Transactions Tx3

Grow Direction

Commit Flag

Invalid Page

Free Page

Write-Atomic (HPCA 2011)



LightTx (ICCD 2013)

Tx3

2

Tx5

4

Tx3

0

Tx4

0

Tx4

2

Tx5

0

Tx5

0

Tx6

0

PPN 8 9 10 11

Tx5

0

Tx7

0

12 13 14 15 16 17

Transaction ID

Tx4 Tx5 Tx6 Tx7Transactions Tx3

Grow Direction

Tx Cnt

Pages in Checkpointed Zone

Pages in Unavailable Zone

Pages in Available Zone

Pages in Free Zone

Grow Direction



Problems of state-of-the-art transactional 
SSDs

• Long time scanning
Recovery is based on unselective scanning which is 
very expensive. 

• Limit the parallelism of SSD
Since in SSD performance mainly benefits by 
internal parallelism, serialized transaction 
processing limits the whole SSD performance.



Tx3 Tx5 Tx3 Tx4 Tx4 Tx5 Tx5 Tx6

PPN

OOB

8 9 10 11

Tx5 Tx7

12 13 14 15 16 17

Transaction ID

Tx4 Tx5 Tx6 Tx7Atom Log Area Tx3

512 513 514 515 516PPN

Static Atom inode

Dynamic Atom inode

Grow Direction

Grow Direction

948 949PPN

Head List Tx1 Tx5

Dynamic Head Page

Möbius (our design)



Outline

•Motivations

•Möbius Design

• Implementation

• Evaluations

•Conclusions



Host interface

•WRITE(p)
•READ(p)
• SWRITE(uuid, p1, ..., pn)
• SREAD(p)
•DWRITE(p, flag)
•ABORT(uuid)



Static transactions

•Transaction that all data 
manipulated in the transaction is 
determined before the transaction 
begins, e.g., all data are already in 
system block/page cache



Dynamic transactions

•Transaction that all data 
operations in this transaction are 
not determined when it begins



Atom inode

Mapping Information
ECC,

LPN, etc

4000 Bytes 224 Bytes

Data Area OOB

Tx Info

96 Bytes

A 4 KB physical page example



NAND Flash

Translation Block Area

In use FreeSSD Metadata

Scan List

GTD

Badblock List

Active ALA Head…

LPN PPN

34 3012

35 7023

36 1448

Page Mapping Table

… …

Atom Log Area

… …

Page Mapping Table (Delta)

Transaction Metadata

Tx Info Mapping Committed

Tx8 (34, 4098) (56, 4099)… Tx3, Tx6

Tx9 (88, 5122) (34, 5123)… None

Tx10 (88, 6008) (45, 6009)… Tx8, Tx9

…

Data Block Area Head List

Möbius architecture overview

Atom inode



DAG verification method

Tx4 Tx5 Tx6 Tx7

Atom Log Area

Tx3

Committed Static Atom inode

Uncertain Static Atom inode

Tx8 Tx9

Dynamic Atom inode

Tx7
OOB

Tx7 Tx7 Tx7

Tx9 Tx3 Tx9

Tx2

User Data

Scanning Direction
For static transactions



DAG verification method
For dynamic transactions

Tx4 Tx5 Tx6 Tx7Atom Log Area Tx3

512 513 514 515 516PPN

Static Atom inode

Dynamic Atom inode

948 949PPN

Head List Tx1 Tx5

Dynamic Head Page

Scanning Direction



Outline

•Motivations

•Möbius Design

• Implementation

• Evaluations

•Conclusions



Implementation

Applications

File Systems Databases

ATA library

Möbius transactional SSD

Bottom-up implementation

libata

InnoDB (MySQL)
JBD (ext3 and ext4)



SWRITE and DWRITE

•SWRITE
• Sync and Async modes

•DWRITE
• Serializable and Read-committed



Garbage collection

• GC cannot affect recovery or abort procedure, we 
simply forbid GC to be applied in updating 
transactions. Since updating transactions are 
limited, it will not affect the performance

For data area

• ALA is a cyclic log structure, and there is no logical 
address pointing to them, garbage collection 
procedure in ALA is simple

For ALA area



Limitations

•Big transactions

•Small transactions

•“False positive” Async-SWRITE
• Möbius will return “done” after atom inode is 

written to flash



Outline

•Motivations

•Möbius Design

• Implementation

• Evaluations

•Conclusions



Experimental configurations



Möbius vs. raw DFTL SSD



Möbius vs. raw DFTL SSD



Möbius vs. raw DFTL SSD



Möbius vs. other transactional SSD designs



Möbius vs. other transactional SSD designs



Möbius vs. other transactional SSD designs



Möbius vs. other transactional SSD designs



Related Works (1)

• Academia study (Transactional SSD)
• [Y. Lu, ICCD’13] proposed sliding-zone based transactional SSD 

to support flexible isolation levels (LightTx)

• [X. Ouyang, HPCA’11] proposed a prototype of transactional 
SSD based on log-based FTL with FusionIO (Write-Atomic)

• [V. Prabhakaran, OSDI’08] proposed a link based transactional 
flash device (TxFlash)

• Academia study (SSD SPOR)
• [T. Chung, J. Syst. Archit.] proposed a recovery scheme for 

block level FTL SSD and mainly focus on consistency problem 
when SSD faces power failure in GC operation (PORCE)

• [S. Moon, SEUS’08] proposed a recovery scheme which works 
on SSD crash recovery based on a hybrid FTL named FAST (CR-
FAST)



Related Works (2)

• Academia study (Database Optimization for SSD)
• [J. Do, SIGMOD’13] explored the opportunities and challenges 

associated with exploiting this functionality of Smart SSDs for 
relational analytic query processing

• [P. Wang, EuroSys’14] investigated internal flash channels to 
applications to work with the LSM-tree-based KV store, 
specifically LevelDB

• Academia study (File system consistency)
• [V. Chidambaram, FAST’12] addressed NoFS, a lightweight file 

system that employs a backpointer-based consistency to 
provide crash consistency without ordering write

• [A. Ma, FAST’13] presented a modified ext3 file system, rext3, 
to directly support the fast file system checker, ffsck



Conclusions
• Challenge: Software transaction processing schemes might not be 

suitable for a out-of-place update NAND SSD

• Our goal: propose a new high performance transactional SSD 
architecture with rich primitives

• Observation
• Serialized transaction processing: caused by ordered transaction recovery
• Long recovery time: caused by scanning unfinished transactions
• Extra Sudden Power-Off Recovery (SPOR) logic: lived in SSD FTL

• Key Ideas
• Atom file: to abstract transaction into a “file”
• DAG commit protocol: by skipping unnecessary scanning
• Recovery logic combination: by combining SPOR with transaction aborting

• Möbius: a new transactional SSD architecture
• Rich primitives: support both static and dynamic transactions
• Avoid unnecessary scanning by DAG verification method
• Recover FTL and transaction processing logic after power failures 

• Results: Möbius expect to save 4~29 times of recovery time and offer 
a 67% higher throughput than other transactional SSD designs



Questions?



Backup



Persistence order in Atomic-Write

System

SSD RAM

NAND Flash

Timeline

Atomic-Write

Data Writes

Dirty Mapping Entries

Mapping Writes



Persistence order in LightTx

SSD RAM

BEGIN

Data Writes Mapping Writes

COMMIT

Dirty Mapping Entries

Timeline

System

NAND Flash



Persistence order in Möbius

SSD RAM

SWRITE

Data WritesAtom inode Write

Timeline

Dirty Mapping Entries

System

NAND Flash


