Mobius: A High Performance
Transactional SSD with Rich Primitives

Wei Shi,

Tsinghua University

Cg’D Microprocessor and SoC Technology R&D Center

Summary

* Challenge: Software transaction processing schemes might not be
suitable for a out-of-place update NAND SSD

* Our goal: propose a new high performance transactional SSD
architecture with rich primitives

* Observation
* Serialized transaction processing: caused by ordered transaction recovery

* Long recovery time: caused by scanning unfinished transactions
e Extra Sudden Power-Off Recovery (SPOR) logic: lived in SSD FTL

* Key Ideas
* Atom file: to abstract transaction into a “file”
* DAG commit protocol: by skipping unnecessary scanning
* Recovery logic combination: by combining SPOR with transaction aborting

* Mobius: a new transactional SSD architecture
* Rich primitives: support both static and dynamic transactions
* Avoid unnecessary scanning by DAG verification method
* Recover FTL and transaction processing logic after power failures

* Results: Mobius expect to save 4~29 times of recovery time and offer
a 67% higher throughput than other transactional SSD designs

Outline

 Motivations

Jim Gray ()

What is a transaction?

A serial of operations must succeed
or fail as a complete unit.

* Atomicity

* Consistency
* [solation

* Durability

Software transaction processing schemes

a) Write-ahead logging (WAL)

* InnoDB (MySQL)
* PostgreSQL
e JBD (Ext 3 and Ext 4)

b) Shadow paging

* ZFS

Jim Gray (ll)

*Tape is Dead
*Disk is Tape
*Flash is Disk

NAND Flash SSDs

Tﬂl lllllll IIIIHIIHHIII

SSD Components

NAND flash packages
Host interface controller

Microprocessor

Flash controllers

NAND Flash SSDs
Write (p, RED)

Tﬂl lllllll IIIIHIIHHIII

* Allocating a physical page

* Updating mapping table

Write (p, GREEN)

e Allocating a physical page

e Updating mapping table

Out-of-place Write

Existing Transactional SSD Designs

*TxFlash (without persistent FTL)
* Atomic-Write

*LightTx

*MARS (NVM SSD)

Write-Atomic (HPCA 2011)

Grow Direction

>
Transactions :
Tx3 i Tx4 | Tx5 | Tx6 | Tx7 Invalid Page
Free Page

Commit Flag “\

o|1povoq1po4 10|01
L PN 11|18y 6481 3 V74 6 | 8| 7| 2
PPN 8 9 10 11 12 13 14 15 16 17

LightTx (ICCD 2013)

Grow Direction

Transactions

Grow Direction

Transaction ID

>
Tx3 | Tx4 | Tx5 | Tx6 | Tx7
Pages in Checkpointed Zone
7] Pages in Unavailable Zone
Pages in Available Zone
v Pages in Free Zone
Tx Cnt
fﬁ‘s’ﬁﬁ 7 %7/7// oo o
e _
A A A :
8 9 10 11 12 13 14 15 16 17

PPN

Problems of state-of-the-art transactional
SSDs

* Limit the parallelism of SSD

Since in SSD performance mainly benefits by
internal parallelism, serialized transaction
processing limits the whole SSD performance.

* Long time scanning

Recovery is based on unselective scanning which is
very expensive.

Mobius (our design)

Atom Log Area

Grow Direction

Grow Direction

\4

Transaction ID

Head List

Static Atom inode
Dynamic Atom inode
Dynamic Head Page

OOB

Tx3

Tx5

Tx3

Tx4

Tx4

Tx5

Tx5

Tx6

Tx5

Tx7

PPN |

8

9

10 11 12 13 14 15 16 17

Outline

* Mobius Design

Host interface

* WRITE(p)

* READ(p)

 SWRITE(uuid, p1, ..., pn)
* SREAD(p)

* DWRITE(p, flag)

* ABORT(uuid)

Static transactions

*Transaction that all data
manipulated in the transaction is
determined before the transaction
begins, e.g., all data are already in

system block/page cache

Dynamic transactions

*Transaction that all data
operations in this transaction are
not determined when it begins

Atom inode
A 4 KB physical page example

< Data Area > OOB

— 4000 Bytes >96 Bytep 224 Bytes

Mobius architecture overview

__

' Page Mapping Table Page Mapping Table (Delta) 5
" | LPN | PPN | #| TxInfo Mapping Committed | !
| 34 [so12| i Tx8 | sAtensinode. | Tx3, Tx6 |
| 35 [7023] i Tx9 (88, 5122) (34, 5123)... None | !
' [36 | 1448 | | Tx10 | (88,6008)(45,6009)... | Tx8,Tx9 |
L_____________________j,}:ILN:N:; ___ j
Translation Blgék Area Atom Log Area
> Data Block Area —— > “Head List
i
NAND Flash
Scan List ;, < :r < >
GTD SSD Metadata ,ntse Free Transaction Metadata

Badblock List
Active ALA Head...

DAG verification method

For static transactions
Scannmg Direction

Atom Log Area ’ ‘
N ERERE

Committed Static Atom inode

Uncertain Static Atom inode

Dynamic Atom inode

Tx7 Tx7 Tx7

+—— User Data

DAG verification method

For dynamic transactions

Atom Log Area {7/ T 5 V

Head List

Static Atom inode
Dynamic Atom inode
Dynamic Head Page

4Scanning Direction

Outline

* Implementation

Implementation

Applications ——
-=-—" InnoDB (MySQL)
Databases JBD (ext3 and ext4)

File Systems

ATA library

Mobius transactional SSD

SWRITE and DWRITE

*SWRITE

* Sync and Async modes

*DWRITE

e Serializable and Read-committed

Garbage collection

For data area

* GC cannot affect recovery or abort procedure, we
simply forbid GC to be applied in updating
transactions. Since updating transactions are
limited, it will not affect the performance

For ALA area

* ALA is a cyclic log structure, and there is no logical
address pointing to them, garbage collection
procedure in ALA is simple

Limitations

*Big transactions
*Small transactions
*“False positive” Async-SWRITE

e MObius will return “done” after atom inode is
written to flash

Outline

 Evaluations

Experimental configurations

Processor

DRAM

Boot Device
Storage Device

Operating System

Xeon X3210 @ 2.13GHz
8GB DDR3 1333MHz
2x4GB DIMMs
256GB Samsung SSD
Mobius SSD
Ubuntu 10.04
Linux Kernel 2.6.32

Mobius vs. raw DFTL SSD

m32 Pages m64 Pages ™ 128 Pages 256 Pages

Raw AIO Raw DWRITE AIO S-SWRITE A-SWRITE
DWRITE

Latency (ms)

Mobius vs. raw DFTL SSD

m32 Pages m64 Pages ™ 128 Pages

(U]
-

256 Pages

[\
W

(o
-

[E——
(¥

[E—
o

S

Raw AIO Raw DWRITE AIO
DWRITE

S-SWRITE A-SWRITE

Mobius vs. raw DFTL SSD

Bandwidth (MB/s)

100
90
80
70
60
50
40
30
20
10

® Random = Sequential

Mobius vs. other transactional SSD designs

m TPC-C mFileserver Webserver

A-SWRITE S-SWRITE DWRITE Atomic-Write LightTx

(a) Bandwidth

Mobius vs. other transactional SSD designs

m TPC-C mFileserver Webserver

A-SWRITE S-SWRITE DWRITE Atomic-Write LightTx

(b) Transaction per Second

Mobius vs. other transactional SSD designs

m User Data ®m SSD Metadata Transaction Data

1.2

DFTL Mobius Mobius Atomic-Write LightTx
(4KB) (8KB)

Mobius vs. other transactional SSD designs

B Mobius ™= Write-Atomic LightTx
100

=~ O 0
oS O O

Recovery Time(s)
N\
-

-

Related Works (1)

* Academia study (Transactional SSD)

e [Y. Lu, ICCD’13] proposed sliding-zone based transactional SSD
to support flexible isolation levels (LightTx)

* [X. Ouyang, HPCA’11] proposed a prototype of transactional
SSD based on log-based FTL with FusionlO (Write-Atomic)

* [V. Prabhakaran, OSDI’08] proposed a link based transactional
flash device (TxFlash)

* Academia study (SSD SPOR)

e [T. Chung, J. Syst. Archit.] proposed a recovery scheme for
block level FTL SSD and mainly focus on consistency problem
when SSD faces power failure in GC operation (PORCE)

* [S. Moon, SEUS’08] proposed a recovery scheme which works
on SSD crash recovery based on a hybrid FTL named FAST (CR-
FAST)

Related Works (2)

e Academia study (Database Optimization for SSD)
* [J. Do, SIGMOD’13] explored the opportunities and challenges
associated with exploiting this functionality of Smart SSDs for
relational analytic query processing

* [P. Wang, EuroSys’14] investigated internal flash channels to
applications to work with the LSM-tree-based KV store,

specifically LevelDB

e Academia study (File system consistency)

* [V. Chidambaram, FAST’12] addressed NoFS, a lightweight file
system that employs a backpointer-based consistency to
provide crash consistency without ordering write

* [A. Ma, FAST’13] presented a modified ext3 file system, rext3,
to directly support the fast file system checker, ffsck

Conclusions

* Challenge: Software transaction processing schemes might not be
suitable for a out-of-place update NAND SSD

* Our goal: propose a new high performance transactional SSD
architecture with rich primitives

* Observation
* Serialized transaction processing: caused by ordered transaction recovery

* Long recovery time: caused by scanning unfinished transactions
e Extra Sudden Power-Off Recovery (SPOR) logic: lived in SSD FTL

* Key Ideas
* Atom file: to abstract transaction into a “file”
* DAG commit protocol: by skipping unnecessary scanning
* Recovery logic combination: by combining SPOR with transaction aborting

* Mobius: a new transactional SSD architecture
* Rich primitives: support both static and dynamic transactions
* Avoid unnecessary scanning by DAG verification method
* Recover FTL and transaction processing logic after power failures

* Results: Mobius expect to save 4~29 times of recovery time and offer
a 67% higher throughput than other transactional SSD designs

Questions?

Backup

Persistence order in Atomic-Write

[System }

Atomic-Write

Data Writes lllllll Mapping Writes

NAND Flash

Timeline

Persistence order in LightTx

[System }

BEGIN COMMIT

NAND Flash

Data Writes Mapping Writes

Timeline

Persistence order in Mobius

[System }

SWRITE

Atom inode Write Data Writes

NAND Flash

Timeline

