
HiSMRfs – A File System for

Shingled Storage Array

MSST 2014

June 2 ~ 6 2014

Presenter: WeiYa XI

Chao JIN, WeiYa XI, Zhi Yong CHING, Feng HUO, Chun Teck LIM

Data Storage Institute

Agency of Science, Technology and Research (A*STAR)

Republic of Singapore

Problem

1

No Write-in-place/update

Track 1

Track 2

Track 3

Track 4

Write Erase

Approaches

2

Our Approaches

3

SAS/SATA

Interface

Standard System

File System for Shingled

Storage (HiSMRfs)

SAS/SATA

Interface

STL – Shingled Translation Layer

(A) (B)

Hybrid Data Manager

STL

NVM Shingled

Media

SSD SMR
SMR

SMR
SMR

SMR Disk

4

Data Band
Shingled

Zone

Data Band

Data Band

Down-track Guard

Down-track Guard

Shingled

Zone

Shingled

Zone

HiSMRfs

5

SMR SMR SMR…SSD … SSD

Hybrid Array

Metadata + hot file data Big cold file data

HiSMRfs

Host

6

User Applications

HiSMRfs

Application Interfaces

Metadata Management File Data Management

File Caching & Migration Module

Device Interfaces

HiSMRfs - Architecture

SSD SMR
SMR

SMR
SMR

Application Interfaces

7

•HiSMRfs implements POSIX
standard interfaces to file
system clients.

•Existing applications require
no modifications to run on
top of HiSMRfs.

Metadata & File Data Management

•HiSMRfs separates metadata and file data in its data
layout
– Metadata are stored in higher performance & randomly accessible

SSD; file data are stored in SMR disks

– Reason: metadata are accessed more often with small random
requests, file data are usually accessed sequentially.

•Different writing styles to the metadata partition and file
data partition
– Metadata: randomly written, can be overwritten, in-place update

– File data: within each band, strictly written in order, cannot be
overwritten

8

Metadata Management Schemes

•Current implemented scheme: in-memory metadata tree +
on-disk metadata file
– The directory hierarchy is stored as a tree structure in the DRAM

– Root node or intermediate node represents a directory, leaf node
represents a file

– The in-memory metadata structure is periodically synchronized to
a file on the disk

9

In-Memory Metadata Tree Structure

10

File Data Management Scheme

•File data are written sequentially into SMRs

•Out-of-place update: updated data is appended at the
current sequential writing point, the original data blocks
are marked as invalid

•Invalid data blocks are reclaimed by scheduled space
reclamation process.

11

File Caching & Migration Policy

•New files are created & allocated in the SSD.

•When the size of a file grows and exceeds certain limit, the
file is migrated to the SMRs.

•Cold files (rarely accessed files) are migrated to the SMRs;
hot small files are cached in the SSD.

12

Redundancy Design

13

•Each file system block is divided into several sub-blocks, and the
XOR sum of the sub-blocks is calculated as the parity sub-block.

•The whole parity stripe is written to the array via full-stripe
write.

•Optimized Reconstruction Performance (skip invalid file blocks).

SWD SWD SWD

SSD SSD

Metadata

SWD(Mirroring)

(Parity Stripe)

File Block Cache Parity

Prototype Implementation

•A workable HiSMRfs prototype is implemented under the
Linux platform as a user-level file system based on the
FUSE framework, and provides POSIX interfaces to the
user applications.

•The metadata is organized as a hierarchical tree structure
in the memory.

•The metadata tree is synchronized to file in the SSD.

•The file data is accessed from user space by calling the
R/W interfaces directly to the disks. The current append
position of the file partition is recorded in metadata.

14

Implementation Architecture

15

Kernel space

User space

Applications

VFS

FUSE Kernel Module

HiSMRfs Module

Metadata

Management

File Data

Management

SSD SMR

Raw Device R/WMetadata File

In-Memory Metadata

Tree Structure

FUSE Library

POSIX Interface

File Caching & Migration

HiSMRfs

16

SMR SMR SMR…HDD … HDD

Hybrid Array

Metadata + hot file

data
Big cold file data

HiSMRfs
Host

Hybrid Array

Metadata + hot file data Big cold file data

HiSMRfs

Host

SMR/

CMR
SMR/

CMR

SMR/

CMR…
NVM NVM NVM

17

Prototype I – one SSD and one HDD

Applications

HiSMRfs

Hybrid Device

SSD HDD

Applications

Hybrid Device

SSD HDD

FlashCacheVS
EXT4

Fileserver Workload

341.1

412.7

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

flashcache hiSMRfs

IOPS

914

376

0

200

400

600

800

1000

flashcache hiSMRfs

Pre-Allocation time (second)
Pre allocate 200K files, avg file size 128KB

60%

8

9.7

0

2

4

6

8

10

12

flashcache hiSMRfs

Throughput (MB/s)

526.7

428.3

0

100

200

300

400

500

600

flashcache hiSMRfs

Latency(ms)

20%

20%
30%

Mail Server Workload

322.6

363.7

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

flashcache hiSMRfs

IOPS

1.2
1.3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

flashcache hiSMRfs

throughput (MB/s)

158.2

137.9

0

20

40

60

80

100

120

140

160

180

flashcache hiSMRfs

latency (ms)

636
569

0

100

200

300

400

500

600

700

flashcache hiSMRfs

Pre-Allocation Files (second)
Pre allocate 1million files, ave file size 16KB

20% 12%

8%
13%

20

Prototype II – Storage Array

File Server Workload

6795

737

0

1000

2000

3000

4000

5000

6000

7000

8000

Flashcache from Facebook HiSMRfs

Pre-Allocation Time (second)
Pre allocate 200K files, avg file size 128KB

335

371

310.00

320.00

330.00

340.00

350.00

360.00

370.00

380.00

Flashcache from Facebook HiSMRfs

IOPS

7.8

8.8

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

9

Flashcache from Facebook HiSMRfs

Throughput (MB/s)

534

487

460

470

480

490

500

510

520

530

540

Flashcache from Facebook HiSMRfs

Latency(ms)

90%

10%

12% 9%

@DSI CONFIDENTIAL
22

Thank

You!

