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Application Interfaces
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•HiSMRfs implements POSIX 
standard interfaces to file 
system clients.

•Existing applications require 
no modifications to run on 
top of HiSMRfs.



Metadata & File Data Management

•HiSMRfs separates metadata and file data in its data 
layout
– Metadata are stored in higher performance & randomly accessible 

SSD;  file data are stored in SMR disks

– Reason: metadata are accessed more often with small random 
requests, file data are usually accessed sequentially.

•Different writing styles to the metadata partition and file 
data partition
– Metadata: randomly written, can be overwritten, in-place update

– File data: within each band, strictly written in order, cannot be 
overwritten
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Metadata Management Schemes

•Current implemented scheme: in-memory metadata tree + 
on-disk metadata file
– The directory hierarchy is stored as a tree structure in the DRAM

– Root node or intermediate node represents a directory, leaf node 
represents a file

– The in-memory metadata structure is periodically synchronized to 
a file on the disk
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In-Memory Metadata Tree Structure
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File Data Management Scheme

•File data are written sequentially into SMRs

•Out-of-place update: updated data is appended at the 
current sequential writing point, the original data blocks 
are marked as invalid

•Invalid data blocks are reclaimed by scheduled space 
reclamation process.
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File Caching & Migration Policy

•New files are created & allocated in the SSD.

•When the size of a file grows and exceeds certain limit, the 
file is migrated to the SMRs.

•Cold files (rarely accessed files) are migrated to the SMRs; 
hot small files are cached in the SSD.
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Redundancy Design
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•Each file system block is divided into several sub-blocks, and the 
XOR sum of the sub-blocks is calculated as the parity sub-block.

•The whole parity stripe is written to the array via full-stripe 
write.

•Optimized Reconstruction Performance (skip invalid file blocks).
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Prototype Implementation

•A workable HiSMRfs prototype is implemented under the 
Linux platform as a user-level file system based on the 
FUSE framework, and provides POSIX interfaces to the 
user applications. 

•The metadata is organized as a hierarchical tree structure 
in the memory.

•The metadata tree is synchronized to file in the SSD.

•The file data is accessed from user space by calling the 
R/W interfaces directly to the disks. The current append 
position of the file partition is recorded in metadata.
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Implementation Architecture
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HiSMRfs
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Prototype I – one SSD and one HDD
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Mail Server Workload
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Prototype II – Storage Array



File Server Workload
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