

Analytical Modeling of Garbage Collection Algorithms in Hotness-aware Flash-based Solid State Drives

Yue Yang Jianwen Zhu Electrical & Computer Engineering University of Toronto

Agenda

- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

Introduction

Solid State Drive Market Potential

MSST'14

Technical Advantages

- Access latency
- Bandwidth
- Data safety
- Power efficiency
- Noise

4

Flash Memory Limitation

- Endurance
 - limited budget of erase cycles (1K 100K)
 - "erase-before-write" limitation

Question: How long will an SSD device last?
 (how many user write requests can be serviced?)

5

MSST'14

Write Amplification

Garbage Collection

- Cleaning process
 - trigger condition
 - victim block selection
 - valid data migration

(source of write amplification)

- victim block erase
- Write amplification

7

State-of-the-art

Framework	Workload model	Hotness separation	GC selection algorithm	Trace- driven validation
Bux (Perf.Eval'10)	Uniform	no	greedy	no
Houdt, (SIGMETRICS'13)	Uniform	no	d-Choice	no
Houdt, (Perf.Eval'13)	Hyper-exponential	no	d-Choice	no
Desnoyers, (SYSTOR'12)	Hyper-exponential	yes	greedy	yes
Li, (sigmetrics'13)	Poisson	no	d-Choice	yes
The proposed	general	yes	d-Choice	yes

8

Agenda

- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

Life of An Erase Block

• Type of a <u>single</u> block <h,v>

MSST'14

- h: the hotness tier that the block is allocated for
- v: the number of valid pages in the block

System Dynamics

- State descriptor: occupancy measure vector \vec{m}
 - element : fraction of block type <h,v>
 - Cardinality of \vec{m} : $|\mathcal{H}| \times |\mathcal{B}| + 1$

Event 1 – External Write Requests

P[a valid page in a <h,v> block is updated by an external write]

$$u(h, v, \vec{m}) = r(h) \times \frac{m_v^h \times N \times (1 - G) \times v}{B \times W \times f(h)}$$
Fraction of requests for tier h
$$\frac{m_v^h \times N \times (1 - G) \times v}{B \times W \times f(h)}$$

$$\frac{1}{1 \times W \times f(h)}$$

Event 2 – Block Erase

P[a <h,v> block is chosen by d-Choice as the victim] =

13

A System of ODEs

For
$$0 \le v \le B$$
 and $1 \le h \le n$, let $g_v^h = \sum_{k=v}^B m_k^h$,

$$\Delta \underbrace{\left(g_v^h\right)}_{k=0}^{n} = \sum_{k=0}^{v-1} p(h,k,\vec{m}) - \left[B - \sum_{v=1}^B \left(\sum_{h'=1}^n g_v^{h'}\right)^d\right] \times u(h,v,\vec{m}) \qquad (1)$$
increment rate of g_v^h decrement rate of g_v^h

Mean field analysis & rescaling

[1] Van Houdt, Benny. A Mean Field Model for a Class of Garbage Collection Algorithms in Flash-based Solid State Drives, sigmetric'13

Model Input / Output

MSST'14

Agenda

- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

Simulation Setup

- The simulator
 - terabyte scale
 - highly configurable
 - trace-driven
- Run-time behavior
 - warm-up
 - statistics collection

Data Set

- FileBench synthetic traces
 - fileserver
 - OLTP
 - mail server
 - video server
 - web proxy
 - web server
- Real traces
 - OLTP application from a financial institution
 - Hardware monitor server in MS research, Cambridge

Prediction vs Simulation Result

Financial trace 2 -- Storage Performance Council. OLTP Application I/O. http://traces.cs.umass.edu/index.php/Storage/Storage, 2002.

Result Improvement

Write amplification prediction for greedy GC algorithm and hotness awareness.

Result Agreement

Hotness unaware write amplifications Block size = 64

d	over- provisioning	The proposed	Houdt (SIGMETRICS'13)
2	1.07	9.63	9.64
4	1.07	7.72	7.72
8	1.07	7.00	7.00
2	1.16	4.96	4.96
4	1.16	4.08	4.07
8	1.16	3.73	3.74
2	1.26	3.37	3.37
4	1.26	2.80	2.80
8	1.26	2.59	2.59

Agenda

- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

Conclusion

MSST'14

- An analytical model that can accurately predict the GC cleaning performance for
 - a general workload model
 - a wider class of selection algorithms
 - a write-frontier based hotness separation scheme

Thank you!

<u>Contact :</u> Yue Yang <u>yyang@eecg.toronto.edu</u> Jianwen Zhu <u>jzhu@eecg.toronto.edu</u>

Department of Electrical & Computer Engineering University of Toronto

Allocator with Write Frontiers

- Hotness-based allocation
 - write frequency
 - one write frontier designated for each tier

Event – Internal Data Migration

- Valid data are always copied to a clean frontier
- Blocks state do not change