
SoftWrAP: A Lightweight Framework for
Transactional Support of Storage Class Memory∗

Ellis R. Giles
Rice University
erg@rice.edu

Kshitij Doshi
Intel Corporation

kshitij.a.doshi@intel.com

Peter Varman
Rice University
pjv@rice.edu

Abstract—In-memory computing is gaining popularity as a
means of sidestepping the performance bottlenecks of block
storage operations. However, the volatile nature of DRAM makes
these systems vulnerable to system crashes, while the need
to continuously refresh massive amounts of passive memory-
resident data increases power consumption. Emerging storage-
class memory (SCM) technologies combine fast DRAM-like
cache-line access granularity with the persistence of storage
devices like disks or SSDs, resulting in potential 10x - 100x
performance gains, and low passive power consumption.

This unification of storage and memory into a single directly-
accessible persistent tier raises significant reliability and pro-
grammability challenges. In this paper, we present SoftWrAP,
an open-source framework for Software based Write-Aside Per-
sistence. SoftWrAP provides lightweight atomicity and durability
for SCM storage transactions, while ensuring fast paths to data
in processor caches, DRAM, and persistent memory tiers. We use
our framework to evaluate both handcrafted SCM-based micro-
benchmarks as well as existing applications, specifically the STX
B+Tree library and SQLite database, backed by emulated SCM.

Our results show significant benefits of SoftWrAP over existing
methods such as undo logging and shadow copying, and can
match non-atomic durable writes to SCM, thereby gaining atomic
consistency almost for free.

I. INTRODUCTION

This paper examines the use of byte-addressable persistent
memory (also called Storage Class Memory [13] or SCM)
as a replacement for traditional non-volatile storage (hard
disks or SSDs) in data intensive applications. A growing
number of these applications employ in-memory database
technology that operate almost entirely from DRAM (e.g. [12],
[3], [4], [1]). DRAM-based data access has two main ad-
vantages: one is the fast speed of DRAM that enables the
high throughputs and real-time response times required of
new classes of web applications [21]; second is the fine-
grained memory word (or cache-line) accessibility of DRAM,
which facilitates applications involving traversing sparse data
structures or graph processing. However, the volatile nature
of DRAM makes these systems vulnerable to system crashes,
often requiring ad-hoc checkpointing techniques to maintain a
persistent copy of the data on non-volatile storage. This incurs
run-time overheads, and long recovery times following a crash
or scheduled maintenance to rebuild in-memory structures.

∗Supported by NSF Grant CCF 1439075 and Intel SSG.

SCM technologies [13] like Memristors or Phase Change
Memory (PCM) raise the possibility of having the best of
both worlds: fast, cache-line granularity access of DRAM
with the persistence of disk or SSD. This makes it possible
to use algorithms and data structures designed for byte-
addressable volatile memory without either the programming
and performance overheads of blocking and unblocking these
structures for disk access, or having to deal with the potential
loss of data due to a system crash.

Since SCM is nonvolatile it raises the issues of consistency
faced by all storage systems. However, the ground rules change
significantly when using SCM. First, the techniques developed
by database and operating systems use complex software
intervention for buffering and logging to exploit the slow
block storage interface and access latencies [18] of traditional
storage devices. Secondly, SCM is attached to the memory
subsystem and interacts directly with the processor cache
hierarchy, leading to new problems caused by uncontrolled
cache evictions. In the ideal situation, a program simply
reads or writes locations in SCM just as it reads or writes
locations in volatile memory, with the assurance that its writes
into SCM locations are durable and consistent. Durability
refers to the property that a store to an SCM location is
not left buffered in a volatile tier (such as a processor cache
or a memory controller buffer), while consistency refers to
the property that a compound update which spans multiple
locations in SCM is not incompletely reflected in SCM after
a machine restart. Ensuring durability and consistency is not
straightforward for a number of reasons recounted briefly in
section II, and in recent years a number of approaches to
durable and consistent updates have been proposed. These are
summarized and compared with our approach in Section VI.

In this paper, we examine the problem of providing dura-
bility and atomicity in a system using SCM for persistence,
and describe a novel solution. We present a software-based
approach for SCM atomic persistence based on a framework
which we call SoftWrAP (Software-based Write Aside Persis-
tence). The approach requires no hardware changes, beyond
building upon the expectation that store-fencing capabilities
of current machines will be extended naturally to fencing
writes to SCM. In fact, Intel recently introduced the PCOMMIT
instruction [16] that does just this – the instruction retires
when pending stores to SCM locations have drained out of

978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

intermediate buffers. The SoftWrAP framework is designed
to be portable, and its performance is amenable to tuning by
compiler optimizations. The approach specifically allows an
application to benefit from high speed processor caches while
simultaneously achieving consistent updates into SCM. We
show that SoftWrAP outperforms other methods that perform
atomic updates to SCM and approaches the speed of direct
writes to SCM that do not guarantee atomicity.

In Section II, we elaborate on the problem and describe our
approach in Section III. Performance results of our implemen-
tation are presented in Section V.

II. PROBLEM OVERVIEW

This work addresses the problem of ensuring that the
updates made by a sequence of stores to scattered addresses
of SCM are performed atomically, even in the presence of
machine failure. A good solution must exploit the processor
cache hierarchy to communicate updates within and across
transactions. Algorithm 1 illustrates the problems with a
simple example. Routine moveNode transfers a node between
singly-linked lists freeList and workList. If the store of step
3 has reached persistent memory while 2 has not when the
machine fails, then the entire workList is unreachable and lost;
if only the store of step 2 makes it to persistent memory then
the nodes of freeList beyond the first become unreachable. Im-
plementation of simple data structures becomes a complicated
programming challenge, and redundancy needs to be built in
to account for different store ordering scenarios.

Algorithm 1: Atomic Region
moveNode(node * freeList, workList);
begin

Atomic Begin
1. temp = freeList –> next;
2. freeList –> next = workList;
3. workList = freeList;
4. freeList = temp;
Atomic End

There are two complementary problems that arise in trying
to achieve atomic writes in the presence of failures: durability
and atomicity. This gives rise to complementary demands
on the cache subsystem. Durability requires a guarantee that
designated cache lines evicted from the cache are actually re-
flected in the back-end persistent memory. Atomicity requires
a guarantee that designated cache lines are not evicted and
written to persistent memory at arbitrary times.

Durability requires that writes made by a program have
actually been committed to the non-volatile medium. How-
ever, the default semantics of processor store or cache flush
instructions makes no guarantees of when the update will
actually be reflected in the backend device. This is not an
issue in normal programming models since the coherence
mechanisms and fencing instructions ensure value propagation
of the updates without the need to consult the backend volatile

DRAM memory. In this situation a machine restart can result
in the loss of an update even if the backend memory were
non-volatile. To address this gap, processor manufacturers
are providing persistent fence instructions (e.g. Intel’s recent
PCOMMIT instruction [16]) that guarantee pending stores
have been successfully committed in a power-safe domain. A
new flushing-write instruction CLWB would allow a designated
cache line to be written to memory without evicting it from
the cache. Together it is thus possible to perform a durable
write of a single cache line by a sequence of CLWB, SFENCE,
and PCOMMIT instructions following a store.

The problem of atomicity is complicated by the comple-
mentary problem of eager or premature cache evictions. The
cache subsystem evicts cache lines to the back-end memory
autonomously based on its specific cache management poli-
cies. There are no guarantees regarding the order in which
these evictions may occur. At the time of a machine crash, an
arbitrary subset of an atomic sequence of stores may have
been written to the memory while the remainder are held
back in volatile cache and memory buffers. On restart it is
impossible to know which of the persistent memory locations
correspond to new and which correspond to old data. Hardware
changes to the front-end cache hierarchy to control cache
evictions [9], [29], [32] have been proposed for this problem.
The solutions in [9], [29] control the order of cache evictions
by tagging the cache blocks to prevent spurious updates. In
Kiln [32], the cache controller tracks the progress of atomic
sequences and reflects the state (in-flight or completed) in
the updated cache lines; the state is also communicated to a
back-end non-volatile cache that buffers evicted cache lines
until it is safe to update the persistent memory locations.
Alternatively, software may employ additional metadata (e.g.,
a log or journal) also in non-volatile memory, to track which
sequences completed and which did not, and use that metadata
for effecting recovery. This approach is used in [10], [14],
which extends the backend cache hierarchy by interposing a
volatile victim cache between the processor LLC (last-level
cache) and persistent memory to block cache evictions and
uses the log to move updates safely to the persistent memory
locations. The work presented here does not require any
changes to the processor cache hierarchies. Since the hardware
changes proposed are significant disruptions of the existing
well-understood cache subsystems, their incorporation into
real systems is speculative and will certainly not be available
in any form for the near future. Hence we seek a solution that
does not rely on changes to existing cache mechanisms. The
only hardware support assumed is the PCOMMIT instruction
that as mentioned had already been announced by Intel [16].

III. SOFTWRAP APPROACH

In this Section, we describe key implementation issues
of Software-based Write-Aside Persistence, or SoftWrAP, a
library to provide atomicity for a sequence of persistent-
memory writes that may be interrupted by a machine restart or
failure. Algorithm 2 shows an example program fragment. It
comprises a single atomic region using two static persistent

variables x and p and a dynamically allocated region of
persistent memory obtained by a call to pmalloc, a persistent
memory version of the usual malloc function. The programmer
identifies the atomic region within wrapOpen and wrapClose
tags. The programmer (or a preprocessor) translates accesses
to persistent memory within the atomic region to calls into the
SoftWrAP library as shown in the comments. The wrapOpen
call marks the beginning of an atomic region that ends with
a wrapClose. The atomic region will also be referred to as a
wrap and a call to wrapStore will be referred to as wrapping
a variable. In our current implementation the variables in the
atomic section must be manually wrapped by the programmer.
Compiler assisted wrapping is part of our future work.

Algorithm 2: Programmer annotated atomic region
// x, p and pmalloc array are persistent.

wrapOpen();
begin

x = 1; |wrapStore(&x, 1);
........
p = pmalloc(100);

|temp = pmalloc(100);
|wrapStore(&p, temp);

........
for (i = 0; i < 25; i++)
begin

p[i] = i; |wrapStore(p+i, i);
.........

wrapClose();

The basic idea in SoftWrAP is to simultaneously propagate
updates made within an atomic region along two paths: a
foreground path through the cache hierarchy that is used
for value communication within and between wraps, and an
asynchronous background path to persistent memory to log
the updates. By creating these two paths, SoftWrAP effectively
decouples value communication for transaction execution from
persistent memory logging for recovery.

The SoftWrAP approach has three logical components:
logging, alias handling, and retirement. The logger maintains
a sequential log in persistent memory that is updated using
efficient, cache-line-combined streaming writes. The log is
only used to recover from a crash. During normal operation
the log is updated efficiently in an append-only fashion using
cache-line combined writes, and periodically pruned by delet-
ing entries of retired transactions (i.e., those whose updates
have been retired to their home persistent memory locations).
To handle the problem of spurious cache evictions described in
Section II, SoftWrAP employs a software aliasing mechanism.
This redirects updates to persistent memory locations by
wrapStore to stores to locations in a managed area of DRAM
referred to as the shadow DRAM. The stores to shadow DRAM
allow the updates to be freely communicated via the cache
hierarchy (as is done for normal variables) but uncontrolled
cache evictions can do no harm. The retirement component

copies the values of aliased variables from the shadow DRAM
to the persistent memory home locations when it is safe to do
so. This step is performed in the background, asynchronously
and concurrently with foreground transactions. When a portion
of shadow DRAM has been retired it can be reused, and all
logs records from retired transactions can also be deleted.

Figure 1 shows a contiguous region P of persistent memory
that is mapped into the virtual address space V of the appli-
cation. The shadow DRAM is mapped to a different range of
the address space V’ that is a small fraction of the size of
V. V’ only maintains the recently updated wrapped variables
in persistent memory and is regularly emptied by retiring
its contents. An access to persistent address a is redirected
to address a’ by the aliasing mechanism. Following the first
access to a until it is retired, reads and writes to a are done
from location a’. If evicted from the cache, the updated value
of a updates only the shadow DRAM location φ(a′) rather than
its persistent home location φ(a). Thus, value communication
takes place via the cache hierarchy using the aliased location
(primed variables). The record of updates is streamed to a log
area in persistent memory asynchronously and concurrently
in the form of log records. The figure shows that following
the wrapped write a = 5, the cached value 5 is backed by a
DRAM address φ(a′) corresponding to the aliased address a′

and the redoLog stores a copy of the new value as the record
(φ(a), 5).

Fig. 1: Updates in atomic region using SoftWrAP

IV. SOFTWRAP API AND IMPLEMENTATION

In this Section, we describe the basic SoftWrAP functions
used to operate on groups of variables and objects atomically
as in Algorithm 2.

Algorithm 3 presents a basic implementation of the Soft-
WrAP library. The data structure to implement the alias table
is a hash-table based Key-Value store. A non-blocking imple-
mentation is used to avoid excessive locking and unlocking
when multiple threads access the table, as discussed later. For
scalar variables, the alias table itself stores the latest value of
the variable, while for large objects only the pointer to the
copy of the object is stored in the alias table. Figure 2 (see

Hash Table A) shows scalar persistent variables M, Z, N with
values 1, 3 and 2 respectively in the alias table along with a
size qualifier. In Hash Table B, object A (a 1K page) is stored
in the alias table as a pointer to the shadow DRAM area where
the copy of A is stored.

Wraps may be nested. For instance, an application may
require that the insertion of an element into a B-tree data
structure and the deletion of some other element to be per-
formed transactionally by enclosing the operations in a wrap.
The persistent B-tree operations may themselves need to be
wrapped to maintain data structure integrity while multiple
internal tree pointers are updated. In our implementation
nested wraps are subsumed by the calling wrap. Hence calls
to wrapOpen and wrapClose increase and decrease the nesting
level by 1 respectively. A wrapClose with nesting level 0
indicates the closing of the top-level wrap and requires the
log to be made persistent in SCM.

The SoftWrap API is shown in Algorithm 3. The outermost
wrapOpen call registers a thread-specific handle to the alias
table and to a RedoLog area allocated for the wrap. Subsequent
nested calls by this thread are simply rolled up to its outermost
call, since atomicity needs to be preserved at the outermost
level. The wrapLoad and wrapStore calls are used for reading
or writing scalar persistent variables within the wrap. The
wrapStore inserts or updates an existing entry for the variable
in the Alias Table with the new value being stored. It also
appends a log record with the persistent memory address and
value of the variable to the end of the redo log bucket for this
thread.

Additionally, wrapRead and wrapWrite are used to read and
write objects. This is useful for applications that read and write
data in large extents. These objects are allocated space in the
shadow DRAM and accessed indirectly via pointers in the
alias table. To simplify space management and support legacy
database applications, objects are broken up into units of fixed-
size pages (we use 1KB pages but this is a tunable parameter),
and one entry is maintained per page in the alias table. A
wrapWrite whose destination spans multiple pages that have
all been already inserted in the alias table simply updates the
data pages in shadow DRAM. Otherwise, if the data size being
written spans an entire page, it is written to a newly allocated
DRAM page. The worst-case occurs if the new data spans
only part of a newly allocated page. In this case the updated
data needs to be merged with missing bytes from persistent
memory. A record containing the new data being written is
also appended to the redo log in persistent memory.

A. Alias Table Design

The alias table is the key data structure in SoftWrap and
needs to be managed carefully for performance. We imple-
mented the alias table as a double-buffered hash table based
key-value store that supports update and lookup operations.
Entries are never deleted from the table so we do not need
to support a delete operation. Instead, the entire hash table
is recycled after the home SCM locations of the variables
are updated from the alias table. This permits a scan-based,

Algorithm 3: SoftWrAP API
wrapOpen (options o = default)
begin

if WrapNestingDepth == 0 then
Acquire handle to AliasTable;
Open RedoLog;

WrapNestingDepth += 1;

wrapLoad (address a)
begin

if Entry for a in AliasTable then
Return value from AliasTable;

Return value from SCM address a;

wrapStore (address a, value newV al)
begin

if No entry for a in AliasTable then
Add (a, newV al) to AliasTable;

else
Update (a, newV al) in AliasTable;

Append (φ(a), newV al) to RedoLog;

wrapRead (address src, size n)
begin

Break up n-byte address range of src into
aligned page sequences Si;

for (each page Si) {
if Entry for Di in AliasTable then

Return D′i;

Return Di;
}

wrapWrite (address dest, address src, size n)
begin

Break up n-byte address range of src and dest into
aligned page sequences Si and Di respectively;

for (each page Di in the destination) {
if (No entry for Di in AliasTable) then

Allocate Shadow DRAM page D′i for Di;
Add (Di, D

′
i) to AliasTable;

Update page addressed by D′i from Si // Write DRAM
Append (φ(Di), Di) to RedoLog;
}

wrapClose ()
begin

WrapNestingDepth -= 1;
if WrapNestingDepth == 0 then

// Commit all log records to persistent memory
PCOMMIT; // Stall until pending persistent memory

writes are committed to SCM

thread-safe non-locking implementation [27] that simplifies
the design and improves the performance significantly. To
lookup an address p, the table is scanned starting from the
index computed by Hash(p) until either p is found or the
scan encounters a blank entry in the table. In the first case
an update operation can simply rewrite the value field of the

Fig. 2: The Alias Table implementation for global aliasing
is a double-buffered lock-free hash table implementation. It
handles reads and writes to both primitive data types and
object data and can retire directly from the table.

existing entry. In the second case it must fill in the address
(key) and value fields of the blank entry. A simple compare-
and-swap test of the single entry just prior to the update is
sufficient to prevent races. The table does not need to be locked
nor does one need to lock extended code sequences.

The home locations in SCM of written variables need
to be updated to their updated values and the alias table
memory freed for new entries. This retirement process could
be performed either from the values in the logs or from the
alias table. Retiring updates from the log requires reading the
log and then writing to SCM, while the latter approach can
stream DRAM-resident data in the alias table to SCM using
efficient memory scatter instructions. We use alias table based
retirement in our design. For atomicity, it is necessary that
only alias table entries from closed wraps be retired.

To permit retirement of the alias table entries in the back-
ground along with foreground activities (new wrap openings
and closings, and wrap reads and writes) we use a two-table
double-buffered approach. At any time one table is the active
table and the other is being retired to SCM. However, we
need to be careful to avoid races or unnecessary locking in
implementing such an approach.

Figure 2 shows the two-table design. In the figure there are
two hash tables A and B; B is the currently active table while
A is being retired to persistent memory. Additions of new
alias table entries are only made to the active table. However
lookups must consult both tables until we are sure that the
latest value of a variable has been written to SCM, at which
time the lookup can be made from its home location. In the
figure, a store to variable W will lookup the active hash table
B and either update the existing entry or add a new entry to
B. A load of W will look up table B first, and if found there
(as in the figure) return its value. On the other hand, a load of
M will fail in table B, and must be followed by a lookup of
table A. If a variable is not in either hash table, then it then

it must be retrieved from SCM, which is guaranteed to have
its last updated value.

Fig. 3: The lifecycle of Hash Table states within the Alias
Table structure used for global aliasing.

The complete design of the two-table Alias Table design
requires additional states to be maintained for the tables as
shown in Figure 3. Each table can be in one of five states:
Empty (E), Active (A), Full (F), Closed (C) , and Retired
(R) with the following semantics. In the E state the table
has no valid entries and is available for use. A table in the
A state will be used for making updates and will be given
priority in lookups. In the F state the table will not accept new
update operations. When all wraps that were opened while
this table was active complete, the table transitions to the
C state. In the C state, it is safe to begin retiring the table
entries to the SCM. During this time lookups of the table
from concurrently executing wraps can continue safely and
without conflict. When the retirement of the entries to SCM
is complete, the table transitions to the R state. In this state no
further lookups will be permitted; instead all lookups that are
not found in the active table will go to SCM. The table remains
in the R state until the last of the wraps that may have started
looking up the table (before it entered the R state) completes.
At that point the table can be safely deleted or recycled by
entering the E state.

The state transitions are maintained by wrapOpen and
wrapClose functions. Wraps are tagged with one of four
colors indicating the global state of the two hash tables when
the wrap was opened. Suppose X and Y denote the two tables.
We need to keep track of the active table at the time of
opening a wrap since this can only be retired once these wraps
have closed. Similarly, an arriving wrap needs to distinguish
whether the non-active table has entered the R state or not,
since the table cannot be deleted until all the wraps that could
read it have closed.

On an OpenWrap, the wrap is paced in one of four sets
AXRY , AXR̄Y , AYRX , and AY R̄X . The subscript X or Y
denotes a table, A indicates the active state, and R̄ means not
in the R state. A counter of the number of wraps in each of
these sets in maintained. On a wrapOpen at nesting level 0 the
state of the tables is used to tag the thread, and the appropriate
counter incremented. When a wrap at nesting level 0 closes,
the counter corresponding to its tag is decremented. For active
table X to transition to state C it requires that all wraps that
were opened while X was active should close. That is the
number of wraps in the set {AXRY ∪AXR̄Y } is 0. Similarly,

to transition from the R state to the E state, the number of
wraps in the set {AY R̄X} is 0.

B. Long running transactions
Even though it may be an extremely rare case, a very long

running transaction can exhaust all shadow DRAM space. An-
ticipating the possible corner case, a wrap manager thread may
detect a long running transaction by periodically comparing
the elapsed time of each open wrap to a user defined threshold.
If the elapsed time exceeds this threshold, then the thread first
attempts to speed the long running wrap along by preventing
new wraps from opening. If unsuccessful, on a transaction
abort or timeout, the alias table is cleared and all logs of
successfully completed wraps are replayed - reading the log
from SCM and copying the variable in the log to its home
SCM location. Once this process is complete, the system is
released back into normal operation.

C. Restart and Recovery
Recovery after a sudden failure and restart is simple, and it

proceeds as follows. The manager thread replays the redo log
from a previous consistency point. Stale wraps are discovered
(ones that never closed), and their log records are bypassed as
SCM locations get updated by a recovery thread.

D. On Aliasing Alternatives and Relation to Isolation Models
Different implementation alternatives of the basic aliasing

scheme described in subsection A are possible. First, as an
alternative to creating aliases in DRAM, one could instead
simply alias a variable to its copy in the redo log record,
which requires trading away the cache efficiency (achieved
by treating the log records as non-temporal and not caching
them). That is, redo log records would now need to go through
the cache hierarchy to allow fast path communication, and
cache misses resulting from evictions of these records would
have to access the slower SCM rather than DRAM. That has
the potential to degrade performance when the cache pressure
is high and variable reuse is frequent. Also, the aliased location
will change as different transactions access the variable and
redirect it to their private log locations. Frequent updates will
cause increased coherency traffic as hash table entries are
repeatedly invalidated.

The SoftWrAP aliasing approach is isolation agnostic: if the
programmer chooses, she may choose to permit dirty reads or
phantom reads by allowing one thread to read modified values
from another thread’s wrap operations even if the second
thread has yet to reach a wrap close point. One optimization
that is possible under the common model of strict isolation is
to buffer up all updates in a local alias table and then flush
them using efficient streaming or AVX VSCATTER operations
from the local alias table to home locations in SCM. Thus,
value propagation within the wrap proceeds through local
aliasing, but once the wrap closes with a log commit, the local
alias table can be immediately reclaimed and values propagate
normally through caches without aliasing.

The framework allows programmer to choose– global alias-
ing (default) for more algorithmic flexibility and local aliasing

for the common strict isolation case. A final consideration
concerns the mapping of a shared persistent object in the
address space of multiple threads. As is commonly done for
shared libraries, in this implementation we assume a fixed
mapping based on common agreement, in preference to more
costly dynamic alias conflict handling mechanisms.

Ordering between concurrent transactions is achieved at
the transaction level by ensuring the same isolation that a
developer employs for controlling concurrent execution inde-
pendent of persistence of memory. Ordering among updates
within a transaction needs to be reflected as all-or-nothing
in its effect across a machine failure. This is achieved by
ensuring that data updates made by the transaction are kept
from appearing at their home addresses until the write-aside
log has been committed and flushed to NVM. Since the
write-aside log either commits or does not commit at the
point of a machine/software crash, either all updates in the
same transaction are committed (independent of their intra-
transaction order) or none are committed. Data writes can thus
be held up in caches and flow to backing NVM medium in
arbitrary order, but they are visible to software threads (via
cache coherence) in transaction order.

V. EVALUATION

In this section we describe the evaluation of SoftWrAP
using micro benchmarks and two applications: STX B+Tree
library, and a SQLite database running a scaled TPC-C bench-
mark. We will compare our SoftWrAP approach with two
other methods referred to as Non-Atomic and Undo Log.

In Non-Atomic, all the stores in a wrap are made durable
in SCM before the next wrap can begin. This ensures the
atomicity of completed wraps, but a machine failure during the
execution of a wrap can leave SCM in an inconsistent state.
This approach provides a lower bound on the performance of
methods which provide both durability and atomicity. In Undo
Log, the idea is to directly update SCM just as in Non-Atomic.
However, to preserve atomicity of all wraps, the current values
of the variables before the update are made persistent in SCM
using an undo log. In the case of failure the state can be rolled
back to the state at the start of an incomplete wrap by replaying
the undo log. At the end of the wrap all updated values are
retired to their home location by a persistent commit operation.

In SoftWrAP, updated values are written to DRAM shadow
memory and to a redo log. However, there are two main
differences from Undo Log which improve its performance
remarkably. First, the log records in SoftWrAP can be write-
combined into compact cache lines and streamed to the log
asynchronously. In contrast, Undo Log needs to synchronously
write the current value of each variable to the undo log before
it can update its value. Secondly, Undo Log persists all its
updates at the end of the wrap to guarantee the durability
of the completed wrap. SoftWrAP merely writes its updates
to DRAM shadow memory (the alias table), and only needs
to persist the much more compact sequential log structure
when the wrap closes. The updates of the persistent memory

locations are performed asynchronously in the background
directly from the alias table.

As our experiments will show this has two performance
consequences. First, both the throughput and response time
(time from OpenWrap to the end of CloseWrap) in Soft-
WrAP will be significantly better than Undo Log due to the
asynchronous write of a smaller number of cache-line write-
combined log writes and the asynchronous writing back to
the home locations. Secondly, the throughput of SoftWrAP
will be slightly less than Non-Atomic because the latter does
not need to write any metadata log records. However, the
response time will be slightly better than Non-Atomic because
with SoftWrAP, retirements are performed asynchronously
in the background while Non-Atomic needs to compete the
retirement synchronously before closing.

Table I shows the number of SCM writes and pcommit
operations for a wrap of n word-sized stores using the three
methods. Non-Atomic requires the n words (to scattered SCM
locations) to be written to SCM a single pcommit instruction
to ensure their persistence. Undo Log requires a pcommit after
writing each log record and another at wrap close to persist
the updates. Each of the n log records (a record is 3 words
long) generally require 1 cache line write, and each of the n
updates require another write, for a total of 2n writes. The
additional terms in the expression are 1 write for an end-of-
log marker and a correction term to account for splitting of a
log record at a cache line boundary. Cache lines are 64 bytes.
Finally, SoftWrAP can close the wrap after writing the 3n
consecutive words (12 bytes) that make up the log, followed
by a single pcommit. Due to write combining, this results in
12n/64 cache line writes.

SCM Writes pcommits Estimated Time

Non-Atomic n 1 nTw + Ts

Undo Log
2n+ 1+
d12n/64e n+ 1

n(2Tw + Ts)+

d12n/64 + 1eTw + Ts

SoftWrAP
1+

d12n/64e 1
Tw +max(n ∗ Talias,

d12n/64eTw) + Ts

TABLE I: Time to perform a wrap of n 4-byte words .

A. Experimental Results
In this Section, we describe our experimental results with

SoftWrAP. The absence of readily available systems with
persistent memory raises challenges in evaluating the perfor-
mance of SCM-based software. We opted for an approach
similar to that used for Mnemosyne [30] based on measuring
the execution time of a running application that has been
instrumented to add a delay to specific types of persistent
memory stores. A description of the emulated system model
and comparison of its predicted and measured behavior is
presented in Section V-B. This is followed in Section V-C
by microbenchmark experiments to demonstrate the behavior
and advantages of SoftWrAP as predicted in Table I. In
Section V-D, we discuss the evaluation of the STX B+Tree
library, and in Section V-E evaluate a SQLite database running
a scaled TPC-C benchmark.

0 100 200 300

0

200

400

600

800

1,000

Number of Random ntstores in Group

A
ve

ra
ge
n
s

pe
r

St
or

e
in

G
ro

up

SCM Random
DRAM Random
SCM Sequential

DRAM Sequential

Fig. 4: Average time for an ntstore for different group sizes.
Write Buffer size: 8 cache-line entries, Cache Line size: 16
words, SCM write delay: Tw=1µs.

B. Model Validation

The streaming non-temporal store instruction (ntstore) al-
lows a consecutive sequence of bytes to be combined into
cache-lines and streamed to memory without disturbing the
cache. The emulated memory system to handle ntstore op-
erations has a write-combining buffer implemented by an 8-
entry, cache-line-wide queue. Stores to the same cache line
are combined into a single entry and written to memory in
a single cache-line write operation. The time for a cache-line
write from the head of the buffer is denoted by Tw. In our
experiments this is set at Tw = 1µs, a conservative write time
for SCM [17].

On an ntstore operation, a run-time routine is invoked to
emulate the memory system. The routine waits until there
is space in the write buffer and then adds the request to
the queue while recording the insertion time, if possible
combining it with a pending store to the same cache line.
Consequently, when a group of sequential writes are made
in quick succession, they are write-combined into a single
cache-line effectively increasing the data that can be written
in a single memory operation by a factor of 16 over scattered
single-word writes (cache line size is 64 bytes and word size
is 4 bytes). Space in the write queue is created by removing
entries that would have completed writing to SCM based on
the position in the queue, insertion time, and Tw. A pseudo-
instruction pcommit is introduced to emulate the forcing of
queued requests to the memory, which will behave similar
to the PCOMMIT instruction recently introduced by Intel. A
pcommit call is implemented by inserting a software delay
loop until the completion time of the last queued request.
The delay loop is bookended by CPUID instructions to force
the serialization of the delay with respect to the rest of the
program.

B.1 Validating model of ntstore and pcommit

Our tests are performed on an Intel(R) Xeon(R) CPU
x5660 at 2.80GHz with 64GB of DDR3 system memory

running Red Hat Enterprise Linux Server 6.5. The SoftWrAP
implementation and benchmarks were built with GCC 4.4.7.
First we tested the implementations of the streaming non-
temporal store (ntstore) and persistent memory sync (pcommit)
operations, which are used to emulate the writes to SCM.
A group of n 4-byte writes using ntstore instructions in a
tight program loop was run and its execution time recorded.
The average time for a store in the group is computed and
reported in the plots in Figure 4. The writes in a group are
either to random addresses within a large array or to sequential
array locations that can exploit write-combining. Two backing
devices were tested: DRAM and emulated persistent memory.
For the DRAM-based experiments, the ntstore was streamed
directly to memory bypassing the emulated write buffer, while
for the persistent memory experiments, the time for an SCM
write Tw was set to 1µs.

The average time for a store in a group is plotted for
different group sizes in 4. Once the write buffer is full, the
writes are written at the average rate of Tw. The measured
average write time becomes steady at about 100ns for DRAM
(a reasonable measured value for Tw for DRAM writes) and,
as predicted, to the delay Tw = 1000ns for emulated SCM.
When the group is made up of sequential writes, they are
write-combined into a single cache-line, effectively increasing
the data that can be written in a single memory operation
by a factor of 16. The reduced time for sequential writes is
also shown empirically in Figure 4. Note that the drain rate
of DRAM for sequential writes is so fast that the measured
delay reflects the instrumentation overheads. Nonetheless, the
experiments show that our delay model provides a good
emulation of the SCM write performance for use as a basis of
comparison.

B.2 Comparison of analytical and experimental performance

We executed 100, 000 consecutive wraps, each consisting
of a group of n 4− byte writes. The arrival rate of the wraps
was fixed at 10, 000 wraps per second. Writes were made to
random word addresses in a large 1GB array to avoid effects
of data reuse and caching. The size of each hash table is 8K
entries, and an entry is made up of an 8-byte address field, an
8-byte data field and a 4-byte size field. Flushing of the hash
table to SCM begins when the table has 500 entries. A sparse
table allows rapid insertion and lookup operation, but is large
enough to amortize the overheads of creating and retiring the
table. The performance as a function of cache size is discussed
in Section V-C below.

We recorded the number of writes to SCM, total number
of pcommit operations, and the average execution time for
each method, for n=10, n=15, and n=20. A comparison of the
predicted and experimental times are shown in Table II. There
is close agreement between them for Non-Atomic and Undo
Log. For SoftWrAP there is an additional unknown variable
Talias. Computing this value from the experimental data for
n = 10 we use it to predict the execution time for the other
values of n and get a good correspondence.

The number of pcommit and ntstore operations are also

n Est(ns) Exp(ns)

Non-Atomic 10 10,220 10,226
15 15,220 15,223
20 20,220 20,251

Undo Log 10 25,430 25,653
15 37,530 37,198
20 48,630 48,701

SoftWrAP 10 5,720 6,043
15 7,970 7,956
20 10,220 11,049

TABLE II: Performance of Array Update Benchmark. Tw =
1µs and Ts = 220ns. Talias calculated is 450ns.

100.6 100.8 101 101.2 101.4 101.6
10−2

10−1

100

101

102

10
15 20

10 15 2010 1520

10
15 20

Number of ntstores

N
um

be
r

of
pc

om
m

its

Undo Log
Non-Atomic
SoftWrAP
Alias Table

Fig. 5: Average number of pcommits and ntstores per trans-
action of sizes n =10, 15, and 20 after performing 100,000
transactions.

measured during the experiment. and are shown (per wrap)
in Figure 5. For Non-Atomic and SoftWrAP there is 1
pcommit operation at wrapClose, while Undo Log performs
(n+1) pcommit operations. The retirement of the Alias Table
only requires 1 pcommit every time a hash table is written
to SCM, which occurs at a fixed fraction (determined by
the retirement threshold) of the incoming transaction rate.
Likewise, the number of SCM stores for Non-Atomic and
Alias Table processing is n as shown. SoftWrAP reduces the
number of stores by a factor of 16 while Undo Log has roughly
twice the number of ntstores compared to Non-Atomic. The
experimental results match the predictions from Table I.

C. Micro-Benchmarks

In the following experiments, we create a large 1GB array
and perform a number of experiments using the same machine
setup as described above. We test the wrap response time and
throughput and their dependence on the size of the alias table.
Additionally, we determine the sensitivity to SCM write time
and number of elements in a wrap. Finally, we examine reuse
of data across wraps, and show additional benefits from the
caching done by SoftWrAP.

C.1 Response Time and Throughput

First, we consider wraps made up of 10 random updates to
the array. We insert a tunable delay in-between transaction

104 105

104

105

106

107

Arrival Rate (Wraps Per Second)

R
es

po
ns

e
Ti

m
e

(n
an

os
ec

on
ds

) Undo Log
Non-Atomic
SoftWrAP

104 105

104

105

Arrival Rate (Wraps Per Second)

T
hr

ou
gh

pu
t

(W
ra

ps
Pe

r
Se

co
nd

)

Undo Log
Non-Atomic
SoftWrAP

Fig. 6: Response time and throughput for varying arrival rates
of transaction size n=10, alias table size of max 8k entries,
and SCM Tw=1µs.

arrivals to simulate different arrival rates. The transaction
arrival time and completion times are recorded along with the
throughput. The arrival rate is varied from 10, 000 to 200, 000
wraps of n = 10 elements each per second. The results are
shown in Figure 6 on log-log plots to include the performance
of Undo Log. The response time at low arrival rates for Non-
Atomic is slightly more than 10µs. By comparison, Undo Log
has more than double the response time, and SoftWrAP is
much faster. The times follow the service times of the wrap
as in Table I at low request rates. When the arrival rate exceeds
the service rate, all methods show a sharp increase in response
time, eventually increasing to infinity, and a leveling off in
throughput. SoftWrAP can absorb a much higher arrival rate
before breakdown. Before the knee, the alias table can be
retired in the shadow of the foreground operations, without
slowing the latter. However, ultimately the rate at which the
Alias Table is filled exceeds the rate at which it can be retired,
and the wraps stall waiting for alias table to become free.

The maximum throughput of both Undo Log and SoftWrAP
is slightly less than 100, 000 transactions per second. The
maximum throughput of Undo Log is only about 39, 000

transactions per second. As discussed previously, each wrap
in Undo Log is slowed down since it does significantly more
writes than the other methods. Non-Atomic must perform
a pcommit operation after each wrap (group of 10 writes),
therefore performing slightly less than the maximum possible
throughput of 100, 000 transactions per second based on mem-
ory bandwidth alone. SoftWrAP isn’t limited in the writing to
the table, but its throughput is limited by the time to retire
the alias table. It is an interesting property that at reasonable
arrival rates in a write-intensive workload, SoftWrAP can have
a service and response time faster than that of the Non-Atomic
method that does not guarantee atomicity, and only a little less
throughput due to the small logging overhead.

C.2 Alias Table Size

10 15 20 25
0.6

0.7

0.8

0.9

1

·105

Alias Table Size 2n

M
ax

im
um

T
hr

ou
gh

pu
t

(w
ra

ps
pe

r
se

c)

Fig. 7: Maximum throughput for various Alias Table sizes.
Arrival rate = 50k wraps per sec, n=10, Tw=1µs.

2,488 2,490 2,492 2,494 2,496 2,498

8

10

12

14

16

Time (ms)

R
es

po
ns

e
Ti

m
e

(µ
s)

Fig. 8: Response time over time. Arrival rate = 50k wraps per
sec, n=10, Alias Table: 8k entries, Tw=1µs.

In the following sets of experiments, the sensitivity of
SoftWrAP to the size of the alias table is analyzed. Our
implementation of the alias table uses a double buffering
technique with two hash tables. Each hash table is array based

and walks the hash index looking for a match or free entry. To
avoid walking a dense table, we start retiring the table using a
retirement thread after reaching a configurable size threshold,
currently set at 1/8 the capacity, to reduce the average probe
time. On a wrapClose operation, if the table has reached the
threshold size, the retirement thread is notified. The retirement
thread might be busy processing the other table, therefore a
new wrapOpen may have to wait until that table has been
completely retired. Each element in the table requires a key,
value, and size; so an entry requires 24 bytes. We test the
size of the alias table for n = 10 elements per wrap and an
incoming rate of 50, 000 wraps per second. As shown in Figure
7, when the table is relatively small (212 entries or less) or
very large (greater than 220 entries) the throughput falls. The
reason for the drop in throughput at large table sizes is that
the alias table thrashes in cache and requires a long retirement
time. At small sizes, the drop in throughput is caused by the
bookkeeping operations in creating, freeing, and updating state
of the hash tables as discussed below.

Figure 8 shows the response time and alias table sizes for
each table in the double buffer implementation for a subset of
time in the same experiment. Once one hash table fills up, the
retirement thread must be signaled and the hash table switched.
The spike in response time as measured in the experiment is
caused by the filling of a hash table, since the incoming rate
of 50, 000 wraps per second of 10 writes each, fills a table of
threshold 500 every 1ms. The extra time includes signaling
the retirement thread, zeroing out the table, and performing a
memory barrier. The retirement thread can also zero out the
table, but first must copy entries to home locations and perform
a barrier to prevent threads from reading stale values. Chaining
additional hash tables could reduce spikes in response time,
but increase overall latency due to reads potentially having to
consult each table in the chain.

Currently our design has two options to handle high churn
rates of the alias table: object granular updates in which
SoftWrAP is used with simplified pointer flipping for coarse-
grained objects or by using local alias tables which are
recycled immediately after a wrap closes.

C.3 Multi-Threaded Operation

Next, we tested writing with multiple threads to show
that the performance of SoftWrAP and the alias table is not
adversely affected with scaling the number of writers. In this
experiment, a thread is created that updates its own data object
independently. Each thread continuously executes transactions
to update 10 randomly positioned integer fields on the object.
A varying number of threads were created, and the transaction
throughput was recorded and plotted in Figure 9. To support
data from multiple threads, the size of the alias table was
increased to 219, as from Figure 7 before response time
decreases. We compared SoftWrAP with both Undo Log and
Non-Atomic on a 6 core CPU. When the number of threads
exceed the number of cores, performance starts to decrease.
SoftWrAP is much faster than Undo Log and close to the
performance of a Non-Atomic method.

1 2 3 4 5 6 7

0.5

1

1.5

2

·105

Number of Threads

T
hr

ou
gh

pu
t

(W
ra

ps
Pe

r
Se

co
nd

)

Undo Log
Non-Atomic
SoftWrAP

Fig. 9: Throughput of wraps with 10 elements each. SoftWrAP
has an alias table size of max 219 entries and SCM Tw=1µs.

C.4 Varying SCM and Transaction Size

400 600 800 1,000 1,200 1,400

104

105

106

107

SCM Twr (ns)

R
es

po
se

Ti
m

e
(n
s)

Undo Log
Non-Atomic
SoftWrAP

Fig. 10: Response time for various SCM Tw times with arrival
rate of 50k txps of size n=10 and alias table size of max 8k
entries.

Next, we vary the SCM write time Tw in an array update at
50,000 txps in Figure 10. On fast Tw times approaching the
speed of DRAM, the SoftWrAP overhead is greater than the
Non-Atomic time. As the time to write a cache-line to SCM
is increased, the benefit of SoftWrAP increases as the aliasing
time Talias remains constant. At SCM Tw of 600ns, both
implementations have equal performance. This is as expected
from the values in Table I, setting n=10, and Tw = 600ns,
yields a Non-Atomic time of 6, 220ns, close to the same
processing time for SoftWrAP. Additionally, for SoftWrAP,
the time required for aliasing, Talias, can overlap the time
required to stream SCM writes to the log, aside from the final
Tw log write. With SCM Tw of 1, 500ns, SoftWrAP has a
response time measured at 6, 640ns. SoftWrAP, even with fast
SCM, provides atomicity and consistency to a group of writes.

Figure 11 shows the relationship between the size of a

0 5 10 15 20 25
103

104

Number of Items In Transaction

R
es

po
ns

e
Ti

m
e

Undo Log
Non-Atomic
SoftWrAP

Fig. 11: Response time for various transaction sizes with
arrival rate of 1,000 txps, alias table size of max 8k entries,
and SCM Tw=1µs.

transaction and the effect on the overall performance. As the
size of the transaction grows, SCM writes in SoftWrAP only
grow at 12/64 the rate. When there is just one element in a
transaction, obviously any overhead of logging by SoftWrAP,
Undo Log, or any transactional method, will perform worse
when compared to Non-Atomic. However, with just two ele-
ments in a transaction, SoftWrAP can perform as well as Non-
Atomic. Certainly, anyone wishing to update just one element
would not go to the trouble to create a transaction mechanism.
However, even if one does, or the size of an update is not
known prior to the start of a transaction, then SoftWrAP still
performs exceptionally well.

C.5 Data Reuse

0% 10% 20% 30% 40%

0.5

1

1.5

·105

Inter-Transaction Data Reuse

M
ax

im
um

T
hr

ou
gh

pu
t

(t
xp

s) Undo Log
Non-Atomic
SoftWrAP

Fig. 12: Maximum throughput for various percentage of data
reuse across transactions with size n=10, alias table size of
max 8k entries, and SCM Tw=1µs.

The previous experiments only examine the cases where
data was not reused across transactions. However, as in the
case of many applications, data is reused both across and

0 0.2 0.4 0.6 0.8 1

·105

0.4

0.6

0.8

1

1.2

1.4

1.6
·105

B+Tree Size

T
hr

ou
gh

pu
t

(I
ns

er
ts

Pe
r

Se
co

nd
)

Undo Log
Non-Atomic
SoftWrAP

Fig. 13: Average insert throughput of random elements into
a B+Tree with alias table size of max 4k entries and SCM
Tw=1µs.

RandomSequential

1

2

3

4

5

·10−5

B+Tree Insertion Element Type

A
ve

ra
ge

In
se

rt
io

n
Ti

m
e

(s
ec

on
ds

)
Undo Log

Non-Atomic
SoftWrAP

Fig. 14: Average insertion time of a single integer element
(sequential or random) into a B+Tree with alias table size of
max 4k entries and SCM Tw=1µs.

within transactions for both reads and writes. We show in
Figure 12 that with data being reused between transactions,
that the overall throughput is increased. With no reuse, Soft-
WrAP performs equally as well as Non-Atomic. When 10%
of the data is reused across the transactions, then the number
of writes to SCM that must be performed by the retirement
thread is decreased by 10%. In the maximum throughput case,
the bottleneck is the processing of a full hash table. Reducing
this burden by a percentage allows the throughput to increase
proportionately. Undo Log and Non-Atomic do not benefit
from data reuse and remain unchanged.

D. B+Tree Benchmark

The previous experiments consisted of all write workloads.
In this experiment, we also perform a series of writes into
a data structure. However, inserting just one element into a
B+Tree requires a number of reads and writes that need to

be wrapped with atomic semantics to preserve the integrity of
the tree. We setup this experiment by slight modifications to
the STX B+Tree [5] extension to the C++ STL, wrapping
persistent data accesses in the B+Tree elements. We also
created a simple STL based memory allocator that allocates
memory segments for the B+Tree in persistent memory.
Nested transactions get rolled up into the top level transaction.
For Non-Atomic, just a single pcommit is executed once all
nested writes are finished in the insertion of an element, but
if a failure occurs, the data structure can become corrupted.

To test the performance of the B+Tree, we perform 1M
transactions of one element inserts into the B+Tree, recording
the number of transactional reads and writes to SCM needed
by the internals of the B+Tree data structure along with the
average time per transaction. The results for both Sequential
and Random series of insertions for each method are shown
in Figure 14. Throughput for Random insertions is shown in
Figure 13. The fastest way to build a B+Tree with a given set
of elements is sequentially, as it requires less transversing and
modification of internal nodes. Due to the contiguous nature
of data elements allocated in the B+Tree, many of the writes,
even in the Non-Atomic method, get write combined into a
single cache-line write to SCM.

In our Sequential experiment, 1M inserts requires 61.6M
reads and 8.1M writes, an average over 61 reads and 8 writes
per insert. Non-Atomic averages 7.4µs per insertion, which is
less than the expected average insert time that would require
8 writes to SCM, 8*Tw or 8µs. However, we also measure a
write combining effect of the B+Tree of 56% which reduces
the Non-Atomic SCM writes to 5, and the expected time from
Table I is therefore 5, 220ns. The remaining execution time
of 2.2µs is needed for reads and traversing the tree. Undo Log
requires all 8.1M writes to be synchronous, and referring back
to Table I, Undo Log for n=8 writes takes 19 Tw + (n+1)Ts
or 21.3 1µs. Adding the same additional read and transversal
time as Non-Atomic of 2.2µs yields 23.5µs for Undo Log
which is close to the measured 24.4µs. For a SoftWrAP of
8 writes and 62 reads, the time required from Table I is
4.8µs for the writes plus the cost of 62 reads into the alias
table structure, for the measured 7.8µs. The cost of the read
is then calculated to be approximately 44ns which is higher
than a direct read to memory might cost, but reasonable given
the complexity and benefit of SoftWrAP. For the Random
insertion experiment of 1M elements, 74.8M reads and 20M
writes are measured, which produces similar expected times
that match the measured experiments for each method as well.
SoftWrAP outperforms Undo Log and remains close to Non-
Atomic even with heavy read-intensive workloads.

E. TPC-C Database Benchmark

Finally, we tested the performance of the SoftWrAP frame-
work with the TPC-C Benchmark. The TPC-C benchmark is
a complex, online transaction processing benchmark [28].

We chose to test the SoftWrAP Framework with SQLite
due to its widespread use and ease of extendibility. SQLite
is implemented as a compact library and embedded database

engine with a pluggable interface for extended media [2].
SQLite performs writes to the main database file atomically
by first creating a journal file. The journal file is like a re-do
log in that if a crash happens before the main database update
has been completed, the journal can be replayed to capture
any outstanding changes.

Fig. 15: SQLite Pluggable Virtual File System Implementa-
tions using SCM for block writes and using SoftWrAP.

Figure 15 shows how SQLite is extended to use Stor-
age Class Memory using the Virtual File System Interface.
This interface requires implementation of Open, Close, Read,
Write, Sync, and other methods that closely align with the
SoftWrAP API. In part A, a SQLite VFS is created that
performs all writes to SCM. When the VFS requests a Sync or
Close operation, a persistent memory pcommit is performed
to ensure that all writes to SCM have been committed. The
journal is also updated in SCM just like the main database,
and the journal can be discarded once the main database has
been updated.

In B, the SQLite VFS utilizes the SoftWrAP framework.
In the SoftWrAP version, the journal need not be created
directly as direct writes to the database are contained within
the SoftWrAP based logs. Only the main database needs to
have updates when using SoftWrAP. Therefore, the updates
to the main database can be streamed to the SoftWrAP log
location and aliased in DRAM. Database reads need not query
the SCM based journal and SCM database, but rather just
utilize the SoftWrAP API, which can direct a read to either
the DRAM alias table or home SCM location. This reduces the
overall number of SCM reads, writes and persistent memory
syncs. In such an application, where an application already
delineates its updates clearly, the effort to introduce wrapping
of those updates is low and straight-forward.

To generate the SQL statements that represent a portion
of the TPC-C Benchmark, we utilize the PY-TPCC engine, a
Python based implementation of the TPC-C Benchmark [23].
We intercepted the SQL statements from the benchmark to a
supported database and directed them to our SQLite database.
The test with SQLite is then performed with the SCM VFS
from part A, and the SoftWrAP based implementation in
part B. Undo Log and Non-Atomic are also tested with the
SoftWrAP Framework.

Figure 16 shows the throughput of SQLite for the TPC-
C benchmark operations for various SCM write times. Note
that SoftWrAP performs almost as fast as a Non-Atomic
implementation that doesn’t observe consistency. Execution on

1,000 1,500 2,000

300

400

500

600

SCM Write Time (ns)

Tr
an

sa
ct

io
ns

Pe
r

Se
co

nd
Undo Log Non-Atomic SoftWrAP SCMVFS

Fig. 16: Throughput in Transactions Per Second for the TPC-C
Benchmark with SQLite.

disk based media only resulted in less than 20 transactions per
second, and SoftWrAP is over 30 times that performance at 1
and 2 µs SCM write times.

VI. RELATED WORK

Analysis of consistency models for persistent memory was
considered in [24]. To enforce atomicity in NVM, software
approaches in the literature rely on simple hardware support:
Atomic 8-byte writes, memory fences, and instructions with
PSYNC semantics. We similarly rely on these hardware ca-
pabilities. Memory controller designs for persistent memory
haven been proposed in [25], [34], [14], [33]. Adding a small
DRAM buffer in front of SCM to improve latency and coalesce
writes was proposed in [25].

Hardware approaches that specialize processor and cache
behaviors to achieve atomicity have been proposed [9], [8],
[19], [29], [33], [20]. These approaches change the front-
end architecture with additional cache hardware and poli-
cies. Copy-On-Write mechanisms (BPFS [9]) and timestamp-
based multiversioning [29], [19] to maintain before and after
versions of updated persistent memory have been proposed
for ordering cache evictions. When combined with hardware-
supported atomic writes to 8-bye words, this provides an
effective mechanism for atomic updates of an important albeit
restricted class of block-based tree-structured data structures,
by using pointer flipping. Research into new data structures
such as in NV-heaps [8], which uses logging and copying,
provide support for ACID components in software applications
using SCM. CDDS [29] provides a versioning method that
copies data and uses sequences of fences and flushes to pro-
vide transaction support. BPFS [9] and NV-heaps [8] require
changes to the system architecture to support the atomicity and
consistency of data. A non-volatile victim cache to provide
transactional buffering was proposed in [33], with the added
property of not requiring logging at all; by comparison, our
approach achieves efficiency through software based non-

temporal write-combining streaming of log records. Unlike
[33] which tracks pre- and post- transactional states for cache
lines in both volatile and persistent caches and atomically
moves them to durable state on transaction commits, our
approach does not change the behavior of hardware and in-
structions and does not require synchronous cache-line write-
backs out of processor caches on completions. Whole-system
persistence [20] snapshots the entire micro architectural state
at the point of a failure to allow for in memory databases,
but relies on batteries to power non-persistent memories on
system failure. The hardware based WrAP architecture allows
an application to handle its own concurrency control such as
in RVM [26], but requires hardware changes to the cache
backend [14].

Some solutions [30], [6] combine concurrency control with
persistence in an integrated framework. Mnemosyne [30] uses
software transactional memory (STM) based interception of all
writes and reads within a transaction, and uses internal copying
and logging to achieve both concurrency control and atomicity.
The approach has the advantage of using a single framework
for meeting ACID requirements, and can potentially leverage
advances in STM technology to improve performance. On
the other hand it forces the application developer to a single
concurrency control model (TM), and is difficult to fit to
legacy software applications, which support different isolation
models or employ lock-based concurrency control. ATLAS [6]
uses a compiler pass to automatically generate transactional
regions for atomic writes utilizing a synchronous undo log.
Coupling the very distinct concerns of providing atomicity
to a group of operations (like mutually dependent pointer
switches) and controlling concurrent accesses to the data
structure is not desirable, as applications demand more and
more greater autonomy in their implementation (for instance
the noSQL approaches to big data and databases like voltDB
[4] that employ statically serialized transaction sequences to
reduce concurrency control overheads). Our approach explic-
itly decouples concurrency control from durable atomicity
requirements.

Research in persistent file systems built on SCM is also
a promising area that might quickly enable software applica-
tions to take advantage of SCM. This will be advantageous
for legacy file based programs to easily take advantage of
SCM. However, new classes of applications can benefit from
optimized byte-addressability, such as provided by SoftWrAP.
PMFS [11] is a complete file-system implementation built
for SCM. SCMFS uses sequences of mfence and clflush
operations to perform ordering and flushing of load and store
instructions and requires garbage collection [31].

A technique for ensuring atomicity of sync was discussed
in [22]. REWIND [7] is a library that also supports trans-
actional writes to main memory similar to early an early
presentation of Software-based Write-Aside Persistence [15].
However, REWIND uses an in-persistent-memory version of a
log structure. With SoftWrAP, reads proceed through DRAM,
log processing can be performed from the DRAM based alias
table, consecutive log entries can be streamed into SCM, and

multiple writes to the same variable become one final merged
update into its SCM home location at a later time.

VII. SUMMARY

In this paper we presented SoftWrAP, a software framework
for persistent memory providing lightweight atomicity and
durability. The SoftWrAP framework is currently available
for download from http://nvmwrap.com. SoftWrAP utilizes an
alias table approach to benefit from processor caching while
avoiding the problems caused by uncontrolled cache evictions.
This is coupled with micro-logging of updates that allow for
write-combining of streaming store operations (not possible
with synchronous Undo Log methods) and asynchronous
background retirement of the updates to SCM (not possible
in the Non Atomic approach). SoftWrAP allows for a fast
access path to data through the cache while making sure that
persistent memory layers are not slowed down.

We compared the SoftWrAP to implementations that write
directly to SCM and do not guarantee atomicity (Non Atomic
approach) and that use well-known Undo Log approaches
to guarantee atomicity. Our experiments show significant
speedups over Undo Log based atomicity and comparable
performance to Non Atomic implementations that provide
no safety guarantees. Just as transactional memory liberates
software developers from the mechanics of achieving execu-
tion atomicity, Software-based Write-Aside persistence in the
SoftWrAP framework liberates software developers from the
minutiae of delivering atomicity in storage operations while
not affecting performance.

REFERENCES

[1] Neo4J:. In http://neo4J.com (May 2015).
[2] Sqlite. In http://www.sqlite.org (May 2015).
[3] Unicom solidDB. In http://unicomsi.com/products/soliddb/ (May 2015).
[4] VoltDB:. In http://voltdb.com (May 2015).
[5] BINGMANN, T. Stx b+ tree c++. In http://panthema.net/2007/stx-btree/.
[6] CHAKRABARTI, D. R., BOEHM, H.-J., AND BHANDARI, K. Atlas:

Leveraging locks for non-volatile memory consistency. In Proceedings
of the 2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications (New York, NY, USA,
2014), OOPSLA ’14, ACM, pp. 433–452.

[7] CHATZISTERGIOU, A., CINTRA, M., AND VIGLAS, S. D. Rewind: Re-
covery write-ahead system for in-memory non-volatile data-structures.
Proceedings of the VLDB Endowment 8, 5 (2015).

[8] COBURN, J., CAULFIELD, A., AKEL, A., FRUPP, L., GUPTA, R.,
JHALA, R., AND SWANSON, S. Nv-heaps: Making persistent objects fast
and safe with next generation, non-volatile memories. In Proceedings
of 16th ASPLOS (2011), ACM Press, pp. 105–118.

[9] CONDIT, J., NIGHTINGALE, E. B., FROST, C., IPEK, E., LEE, B.,
BURGER, D., AND COETZEE, D. Better I/O through byte-addressable,
persistent memory. In Proceedings of 22nd ACM SOSP (2009), ACM
Press.

[10] DOSHI, K., AND VARMAN, P. WrAP: Managing byte-addressable
persistent memory. In Memory Archiecture and Organization Work-
shop.(MeAOW) (2012).

[11] DULLOOR, S. R., KUMAR, S., KESHAVAMURTHY, A., LANTZ, P.,
REDDY, D., SANKARAN, R., AND JACKSON, J. System software for
persistent memory. In Proceedings of the Ninth European Conference
on Computer Systems (New York, NY, USA, 2014), EuroSys ’14, ACM,
pp. 15:1–15:15.

[12] FÄRBER, F., CHA, S. K., PRIMSCH, J., BORNHÖVD, C., SIGG, S.,
AND LEHNER, W. SAP HANA database: data management for modern
business applications. SIGMOD Rec. 40, 4 (Jan. 2012), 45–51.

[13] FREITAS, R., AND WILCKE, W. Storage class memory, the next storage
system technology. IBM Journal of Research and Development 52, 4/5
(2008).

[14] GILES, E., DOSHI, K., AND VARMAN, P. Bridging the programming
gap between persistent and volatile memory using WrAP. In ACM
Computing Frontiers (2013).

[15] GILES, E., DOSHI, K., AND VARMAN, P. Software support for atom-
icity and persistence in non-volatile memory. In Memory Architecture
and Organization Workshop (MeAOW’13) (October 2013).

[16] INTEL. Intel 64 and IA-32 architec-
tures software developer manual, January 2015.
http://www.intel.com/content/www/us/en/processors/architectures-
software-developer-manuals.html.

[17] KIM, H., SESHADRI, S., DICKEY, C. L., AND CHIU, L. Evaluating
phase change memory for enterprise storage systems: A study of caching
and tiering approaches. ACM Transactions on Storage (TOS) 10, 4
(2014), 15.

[18] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H., AND
SCHWARZ, P. Aries: a transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM
Trans. Database Syst. 17, 1 (Mar. 1992), 94–162.

[19] MORARU, J., ANDERSEN, D., KMAINSKY, M., BINKERT, N., TOLIA,
N., MUNZ, R., AND RANGANATHAN, P. Persistent, protected and
cached: Building blocks for main memory data stores. In CMU Parallel
Data Lab Trechnical Report, CMU-PDL-11-114 (Dec. 2011).

[20] NARAYANAN, D., AND HODSON, O. Whole-system persistence. In
Proceedings of 17th International Conference on Architectural Support
for Programming Languages and Operating Systems (2012), ACM Press,
pp. 401–410.

[21] OUSTERHOUT, J. The case for RAMCloud. Commun. ACM 54, 7 (July
2011), 121–130.

[22] PARK, S., KELLY, T., AND SHEN, K. Failure-atomic msync(): A simple
and efficient mechanism for preserving the integrity of durable data. In
Proceedings of the 8th Eurosys (2013), pp. 225–238.

[23] PAVLO, A. Py-tpcc. In https://github.com/apavlo/py-tpcc.
[24] PELLEY, S., CHEN, P. M., AND WENISCH, T. F. Memory persistency.

In ISCA’14 (2014), pp. 265–276.
[25] QURESHI, M. K., SRINIVASA, V., AND RIVERS, J. A. Scalable high

performance main memory system using phase-change memory tech-
nology. In Proceedings of 36th International Symposium on Computer
Architecture (2009), ACM Press, pp. 24–33.

[26] SATYANARAYANAN, M., MASHBURN, H. H., KUMAR, P., STEERE,
D. C., AND KISTLER, J. J. Lightweight recoverable virtual memory.
ACM Trans. Comput. Syst. 12, 1 (Feb. 1994), 33–57.

[27] SHALEV, O., AND SHAVIT, N. Split-ordered lists: Lock-free extensible
hash tables. J. ACM 53, 3 (2006), 379–405.

[28] TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC-C
Benchmark Version 5.11. http://www.tpc.org/tpcc/.

[29] VENKATRAMAN, S., TOLIA, N., RANGANATHAN, P., AND CAMP-
BELL, R. H. Consistent and durable data structures for non-volatile
byte addressable memory. In Proceedings of 9th Usenix Conference on
File and Storage Technologies (2011), ACM Press, pp. 61–76.

[30] VOLOS, H., TACK, A. J., AND SWIFT, M. Mnemosyne: Lightweight
persistent memory. In Proceedings of 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems (2011), ACM Press, pp. 91–104.

[31] WU, X., AND REDDY, A. L. N. Scmfs: a file system for storage class
memory. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (New York,
NY, USA, 2011), SC ’11, ACM, pp. 39:1–39:11.

[32] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND JOUPPI, N. P. Kiln: Clos-
ing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (New York, NY, USA, 2013), MICRO-
46, ACM, pp. 421–432.

[33] ZHAO, J., LI, S., YOON, D. H., XIE, Y., AND JOUPPI, N. P. Kiln: Clos-
ing the performance gap between systems with and without persistence
support. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (New York, NY, USA, 2013), MICRO-
46, ACM, pp. 421–432.

[34] ZHAO, P., ZHAO, B., YANG, J., AND ZHANG, Y. A durable and energy
efficient main memory using phase change memory technology. In
SIGARCH Comput. Archit. News (2009), ACM Press, pp. 14–23.

