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Abstract—The traditional usage pattern for NAND flash memory
is the program/erase (P/E) cycle: the flash pages that make a
flash block are all programmed in order and then the whole flash
block needs to be erased before the pages can be programmed
again. The erase operations are slow, wear out the medium,
and require costly garbage collection procedures. Reducing their
number is therefore beneficial both in terms of performance
and endurance. The physical structure of flash cells limits the
number of opportunities to overcome the 1 to 1 ratio between
programming and erasing pages: a bit storing a logical 0 cannot
be reprogrammed to a logical 1 before the end of the P/E cycle.

This paper presents a technique to minimize the number of
erase operations called extended P/E cycle. With extended P/E
cycles, the flash pages can be programmed many times before
the whole flash block needs to be erased, reducing the number of
erase operations. We study the applicability of the technique to
Multi Level Cell (MLC) NAND flash chips, and present a design
and implementation on the OpenSSD prototyping board. The
evaluation of our prototype shows that this technique can achieve
erase operations reduction as high as 85%, with latency speedups
of up to 67%, with respect to a FTL with traditional P/E cycles,
and naive greedy garbage collection strategy. Our evaluation leads
to valuable insights on how extended P/E cycles can be exploited
by future applications.

I. INTRODUCTION

NAND flash memory is currently the solid state technology
most widely used in storage systems, mainly packaged as
Solid State Drives (SSD). It offers great read and write
performance, and a low power consumption. Despite these
substantial improvements relative to hard disk drives (HDD),
the gap in cost per gigabyte still limits the adoption of SSDs as
replacements for HDDs. Flash manufacturers try to drive down
costs by storing more bits per flash cell to increase its density,
introducing Multi Level Cell (MLC) flash. This technology
uses cells with 4 or 8 states (respectively 2 or 3 bits per cell),
as opposed to Single Level Cell (SLC) flash, which has 2
states (1 bit per cell). In this paper we focus on MLC chips
with 4 states which are the most common in both consumer
and enterprise SSDs.

Every state is characterized by a threshold voltage (Vth). When
more bits are packed in a flash cell the Vth margins between
different states are reduced and the processes required to detect
the difference need to be more precise, and consequently
become slower and more prone to errors. Therefore, while
flash density increases rapidly, all other critical metrics –

performance, endurance, and data retention – decrease at
a higher pace. The metric showing the steepest and most
alarming decline is the endurance. A recent study on 45 flash
chips shows that each additional bit per flash cell reduces the
expected lifetime by up to 20x [1].

The major cause of the limited lifetime in flash technology is
the cell wear out caused by the erase operation. This operation
is required to bring the flash cells to their initial state, which
corresponds to the lowest Vth. Since a program operation can
only increase the Vth of a cell, the cell must be erased before
being programmed again, so that the cell can be set to an
arbitrary state. Hence, the traditional usage of flash memory in
the program/erase cycles (P/E cycles). An approach to reduce
the erase operations is that of reprogramming the flash bits
without erasing them first, sacrificing the possibility to reach
states with lower Vth. In this paper we refer to this technique
as extended P/E cycles because it allows multiple program
operations per cycle. Theoretical studies and simulations of
this approach have been presented in [2]–[4].

Performing multiple program operations per cycle has the
constraint that the reprogrammed cells cannot be set to an
arbitrary value. The previous work in this area is based on the
assumption that flash cells can be safely programmed multiple
times as long as the bits are flipped in a single direction (e.g.
1→0). In this paper we refer to this assumption as the write-
once memory constraint (WOM constraint), and to data that
complies with it as WOM compatible. The WOM constraint
was based on the behavior of punched cards and optical disks,
but applies to today’s flash SLC chips as well because they
have only two states. Previous work shows how to achieve
WOM compatible data patterns through encodings [5], or
specialized data structures [3].

However, the WOM constraint can not be applied directly to
MLC flash, because every cell is characterized by 4 states,
encoded into 2 bits. Therefore, when a bit is reprogrammed,
the state of the flash cell is modified, possibly corrupting the
value of the other bit. This phenomenon happens also when
the bits are flipped according to the WOM constraint, and is
called program disturbance [6].

In this paper we address the applicability of extended P/E
cycles to MLC flash. Our main contribution is the identification
and definition of the additional constraints imposed by MLC
technology, which we refer to as the practical MLC WOM
constraints. We present these constraints in a state diagram.
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Fig. 1. Distributions of threshold voltages for SLC and MLC. Each
distribution shows the logical bits that it represents. R0, R1, R2, R3 are the
read points. Due to wear out the Vth distributions change over the lifetime of
a cell. A cell becomes unreadable when the distributions cross the read points.

While WOM compatible MLC reprogramming has been dis-
cussed in [6], to the best of our knowledge this is the first
presentation of such a diagram with detailed information of
all possible state transitions. We believe that this tool will
be useful to system designers and coding theorists for further
optimizations of the flash utilization. In this work we chose
to use only the WOM compatible state transitions to design a
Flash Translation Layer (FTL) that uses extended P/E cycles
without sacrificing flash capacity. All previous FTL designs
were based on SLC flash [2], or on simulations that did not
consider the MLC constraints [4], [7]. We implemented and
evaluated our FTL design using the OpenSSD platform [8],
which is an experimental kit for SSD design and development
equipped with 35 nm MLC chips.

The rest of this paper is structured as follows: Section II intro-
duces the main concepts concerning flash and FTLs, and gives
the background on WOM codes and WOM-compatible data
structures. Section III presents the state diagram for a typical
MLC flash cell. Section IV describes the FTL implementation,
and Section V presents its evaluation. Section VI presents the
related work, and Section VII concludes.

II. BACKGROUND

A. Flash Operations

A flash chip consists of an array of cells. Each cell is a
transistor with a floating gate that can retain electrons. The
cell’s state depends on the number of electrons in the floating
gate because they hinder the normal behavior of the transistor,
increasing the threshold voltage (Vth) required to activate it.
Therefore, a cell’s state can be determined by probing the
voltage required to activate the transistor.

The floating gate’s electron population can be altered with two
operations: the flash program operation injects new electrons,
while the erase operation depletes the floating gate completely.
Vth can be probed with the read operation. The cells are read
and programmed in pages of size ranging from 8 KB to 32 KB,
and are erased in blocks of 2 MB to 4 MB.

Program operations can only increase the cell’s state, therefore
any attempt to reprogram a page will fail if a cell’s state
should decrease as a result of the operation. In the general
case, in-place page updates are prohibited, and the pages must
be erased and then programmed again, hence the traditional
Program/Erase cycles (P/E) usage pattern.
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Fig. 2. Low and High pages in a block. The arrows show the couples that
share the same flash cells and are thus influenced when programming each
other.

B. SLC and MLC

Depending on the precision of the machinery necessary to
probe the threshold voltage, it is possible to distinguish be-
tween more states per flash cell. As shown in Figure 1, Single
Level Cells (SLCs) distinguish between 2 states, while Multi
Level Cells (MLCs) distinguish between 4 states. Therefore,
each SLC represents 1 bit of information, while each MLC
represents 2 bits.

Every MLC has 4 levels encoded into 2 bits. The two bits of
a MLC are mapped to two independently accessible logical
pages, called low page and high page. Therefore, when either
of these two pages is programmed, the Vth of the cell increases,
changing the cell’s state and possibly the value of the other bit.
However, the flash manufacturers guarantee that if the low page
is programmed first, and the high page later, the two operations
will be successful and will not influence one another.

Figure 2 shows the configuration of low and high pages in
the chips we analyzed. Grupp et al. presented an analysis of
different chips in [6] that shows that all the chips they tested
are configured in a similar way, if not identical. Note that, with
this configuration, programming the pages in order implies that
the low page is always programmed before the high page.

C. Flash Translation Layer

The Flash Translation Layer (FTL) is a dedicated firmware,
that runs on the controller of the SSDs, that is responsible for
managing the flash chips. It has to convert the host requests
into flash operations, and is optimized to handle the lack of
in-place updates, and the big size of erase blocks. It commonly
structures the available flash memory as a log of pages. The
in-place updates are avoided by appending the updated page
to the log. A mapping table is maintained by the FTL to keep
track of these page remappings.

The log structure requires garbage collection because the
remapping of pages leaves stale copies that accumulate during
the log lifetime. The garbage collection process scans the flash
for a victim erase block, copies the valid pages contained
therein to the end of the log, and erases the block. The victim
block selection affects performance because it determines how
much data has to be copied. The popular greedy strategy
chooses the block with the lowest amount of valid data [9].
Other strategies have been proposed, which consider the hot-
ness and age of the data [10].

D. OpenSSD

The platform we use to implement our prototype is
the OpenSSD prototyping kit that hosts an Indilinx



TABLE I. TWO GENERATIONS WOM CODE

Plain bits 1st gen 2nd gen
00 111 000
01 110 001
10 101 010
11 011 100

BarefootTMcontroller, and eight slots for custom flash mod-
ules [8]. Each module hosts four 64 Gb 35 nm MLC flash chips,
for a total of 32 GB of flash memory per module. The flash
chips have a page size of 32 KB, and erase blocks made of
128 pages (4 MB). Every page has 512 extra bytes referred to
as spare region. This region is meant to be used to store FTL
metadata. However, in the OpenSSD board, the spare region
is not directly accessible by the controller.

E. Bit Errors and ECC

During their lifetime, the flash cells are subject to wear-
out. The repeated injections and removals of electrons in the
floating gate ruin the physical structure of the cell, leading
to its malfunction. This causes bit errors in the flash pages.
Typically error correction codes (ECC) are used to improve
the reliability of flash.

The OpenSSD platform is shipped with a hardware accelerator
that transparently computes the ECC and stores it in the spare
region at each flash program operation. This behavior can not
be modified, and the spare region can not be accessed by the
controller. This ECC can correct up to 12 B per 512 B segment.
When the controller issues a flash page read operation the
hardware accelerator corrects the bit errors on the fly during
the operation. When the page contains more errors than can
be corrected, the hardware accelerator raises an incorrectable
error interrupt to the controller, and leaves the data untouched.

For the sake of the analysis presented in this paper it was
important to circumvent the ECC to observe the raw behavior
of the cells when using the extended P/E cycles. Unfortunately,
due to limitations of the OpenSSD board, we could not disable
the ECC protection when writing entire pages. We could,
however, disable the ECC protection when performing partial
page write operations of only 512 B. This limitation influenced
the set up of two experiments presented in this work: the
analysis of the reprogram operation in MLC (Section III), and
the bit error rate evaluation (Section V-A).

F. Page reprogramming in SLC

SLCs map the low Vth state to a logical 1, and the high Vth

state to a logical 0 (see Figure 1). Therefore, a page can be
reprogrammed with new data if all the bits are flipped in
the 1→0 direction, or are not modified, with respect to the
bits already contained in the page. We call this the WOM
constraint. The problem of updating data complying with the
WOM constraint has been tackled in two ways:

a) WOM codes: WOM codes, introduced by Rivest et al. [5],
offer redundant encodings organized in generations, where
the number of generations is the number of WOM compliant
updates allowed by the code. Table I shows a 2 generations
WOM code scheme that encodes bit pairs into 3 bit code
words. The 0s in each code word of a generation are a superset
of the 0s of all the different code words in the previous

generations. Therefore, every code word can always be updated
to a different code word of the next generation respecting the
WOM constraint.

b) WOM compatible data structures: some data structures can
be modified to perform WOM compatible accesses. Kaiser et
al. presented a B-Tree with log structured nodes with unsorted
entries [3]. The nodes are initialized with all bits set to 1. The
new entries are appended to the node, in the initialized area,
generating only 1→0 bit flips. Bloom filters [11] flip bits in
a single direction by construction and are WOM compatible
without need of modifications.

G. Program disturbance in MLC

Program disturbance is defined as the involuntary flipping of
one or more bits of a page, that happens as a consequence of
a program operation on a different page. Previous experiments
have shown that reprogramming MLC flash causes program
disturbance. In particular, Grupp et al. showed that reprogram-
ming the high page disturbs the bits of the respective low page.
On the other hand, reprogramming the low page does not affect
the high page [6].

III. PAGE REPROGRAMMING IN MLC

TABLE II. TRADITIONAL
Vth MAPPING

REPRESENTATION

Vth LB HB
Min 1 1

1 0
0 0

Max 0 1

In order to better understand the
implications of the reprogram
operation in MLC flash chips,
we extracted the cell’s state dia-
gram for a typical MLC, which
is shown in Figure 3. To the best
of our knowledge, this is the
first time that this information
is presented for MLCs. Previous
publications [3], [12], and the
flash manufacturers, show only
a tabular representation of the mapping (Table II). Despite
showing the same states, the tabular representation lacks the
transitions between them. These transitions are fundamental to
identify the program patterns leading to program disturbance
and data corruption.

The experiment we used to extract the diagram was performed
on the OpenSSD board. The procedure consisted of taking
a couple of connected low/high pages (see Figure 2) and
traversing every state transition by programming a single bit
belonging either to the low or the high page, and then reading
back the content of both pages. In order to correctly detect the
content after the transition, we needed to avoid any interference
of the ECC hardware accelerator of the OpenSSD board.
Therefore, we disabled it, and to do so we had to use the partial
write operations of 512 B (the only ones allowed). This was not
a problem because our goal was to program a single bit every
time. Once we extracted the complete diagram, we verified
it with full page write operations. Since the ECC could not
be disabled on full page operations, we made sure to overload
the ECC correction capacity by flipping more bits than it could
correct. The verification with full page operations performed
in this way confirmed the diagram.

Our first observation is that there are in fact 5 states rather than
4 because the order in which bits are programmed affects the
behavior of the cell in future program operations. Consistently
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Fig. 3. States of a MLC flash cell. Each state is labeled with the corresponding
bit values. Each transition represents a program operation either on the low
bit or on the high bit. The highlighted transitions cause data corruption.

with SLC chips, the cells in the Erased State are mapped to 1
on both bits, and the bits are cleared in the states with higher
Vth. Given this premise, ideally MLCs could be reprogrammed
using the WOM constraint, according to which programming a
0 is always safe. Unfortunately, some transitions – highlighted
in the diagram – break this assumption. In transition 6, the
low bit remains at 1 even though it is programmed to 0, and
in transition 11 this behavior is observed for the high bit.
Furthermore, transition 7 causes program disturbance when
programming the high bit to 0.

The use mode recommended by flash manufacturers accu-
rately avoids these problematic transitions. According to the
recommendation, the pages in the same erase block must be
programmed in order and each page can be programmed only
once. Because of the block organization shown in Figure 2,
programming the pages in order implies that the low page is
always programmed before the high page. The first program
operation hits the low page and uses transition 0 or 1. The sec-
ond program operation hits the high page and uses transitions
2, 4, or 5. All of these transitions are safe.

On the other hand, when we allow reprogramming operations
on all pages of a block, we assume that either of the pages
composing the pair, or both of them, might have been pro-
grammed before. Therefore, their cells can be in any state. In
this case it becomes very difficult to avoid the problematic
transitions.

Our second observation is that it is indeed possible to re-
program the low page, complying with the WOM constraint,
before programming the high page. In this way only transitions
0, 1, and 3 are used (note that the WOM constraint guarantees
that transition 3 is never used to program the low bit at 1).
These transitions are all safe. When the low page has been
reprogrammed it is still possible to program the high page one
single time, using transitions 2, 4, or 5.

The combination of WOM compliant data, and this program-
ming order ensures compatibility with the practical WOM
constraints offered by MLC, effectively enabling the extended
P/E cycles on MLC flash chips.

Based on these observations we propose a bimodal solution

where every block can be used as a write block or as an over-
write block. A write block is used following the manufacturers’
recommendations. An overwrite block is used according to
our second observation in two steps. In the first step, only
the low pages are used and reprogram operations are allowed.
Then, in the second step, the program access to the low pages
is forbidden, and the high pages are programmed in order
one time. We call this second step the block seal operation.
Essentially the sealed overwrite block becomes a write block
where only the high pages can be used. The low pages can
still be read and the data they contain will not be corrupted.

IV. FTL IMPLEMENTATION

In this section we present the FTLs we implemented on the
OpenSSD board. The implementation is based on the design
choice of leaving to the application the responsibility of de-
ciding what data is WOM compliant. Therefore we augmented
the SATA interface with the SATA overwrite command, which
is used by the applications to write WOM compliant data. In
our prototype this command is implemented by adding an extra
bit to the logical block address (LBA) of the standard SATA
write command, which is interpreted by the FTL as a switch
between the write and the overwrite commands.

In the following we present the FTLs we implemented. The
baseline FTL does not use the extended P/E cycles, and is
used as the baseline for the evaluation. The seal FTL is a FTL
which uses the extended P/E cycles and uses the block seal
operation to handle the constraints of the overwrite blocks.

A. Baseline FTL

This FTL does not use the extended P/E cycles. Therefore
whenever it receives a SATA overwrite command it considers
it as a normal SATA write command. It uses a page-associative
mapping table, which is large compared to mapping tables of
other schemes (e.g. block associative, hybrid, and DFTL map-
ping schemes [13]–[15]). This scheme ensures maximal block
utilization and has steady performance which we required as a
reference point. However, the P/E cycle extension is orthogonal
to the mapping granularity and can be applied to other mapping
FTL schemes as well.

The flash pages are organized as a log, as described in
Section II. The pages are updated out of place, appending the
newer version to the end of the log, and updating the mapping
table. The older copies of updated pages are reclaimed by
garbage collection. The victim block to be cleaned is selected
with the greedy strategy which always chooses the block with
the lowest number of valid pages. An efficient priority queue
keeps the full blocks ordered by the number of valid pages
contained therein, and the FTL maintains one queue per bank.
The victim block can therefore be found in constant time. Each
full block has an inverse mapping table stored in its last page.
This table stores the logical addresses of all the pages stored
in the block which are used during garbage collection to index
the FTL mapping table and find which pages still contain valid
data.

The current prototype does not perform any kind of progressive
background cleaning because the OpenSSD ARM controller
has only one core that is busy managing the new requests:
using it to perform background cleaning stalls the incoming
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Fig. 4. Life cycle of blocks in the seal FTL. Clean blocks can be chosen
as either write blocks or overwrite blocks. For every bank, the FTL maintains
one active write block and one active overwrite block, with a pointer to the
next free page. The low pages in all the overwrite blocks are reprogrammable
until they are sealed. In the picture the active write block is an overwrite block
which has just been sealed. The pointer to the next write page will point only
to high pages. The garbage collection process can be performed both on full
write blocks and full overwrite blocks.

request queue and harms performance. The only optimization
we implemented consists of polling the priority queues of each
idle bank in search of completely invalid blocks. These blocks
can be erased with the asynchronous erase command offered
by the flash chips while processing every SATA request. To
implement this optimization the queue has been augmented
with the ability to return the number of valid pages.

The garbage collection procedure is triggered whenever a
bank contains only one clean block. The victim is chosen
based on the priority queues described before. The garbage
collection copies all the valid pages to the end of the log.
We let the garbage collection copy valid data to other banks
so that the whole routine is accelerated by parallelizing the
program operations. The program operations are asynchronous,
although the temporary DRAM buffers must be locked until
the operation completes. The identification of the valid pages
is sped up by the reverse mapping table stored in the last page
of every full block.

The implementation of the garbage collection subroutine that
copies the valid pages poses an interesting design choice. The
flash chips offer the copyback operation, which is able to copy
one entire page to a different page within the same flash bank.
Since the data never leaves the bank, this operation is faster
than reading a page and programming it to a new location.
However, we did not employ the copyback operation for two
reasons. First, we hide the cost of the program operation by
running it asynchronously on the other banks. Second, when
the copyback operation is used, the data never leaves the bank,
therefore the ECC is neither checked on read nor recomputed
on write. Any error will be copied to the new page weakening
the overall protection.

B. Seal FTL

This FTL uses the extended P/E cycles, therefore it has been
extended with the notion of overwrite blocks as described

0613

pageblockbankoverwrite bit
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Fig. 5. Physical address stored in the mapping table for a SSD configured
with 32 banks and 128 blocks per bank.

is Section III. Traditionally, the flash blocks exist in three
states. They can be clean, full, or be the current active block
where incoming data is written to. The seal FTL instead
distinguishes between two main categories of flash blocks:
write blocks and overwrite blocks. Therefore, blocks can exist
in five different states: clean, full write block, full overwrite
block, current active write block, and current active overwrite
block (see Figure 4). In the full overwrite blocks and the active
overwrite block only the low pages are used, therefore the page
reprogram operation is allowed.

Overwrite Operation

For each request identified as a SATA overwrite command
the FTL searches the corresponding physical addresses in the
mapping table. The physical addresses, represented in Figure 5,
identify a unique (bank, block, page) tuple. In addition, one bit
is reserved for pages residing in full or active overwrite blocks
(filled with a checkered pattern in Figure 4). When this bit is
set the FTL can proceed reprogramming the page directly in
its current physical page. If the bit is not set, or if it is the first
time that the application addresses the page, the FTL uses the
next low page in the active overwrite block.

The FTL maintains one reprogram counter per page in the
DRAM. It is possible to set a limit to the reprogram operations
per page. When a reprogram operation hits a page that reached
the limit, the FTL uses the next low page in the active overwrite
block instead, and decreases the number of valid pages for that
block in the priority queue.

Overwrite Block Sealing

When the FTL needs a new block and there is only one block
left in the clean pool, it can either trigger garbage collection or
seal an overwrite block to use its high pages. We will discuss
the empirical policy used to take this decision later, here we
explain how the seal operation is implemented.

Once a block is sealed, its pages cannot be reprogrammed
anymore. If a future overwrite operation hits one of the pages
contained in the block, the FTL will be forced to find a
new physical location for it, losing the overwrite potential.
Therefore, the FTL attempts to select the block whose pages
are least likely to be overwritten in the future. To do so,
the FTL maintains a priority queue, identical to the one used
for write blocks, to find the overwrite block with the lowest
amount of valid pages in constant time. This block is chosen
as a victim. The rationale behind this design is that, having
less valid pages, the probability for a future overwrite hit is
lower.

When the block is chosen, the FTL needs to clear all the
overwrite bits in the corresponding physical addresses (see



Figure 5). To find them quickly the FTL keeps an inverse
mapping table containing the logical addresses of all pages
in the block. This inverse mapping table is stored in the
last low page of the block, after all the other low pages
are programmed. During the seal operation, the FTL reads
the inverse mapping table and scans the FTL mapping table
clearing all the overwrite bits of the pages that are still mapped
to the block.

Finally, the FTL points the next write page pointer to the
first high page in the block, and sets the flag that makes the
next write page pointer increase in steps of 2 (according to
the mapping shown in Figure 2). After this point the block
is considered the active write block and its pages cannot be
reprogrammed.

Garbage Collection

The garbage collection procedure is similar to the one used in
the baseline FTL. Preferably the victims are full write blocks
with a few valid pages, however the procedure works on full
overwrite blocks, too, with the only difference that the inverse
mapping table is located in the last low page, i.e. page 125
(see Figure 2), instead of the last high page. The inverse
mapping table for full overwrite blocks has invalid entries
corresponding to all the high pages, therefore the garbage
collection procedure does not perform any operation on them.
The following section explains when the garbage collection is
triggered on full overwrite blocks.

Victim Selection Policies

The main tool for victim selection are the two priority queues
for write and overwrite blocks. The preferred victims are full
write blocks with few valid pages because they have been used
completely, i.e. all the pages have been programmed, and the
cleaning cost consists of copying the few valid pages they
contain. In contrast, the full overwrite blocks should be left in
that state for as long as possible, because their pages can be
reprogrammed in the future.

However, if only the full write blocks are garbage collected,
the full overwrite blocks accumulate, reducing the number of
write blocks. Consequently, the garbage collection invocations
become more frequent, and the full write blocks are reclaimed
earlier, when they still contain a high number of valid pages.

To prevent this, the FTL can choose to seal a full overwrite
block and use its high pages, instead of triggering a garbage
collection. This choice is made when the victim in the over-
write priority queue has less valid pages than the victim in the
write queue. This policy ensures that garbage collections do
not have to copy too much data. An overwrite block can, in
fact, have a maximum of 63 valid pages (the last low page is
reserved for the inverse mapping table). Therefore, this is the
upper bound for data copying during garbage collection.

The seal operation is not a solution when the FTL needs to
allocate a new active overwrite block. This requires an erased
block, and a garbage collection operation is inevitable. To
prevent using garbage collection on full write blocks with
many valid pages, the FTL can choose to select a full overwrite
block as victim instead, if it has less valid pages. However, that
means that the high pages are erased without ever being used.
We have experimented with two strategies for victim selection:

• Comparing only the number of valid low pages in
the overwrite blocks, and consider all the high pages
(empty) as invalid.

• Comparing the number of valid low pages plus the
number high pages.

The second option attempts to preserve the overwrite block
from being reclaimed, taking into account the fact that the
high pages could be written after an eventual seal operation.
Section V presents an evaluation of both strategies.

ECC

The ECC hardware accelerator of the OpenSSD platform has
a fixed behavior that can not be modified. When a page is
programmed for the first time, the ECC is computed and stored
in a fixed location of the spare area of the flash page. When
the page is reprogrammed, a new ECC is computed and stored
in the same location of the spare area. Since the ECC is not
WOM compliant, this results in a corrupt ECC.

The OpenSSD platform does not offer any possibility to
modify this behavior. Therefore, our prototype does not offer
data protection on reprogrammed pages. However, we envision
two possible solutions to this issue:

• Encode the data with a WOM code which offers error
correction capabilities [16].

• Use the spare region as append-only log, and append
newer ECCs after the old ones.

In our evaluation the FTL enforced a per page limit of 8
overwrites, to simulate 8 ECCs appended in the spare region,
e.g. 8 ECCs of 64 B can be appended in the 512 B spare region
offered by the flash chips shipped with the OpenSSD. Note
that we did not disable the ECC accelerator when running the
evaluation, therefore the ECC computation still happens, and
its delay is considered in our experiments. The FTL ignores the
ECC failure interrupts that occur when reading reprogrammed
pages.

V. EVALUATION

A. Impact of Extended P/E Cycles on Lifetime

In this section, we evaluate how the extended P/E cycles
technique impacts the lifetime of a flash cell. The lifetime is
expressed as the number of P/E cycles that a cell can sustain
before becoming unusable. The bit error rate (BER) grows
with repeated P/E cycles, to the point where the errors found
in a page are too many to be corrected with ECCs. At that
point the page can no longer be used safely.

The traditional BER analysis to evaluate the lifetime of a
cell consists of the repetition of P/E cycles on a single flash
block. During the program, phase every page in the block is
programmed. During the erase phase, the entire block is erased.
The content of the block is checked for errors after every phase,
and the number of errors is used to compute the BER. This
analysis has been performed by different research groups on
different flash chips [1], [2], [6], [17].

To evaluate the effect of the extended P/E cycles on the flash
lifetime, we modified the traditional BER analysis to program
the pages multiple times in each program phase.
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sustained by the same block, with 8 page reprograms per cycle. Every line
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fastest to wear.

According to the findings of Section III and the FTL architec-
ture described in Section IV-B, we split the program phase of
each cycle into two sub-phases: before and after block sealing.

• Before block sealing we program the low pages in
random order until we have reprogrammed each page
8 times.

• After the block sealing we program only the high
pages one time in order.

In this experiment, we chose to evaluate extended P/E cycles
with 8 page reprograms. We assume that it is not necessary to
reprogram pages beyond this limit because the techniques used
to generate WOM compatible data show diminishing returns
for higher number of reprograms [3].

After every program operation, the entire block is checked
for errors against a golden copy stored on a separate drive.
The golden copy is updated, when an error occurs, to avoid
counting the same error again in the next iteration.

Ideally, this analysis would be performed with all error
protection mechanisms disabled, so that the BER observed
corresponds to the real reliability characteristic of the flash
chip. Unfortunately, we could not disable the ECC when
writing entire pages. To exclude the ECC protection from the
BER measurement, at the beginning of the program phase we
programmed all low pages with all 1s, and then flipped 50%
of the bits with the first reprogram operation. This procedure
overloads the error correction capabilities of the ECC used
by the OpenSSD, and therefore the following read operation
returns the data unmodified and triggers an ECC fail interrupt,
which is ignored.

The data reprogrammed is artificially generated to be overwrite
compatible with what was programmed before. At every step
the previous content of the page is used as a starting point,
and the bits with a value of 1 are flipped to 0 with a 50%
probability to simulate an update involving half of the bits
which are still usable. This is the characteristic of the bit flip
pattern expected when using WOM codes.

Figure 6 shows the result of the experiment. Every line in the
graph represents the BER for a different low page. Consistently
with the findings of Jimenez et al. [17], we found different

BER characteristics for different pages. In the figure, we
highlighted the page which wears-out fastest. These pages
show a sharp increase of the BER after 9000 extended P/E
cycles, growing rapidly to 10−3. However, at that point the
bulk of the pages show BER of 10−4 in average. This result
is in line with the traditional analysis presented in previous
studies, on similar chips. Therefore, we deduce that, using the
page program order we suggested and the block seal operation,
it is possible to apply the extended P/E cycles to MLC flash
without impact on the BER.

As a corollary of this result, we deduce that the erase opera-
tions are the major cause of wear-out because increasing the
number of program operations per cycle, keeping the same
number of erase operations, does not have significant impact
on the BER. Unfortunately, we could not compare this result
with the traditional BER analysis performed on the same chip
because we could not disable the ECC protection on the first
program operation.

In 2009, Grupp et al. [6] published an extensive analysis
of different chips finding a large variation among different
manufacturers. They observed a sharp BER increase after
9,000 P/E cycles, which is in line with our experiment. Before
that point all the MLC chips they tested had BER below 10−5,
while in our case most pages have BER of 10−4. However, the
same group published a more recent study [1] in which they
underlined how, as the feature size of the flash cells scales
down, performance and reliability gets worse. In particular,
for 35 nm technology, corresponding to our flash chips, the
average BER they measured is 10−4, perfectly in line with
our experiments.

The only other experiment with repeated program operation
per erase cycle, to the best of our knowledge, is the one
presented by Jagmohan et al. in [2]. They found BERs ranging
from 10−9 to 10−6, however their results cannot be compared
with ours because they were performed on SLC flash, which
is more robust than MLC.

B. FTL Evaluation

In this section, we present experiments comparing the two
FTLs presented in Section IV: the baseline FTL and the seal
FTL.

The goal of our analysis is to evaluate how well the seal
FTL can delay sealing the overwrite blocks to exploit the
extended P/E cycles. Furthermore, we examine if the presence
of the overwrite blocks hinders the performance of the FTL.
Clearly, the overwrite command places a high burden on the
FTL and should not be used lightly. Allocating an overwrite
block, while the FTL is under heavy load, is more challenging
than allocating a write block. While the latter can be obtained
efficiently by sealing an overwrite block, the first requires a
garbage collected block. The results we present here identify
the characteristics of the workloads that can overcome these
drawbacks and benefit from the extended P/E cycles.

OpenSSD configuration

For the experiments presented in this section we configured the
OpenSSD to use 32 banks with 64 blocks of addressable space.
Additionally, every bank has 8 blocks of overprovisioning
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space. These parameters sum up to a total of 8 GB of address-
able space with 1 GB of overprovisioning space. The OpenSSD
has limited DRAM, enough to map 8 GB of addressable space
using the page mapping scheme we implemented. We did not
use techniques to compress the mapping table, such as map
caching [14] or hybrid mapping [15], because we focus here
only on the effects of the extended P/E cycles.

Benchmark description

We used a parametric benchmark that represents a dataset
partitioned into an overwrite region and a write region, as
depicted in Figure 7. The dataset size for this evaluation has
been fixed to 6 GB, that represets 75% of the SSD capacity.
The data in the overwrite region is generated artificially to
be WOM compatible, and can be written to the flash using
the SATA overwrite command, while for the write region
the SATA write command must be used. The workload is
composed of write operations within the dataset size. Each
write operation is aligned on a 32 KB boundary and has size
32 KB, which is the same page size supported by the OpenSSD
controller. Thus each operation corresponds to exactly one
flash page write, avoiding any misalignment effect. The write
operations hit the overwrite or the write regions according
to the parameters described below. Once one of the two
regions is selected, the address inside it is chosen with uniform
distribution across the entire region.

The benchmark characteristics are controlled by two parame-
ters.

• The overwrite region percentage parameter controls
the size of the overwrite region. It is expressed as
a percentage of the dataset size. In this section we
present results for overwrite region percentages vary-
ing from 5% to 50%.

• The overwrite skewness controls the probability that
an operation hits the overwrite region. In this section
we present results for skewness of 40%, 60%, and
80%.

Every run of the benchmark starts with a completely empty
SSD. We warmup the SSD by writing the entire write region
one time sequentially, followed by the overwrite region, also
written one time sequentially. The overwrite region is written
using the SATA overwrite command starting at warmup.

The warmup is followed by the main part of the benchmark
where we write 12 GB, i.e. twice the dataset size, with 32 KB
operations distributed according to the benchmark parameters
as described above. For each set of parameters we generated
one trace, and run it against both FTLs.

The benchmark uses artificial data. Every write operation
writes random data containing 50% 0s and 50% 1s to the SSD.
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Fig. 9. Amount of data moved during garbage collection operations in GB
for different victim selection policies. Seal-preserve FTL refers to the FTL
which counts the empty high pages as valid. Seal FTL refers to the FTL
which considers the empty high pages as invalid.

The overwrite operations use this same data pattern for the
first time. Later operations on the same address use overwrite
compatible data generated by flipping the bits still at 1 into 0
with a 50% probability.

Preserve unused High Pages during GC

The first FTL design decision we evaluate is how to count
the unused high pages contained in the full overwrite blocks
when selecting a garbage collection victim. As explained in
Section IV we examine two approaches: preserving the high
pages by counting them as containing valid data, or not
preserving them by considering them as invalid. In the first
case, the goal is to increase the probability that a write block
is chosen as victim, thus putting a premium on the reuse of
the overwrite block high pages.
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run on the extended P/E enabled SSD.

The graphs presented in Figure 8 and 9 show, respectively,
the average latency per operation and the total amount of data
moved by garbage collections in three cases. The lines labeled
as seal-preserve FTL refer to the FTL counting the empty high
pages as containing valid data. The FTL which counts the high
pages as invalid is simply labeled as seal FTL because it shows
the best behavior and is the one considered in the rest of the
evaluation.

The first thing to observe is that both FTLs show the same
trend: they offer the biggest benefit, with respect to the baseline
FTL, when the overwrite region percentage is low, and reduce
their performance with a growing overwrite region percentage.
The seal FTL is better than the seal-preserve FTL, for all over-
write skewness values, when the overwrite region percentage is
smaller than 20%. Above that watermark the seal-preserve FTL
has better performance than the seal FTL for high overwrite
skewness (significantly better for 80% overwrite skewness).
However, when the overwrite percentage grows above 30%
the performance of the seal-preserve FTL degrade so much
that the OpenSSD becomes unresponsive causing the crash of
the benchmark run. This is caused by the fact that when the
overwrite region percentage grows, the number of full write
blocks decreases, therefore they contain more valid pages. At
this point the seal-preserve FTL does not seal the full overwrite
blocks because considers all their pages as valid, and therefore
triggers garbage collections on full write blocks containing
many valid pages. Every garbage collection procedure cleans
a few pages, and therefore the FTL has to invoke the garbage
collection every few operations, increasing the latency to the
point where the device becomes unresponsive.

Our conclusion is that the seal-preserve FTL is very sensitive
to the parameters of the workload. It is the better choice for a
restricted set of workload characteristics, i.e. between 20% and
30% overwrite region percentage in our parametric workload,
and overwrite skewness higher than 60%. It is possible to fine
tune the seal FTL to switch to the seal-preserve policy in those
conditions, however in the rest of the evaluation we consider
only the seal FTL.
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Fig. 11. Amount of data (GB) moved by garbage collection procedures
during the entire benchmark run.

Performance

Figures 10 and 11 show the performance of the baseline FTL
compared to the seal FTL. The graphs show, respectively, the
average write latency and the amount of data moved during
the garbage collection operations. The results show that the
latency depends directly on the data copied during garbage
collection.

The first thing to notice in these graphs is that the trend of both
metrics holds for different overwrite skewness values. With
higher overwrite skewness the seal FTL exploits more page
reprograms on the low pages of the overwrite blocks.

However, the parameter that mostly affects performance is the
overwrite space percentage. When this percentage is low, the
extended P/E cycles result in a great performance benefit.
We measured the highest benefit with an overwrite space
percentage of 5% and an overwrite skewness of 60%. In those
conditions, the seal FTL exhibits a reduction of 67% in latency
and 80% in the amount of data copied during garbage collec-
tion. With higher overwrite skewness, the extended P/E cycles
technique is even more effective, but the benefit compared to
the baseline FTL is not as big.

When the overwrite space percentage increases, the perfor-
mance of the seal FTL decrease rapidly. To explore the reasons
for the performance drop we extracted and examined two
additional metrics.

Distance between overwrite operations: Figure 12 shows the
distribution of the distances between two overwrite operations
on the same location. The distances are measured as GB
that are written between the two operations. This metric is
very similar to the cache reuse distance used to evaluate
caching effectiveness. Ideally, when a page is written in an
overwrite block, the FTL should be able to allocate space
equal to this distance in other blocks, before sealing it. This
way the page can be reprogrammed. An important role in
this regard is played by the overprovisioning space and the
portion of addressable space not occupied by the dataset. In
this evaluation, the overprovisioning space is set to 1 GB,
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while the unoccupied portion is 2 GB. The graph shows that
in the scenario with 5% overwrite space the distance is well
below the 3 GB watermark. When the distance approaches or
surpasses the watermark, the performance drops. This metric
is extremely important for applications willing to exploit the
extended P/E cycles. The access pattern must be analyzed to
ensure that the distance between overwrite operations presents
a favorable profile.

Page reprogram percentage: The second metric, plotted in
Figure 13, is the percentage of overwrite operations that are
successfully translated by the FTL into page reprograms.
Recall that not all the overwrite operations result in page
reprograms. For instance, when the overwrite blocks are
sealed, the pages contained therein can not be reprogrammed.
Another cause of missed reprogram is that after 8 consecutive
reprogram operations to the same page, the page is reallocated
to a different overwrite block, to simulate the ECC limitations,

0
1
2
3
4
5
6

Overwrite skewness = 40%

0
1
2
3
4
5
6

#
 E

ra
se

 o
p
s 

(1
0

0
0

)

Overwrite skewness = 60%

5 % 10 % 15 % 20 % 25 % 30 % 50 %
Overwritable region percentage

0
1
2
3
4
5
6

Overwrite skewness = 80%

Baseline

Seal FTL

Fig. 14. Number of garbage collection operations, equivalent to the number
of erase operations.

as described in Section IV. This graph, according to the
other metrics, shows that when the overwrite space percentage
increases it is more difficult for the FTL to reprogram pages.
The overwrite operations are spread across a higher portion
of the data set, and require more overwrite blocks. In turn,
the accumulation of overwrite blocks reduces the number of
the write blocks that will contain, in average, more valid data.
As a consequence of this increase, more overwrite blocks are
prematurely chosen as garbage collection victims, because the
overwrite blocks can have at maximum half the valid data
contained in the write blocks (only half pages are used before
sealing). When the write blocks have more than half valid
pages, the overwrite blocks are necessarily chosen as victims.

Endurance

Figure 14 shows the number of garbage collection operations.
The results show the same trend observed in the performance
evaluation, therefore the same considerations discussed before
apply here. Every garbage collection invocation corresponds
to one block erase operation. The FTL does not perform erase
operations in any other circumstance. Therefore, a reduction in
garbage collections causes a direct increase in endurance, since
the erase operations are the major cause of wearout (as deduced
from our BER analysis). We observed a garbage collection
reduction of 71% and 85% with overwrite skewness of 60%
and 80%, respectively, when the overwrite space percentage is
5%.

It is interesting to note that the stark reduction of the total
amount of data copied by garbage collection shown in Fig-
ure 11 is caused only by the reduction of the number of garbage
collection operations, and not by a reduction of data moved by
each of them. Figure 15 shows the amount of data copied in
average by single garbage collection operations. The baseline
FTL shows a decreasing trend with a growing overwrite region
percentage, while the seal FTL shows an increasing trend
and exceeds the baseline FTL starting with overwrite region
percentage of 10% for overwrite skewness of 80%. However,
with the same overwrite skewness, the total amount of data
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copied during garbage collection by the seal FTL meets and
exceeds the baseline FTL only when the overwrite region
percentage is greater than 25%. Between these two overwrite
region percentages the benefit of the seal FTL is obtained only
from the sheer reduction of garbage collection invocations.
Similar considerations apply to the other overwrite skewness
values.

Read performance

The read performance is not affected by the extended P/E
cycles, as they are implemented in this work, because the
size of the data is not modified by the FTL and there is no
additional step involved (e.g. no WOM encoding is performed
within the FTL). Thus, the analysis presented here does not
consider read operations. However, if the application requires
some space overhead or additional steps to generate WOM
compatible data then the read and write performance may be
affected. The evaluation of such effects is out of the scope of
this work.

VI. RELATED WORK

FTL development received considerable attention in academic
literature after the appearance of the first commercial SSDs.
Our technique is orthogonal to the mapping technique and
therefore can be applied to most schemes [14], [15], [18],
[19]. In our implementation we opted for a plain page-mapped
scheme to avoid the effect of a particular FTL optimization on
the results.

The FTL we presented is designed to accept overwrite com-
mands through the SATA interface. Therefore, it delegates
the responsibility for generating WOM compatible data to the
application. Other approaches have been proposed: Odeh at al.
and Yadgar et al. presented designs where the FTL internally
uses WOM codes to perform reprogram operations, referred
to as second writes [4], [7].

Applications using WOM codes [2], [5] can directly use
our FTL implementation. However, as shown by our exper-
iments, the highest benefit is obtained when overwrites are

concentrated in a small portion of the dataset. Therefore, it is
advisable to use WOM codes on a restricted and frequently
updated subsection of it, as in [4], [7].

The reprogram operation was discussed by Jagmohan et al.,
Kaiser et al., Odeh et al, and Yadgar et al. in [2]–[4], [7].
However, those studies are based on simulations and do not
attempt to implement the operation on a real prototype. To the
best of our knowledge this work is the first attempt at doing so.
Furthermore Jagmohan et al. discuss the reprogram operation,
referred to as eraseless program, only in SLC flash chips.

The diagram presented in Figure 3 is consistent with the
findings of Grupp et al. presented in [6]. Their experiments
consisted of erasing a block and repeatedly programming half
of one page to 0. They present two results, which can be
explained by the transitions outlined in our diagram:

• reprogramming the low pages does not disturb other
pages. This case corresponds to one first use of
transition 1, and then repeated uses of transition 3 with
the intent to program the low bit to 0. Both transitions
are safe, and therefore no error was detected.

• reprogramming the high page disturbs the bits of the
corresponding low page after two reprograms. This
case corresponds to one first use of transition 2, that
is safe, and then one use of transition 7 which is
unsafe because it causes program disturb on the low
bit. Therefore, the errors detected are in line with our
state diagram.

Kaiser et al. present a B-Tree that uses unsorted nodes and
append new key-value pairs in the node. This approach allows
to write the nodes with the SATA overwrite command, because
appending is by definition WOM compatible. This B-Tree
could directly be stored on a SSD with the seal FTL. In the
original publication the authors considered a simplified model
where every flash page could be reprogrammed.

VII. CONCLUSION

In this work we presented the extended P/E cycles technique
implemented through page reprograms. This technique can
cause a loss of capacity in MLC flash since only the low
pages of a block can be used for reprograms. We showed how
to circumvent this drawback through overwrite block sealing.
This technique enables the utilization of the complete capacity
of blocks whose pages were previously reprogrammed.

During the development of the overwrite block sealing, we
extracted the state transition diagram for MLC flash. So far,
not all the transitions in the diagram are used. However, the
diagram can be the foundation for data encoding research
aimed at utilizing all the transitions and increase the MLC
utilization.

The BER analysis we performed showed that the erase voltage
is the major contributor to flash cell wear. Extended P/E cycles
have the same number of erase operations as normal P/E
cycles, but can write more data per cycle, therefore increasing
the lifetime of flash cells. Our evaluation shows that this
technique can reduce erase operations by as much as 85%
on workloads with certain characteristics. Furthermore, when
used in optimal conditions, it can lead to latency reduction as



high as 67% with up to 60% less data copied internally by the
FTL.

The technique presented here is not directly applicable to every
application. First, the data must be WOM compatible, and this
requires some special data structure design, or encoding part
of the dataset with WOM codes. Second, the access pattern
must exhibit some specific properties, detailed in Section V.
However, we believe that the benefits are such that designers
seeking to squeeze the best performance and lifetime from
flash devices should consider this technique and the insights
presented here.

The source code for the FTLs presented in this paper is
available at https://github.com/zdvresearch.
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