
Incremental Redundancy to
Reduce Data Retention Errors in Flash-based SSDs

Heejin Park
University of Seoul

bakhi@uos.ac.kr

Jaeho Kim
Hongik University
kjhnet@gmail.com

Jongmoo Choi
Dankook University

choijm@dankook.ac.kr

Donghee Lee
University of Seoul

dhl express@uos.ac.kr

Sam H. Noh
Hongik University

http://next.hongik.ac.kr

Abstract—As the market becomes competitive, SSD manufac-
turers are making use of multi-bit cell flash memory such as
MLC and TLC chips in their SSDs. However, these chips have
lower data retention period and endurance than SLC chips.
With the reduced data retention period and endurance level,
retention errors occur more frequently. One solution for these
retention errors is to employ strong ECC to increase error
correction strength. However, employing strong ECC may result
in waste of resources during the early stages of flash memory
lifetime as it has high reliability and data retention errors
are rare during this period. The other solution is to employ
data scrubbing that periodically refreshes data by reading and
then writing the data to new locations after correcting errors
through ECC. Though it is a viable solution for the retention
error problem, data scrubbing hurts performance and lifetime
of SSDs as it incurs extra read and write requests. Targeting data
retention errors, we propose incremental redundancy (IR) that
incrementally reinforces error correction capabilities when the
data retention error rate exceeds a certain threshold. This extends
the time before data scrubbing should occur, providing a grace
period in which the block may be garbage collected. We develop
mathematical analyses that project the lifetime and performance
of IR as well as when using conventional data scrubbing. Through
mathematical analyses and experiments with both synthetic and
real workloads, we compare the lifetime and performance of the
two schemes. Results suggest that IR can be a promising solution
to overcome data retention errors of contemporary multi-bit cell
flash memory. In particular, our study shows that IR can extend
the maximum data retention period by 5 to 10 times. Additionally,
we show that IR can reduce the write amplification factor by half
under real workloads.

I. INTRODUCTION

Solid State Drives (SSDs) that use flash memory as storage
media are now popular in computer systems as well as mobile
devices due to advantages such as superior performance, low
power consumption, and shock resistance. In consumer prod-
ucts, MLC/TLC (Multiple/Triple Level Cell) flash memory
chips that store two or three bits per cell are employed, while
SLC (Single Level Cell) based SSDs prevail in the enterprise
market [1]. Compared to SLC flash memory, MLC/TLC flash
memory can significantly reduce cost, but it comes with sacri-
ficed performance, lifetime, and reliability. In particular, the bit
error rate increases as feature size decreases, density increases,
and more bits are condensed into a cell. More importantly, it
is well known that the bit error rate is aggravated 1) as the P/E
cycle increases with extensive use and 2) as the data retention
period, that is, the time that has passed since the data has

REF 0 REF 1 REF 2 

Vth$
11 10 01 00 

(a) Threshold voltages and # of electrons

REF 0 REF 1 REF 2 

Vth$
11 10 01 00 

(b) Leaking of injected electrons

Fig. 1: Data retention error

been written to, increases [2]. Errors due to long data retention
periods are generally referred to as data retention errors, and
henceforth, we will refer to this problem as the data retention
problem. One of reasons of the retention error is the leak
of injected electrons from floating gates. Fig. 1(a) shows the
ideal case of threshold voltages and the number of electrons
in a flash memory cell right after programming. As time goes
on, some injected electrons are leaked and threshold voltages
shift across boundaries as seen in Fig. 1(b), eventually causing
retention errors. This retention error occurs more frequently in
aged flash memory blocks with higher P/E cycles.

To cope with bit errors, redundancy information such as
ECC (Error Correction Code) is adopted in the OOB (Out Of
Band) area of each page in flash memory. However, current
flash memory such as TLC flash chips with 2xnm technology
has high error rates that require considerable OOB space for
strong ECC. Moreover, enormous ECC space may be needed
to cope with worst case scenarios where the P/E cycles is
high (after substantial use) and the retention period for the
data has grown large. In particular, the worst case scenario
where only a small fraction of cold data that sits still for
an extended time period on an aged flash memory device
with high P/E cycles may be rare and little. Unfortunately,
providing large and strong ECC for the entire SSD to insure
itself from such corner cases not only wastes a significant
portion of OOB space, but also hurts performance and energy
efficiency because stronger ECC requires longer decoding time
and more energy.

978-1-4673-7619-8/15/$31.00 c© 2015 IEEE



Another solution, specifically targeted for the data retention
problem, is to employ data scrubbing, which is a scheme that
periodically refreshes data by reading and then writing the
data to a different location when the bit error rate exceeds a
certain safe level. Though data scrubbing is a viable solution
for retention errors, it has serious drawbacks in that it hurts
performance and lifetime of SSDs as it incurs extra reads,
writes, and eventually erase operations.

The main goal of this study is to provide an alternative,
efficient solution to the data retention problem. To this end, we
propose, what we call, incremental redundancy (IR), a scheme
that reinforces error correction strength when the error rate
exceeds a safe level. By so doing, data scrubbing is postponed
for an extended period and the flash memory block earns a
grace period in which data in the block may be naturally
refreshed by write requests and through garbage collection.
We emphasize that additional space and operations for IR are
required only when the error rate exceeds a safe level while
strong ECC always occupies space.

There are various ways in which IR can be implemented.
In this paper, we first present vertical striping, a simple, low
overhead IR scheme1. In vertical striping, a stripe is composed
of pages residing within the same block, with each page being
a strip. The name comes from the fact that a block in flash can
be visualized a being composed of pages that are numbered
from top to bottom. Then, we derive mathematical analyses
that estimates the performance and lifetime improvements that
are possible with IR compared to conventional data scrubbing.
We validate our mathematical analyses through experiments
with realistic workloads. Both mathematical and experimental
results show that IR brings about performance and lifetime
benefits.

The rest of the paper is organized as follows. In the next
section, we describe work related to our study including flash
memory and data scrubbing. In Section III, we present the
vertical striping technique that is used to implement IR and
introduce the notion of a safe level and a safe period. Then,
in Section IV, we discuss error rate modelling. We derive the
write amplification factor (WAF) under random workload in
Section V and WAF under Hot/Cold workload in Section VI.
We present evaluation results in Section VII and, finally, we
conclude with Section VIII.

II. BACKGROUND AND RELATED WORK

A. Flash Memory Basics

Flash memory, which comes in the form of flash memory
chips, is a non-volatile storage medium that can be erased
and reprogrammed electrically. The now popular solid state
drives (SSDs) are composed of numerous flash memory chips
(denoted Chip 0, Chip 1, etc.) as shown in Fig. 2. A flash
memory chip consists of multiple blocks and each block
has multiple pages. PBN (Physical Block Number) and PPN
(Physical Page Number) in Fig. 2, respectively, refers to the

1Hereafter, IR will be meant to refer to vertical striping IR unless otherwise
mentioned.

block number within the chip and the page number within
the block. Read and write (also referred to as program in
flash terminology) operations are the most basic operations,
and these are performed in page units. A unique characteristic
of flash memory is that data cannot be overwritten on a used
page. Hence, when data are updated, it needs to be written to
a different location. This results in blocks that contain pages
that no longer contain valid data. These are referred to as
invalid pages. To make invalid pages writeable once again,
an erase operation, which is performed in block units, must
be performed. The process of programming and erasing is
called the P/E (program/erasure) cycle and the number of P/E
cycles is limited. The P/E cycle limit determines the lifespan
of the flash memory chip, and the actual number depends on
the manufacturer and the technology used. As the number
of invalid pages increases, the chip may run out of space.
To retain writeable pages, garbage collection (GC) that goes
about moving valid pages and erasing blocks is performed. A
software layer called the flash translation layer (FTL) [3], [4],
[5] is generally provided to hide these unique flash memory
characteristics from the user so that the same HDD interface
may be used.

B. Reliability of Flash Memory Device

SSDs now use MLC (Multi-Level Cell) and TLC (Triple-
Level Cell) flash memory that have higher density and lower
price than SLC flash memory. However, their advantages come
with sacrifice in reliability. For example, the number of P/E
cycles permitted for MLC is around 10,000, but they drop
to a few thousands for TLC, whereas for SLC it is around
100,000 [1], [6]. Besides P/E cycles, MLC/TLC flash memory
suffers from high bit error rates, and the reliability issue
is exacerbated as P/E cycles and the data retention period2

increases [2], [7], [8].
Mielke et al. measure the raw bit error rates as well as the

uncorrectable bit error rates after ECC correction with flash
memory chips of various vendors [8]. Also, Sun et al. measure
the raw bit error rates of 5xnm, 4xnm, and 3xnm MLC flash
memory chips, showing that the bit error rate increases as the
cell size becomes smaller [9]. These studies showed that the
bit error rate increases exponentially with the increase in P/E
cycles.

To cope with bit errors, redundancy information such as
ECC (Error Correction Code) is stored in the OOB (Out of
Band) area [10], [11], [12]. However, the OOB area is limited
in size and is shared with other meta-data such as the logical
block number. RAID has been used to supplement the ECC
limitations. It has been applied both with the chips within the
SSDs or with the SSDs themselves [13], [14], [15], [16], [17].
Jimenez et al. propose switching from MLC to SLC mode
to extend the lifetime of SSDs [18] and Liu et al. employ
incrementally stronger ECC to cope with increased BER [19].

2Hereafter, we will use the shorthand terms “P/E cycles” and “data retention
period” to mean the P/E cycles that have been executed and the time period
that data is retained in a cell after a write, respectively, throughout our
discussion.



Chip 0 Chip 1 Chip 2 Chip 3 

PBN 

i

0 
1 
2 
3 
4 

PPN 
D0 
D4 
D8 

D12 

…

D1 
D5 
D9 

D13 

…

D2 
D6 

D10 
D14 

…

D3 
D7 
D11 
D15 

…

Host 
interface 

 
SSD controller 

 
 
IR scheme FTL 

PBN 

j

0 
1 
2 
3 
4 

PPN 
D16 
D20 
D24 
D28 

D17 
D21 
D25 
D29 

D18 
D22 
D26 
D30 

D19 
D23 
D27 
D31 

… … … …

… … … …

: Valid page : Parity page 

(a) Before observation period

Chip 0 Chip 1 Chip 2 Chip 3 

PBN 

i

0 
1 
2 
3 
4 

PPN 
D0 
D4 
D8 

D12 

…

D1 
D5 
D9 

D13 

…

D2 
D6 

D10 
D14 

…

D3 
D7 
D11 
D15 

…

Host 
interface 

 
SSD controller 

 
 
IR scheme FTL 

PBN 

j

0 
1 
2 
3 
4 

PPN 
D16 
D20 
D24 
D28 
D32 

D17 
D21 
D25 
D29 
D33 

D18 
D22 
D26 
D30 
D34 

D19 
D23 
D27 
D31 
D35 

… … … …

… … … …

Dx : Valid page Px : Parity page 

(b) After observation period

Chip 0 Chip 1 Chip 2 Chip 3 

PBN 

i

0 
1 
2 
3 
4 

PPN 
D0 
D4 
D8 

D12 
P0 

…

D1 
D5 
D9 

D13 
P1 

…

D2 
D6 

D10 
D14 
P2 

…

D3 
D7 
D11 
D15 
P3 

…

Host 
interface 

 
SSD controller 

 
 
IR scheme FTL 

PBN 

j

0 
1 
2 
3 
4 

PPN 
D16 
D20 
D24 
D28 
D32 

D17 
D21 
D25 
D29 
D33 

D18 
D22 
D26 
D30 
D34 

D19 
D23 
D27 
D31 
D35 

… … … …

… … … …
Dx : Invalid page : Free page 

(c) After safe period

Chip 0 Chip 1 Chip 2 Chip 3 

PBN 

i

0 
1 
2 
3 
4 

PPN 

… … … …
Host 

interface 

 
SSD controller 

 
 
IR scheme FTL 

PBN 

k

0 
1 
2 
3 
4 

PPN 
D0 
D5 
D11 
D15 

D1 
D6 

D12 

D2 
D7 

D13 

D3 
D8 

D14 

…
... 

…
... 

…
…

 

…
... 

… … … …

: Valid page : Parity page 

(d) After scrubbing or GC

Fig. 2: Dynamic vertical striping

These studies are similar to ours in that striping is employed or
in that they incrementally reinforce error correction strength.
However, our study differs in that we target the data retention
problem working in concert with data scrubbing and that we
provide mathematical analyses for the methods.

Hybrid use of flash memory has also been suggested to
overcome the inferior performance and endurance problem of
MLC/TLC flash memory. Chang employs SLC cache inside
MLC-based SSDs [20], while Im and Shin propose storing hot
data in the SLC region and cold data in the MLC region [21].
Also, Park et al. propose using both SLC and MLC chips
inside SSDs [22]. The focus of these studies, however, is on
performance and not on data retention errors.

Deriving analytic models has been a topic of research for
storage devices. Wang et al. develop performance models for
LFS (Log-structured File System) and their results have been
used in modeling garbage collection costs of flash memory
based storage [23]. Hu et al. analyse write amplification of
flash memory storage [24] and Desnoyers derives complicated
cost models including the WAF of flash memory storage under
random and hot/cold workloads [25]. Also, Oh et al. propose
cost models of hybrid storage with SSD cache and HDD-
based back-end storage [26]. Recently, Kim et al. propose
cost models for SSDs employing the RAID architecture [27].
Though these studies focus on deriving analytic models for
flash memory storage, they differ from ours in that our goal
is in modeling the overhead for data protection while they
focus on performance and/or lifetime without considering data
errors.

C. Data Scrubbing

Unless strong ECC with sufficient length enough to cope
with the worst case errors is provided, ECC may not be able
to correct errors of cold data in aged flash memory. In reality,
some cold data do not change for long periods, accumulating,
what is generally called, data retention errors [28]. To resolve
these data retention errors, the FTL inside an SSD periodically
refreshes data by performing data scrubbing operations [29].
Though this is a simple and feasible solution, data scrubbing
has a serious drawback in that it hurts performance and
lifetime of SSDs.

Cai et al. observe that retention errors are dominant in flash
memory, which can be mitigated by FCR (Flash Correct-and-
Refresh) [30]. In addition, to reduce the overhead of refresh,
they propose two techniques; one is hybrid FCR that applies
remapping and reprogramming selectively and the other is
adaptive FCR that has a low refresh rate for the block with
smaller retention errors. Pan et al. design a new SSD, called
quasi-nonvolatile SSD, which trades data retention time for
endurance and performance, and develop an SSD scheduling
scheme to minimize the impact of internal refresh on normal
I/O requests [31]. Mohan et al. devise an EDF (Earliest-
Deadline First) based refresh policy to improve the endurance
of SSDs [32]. Liu et al. utilize refresh for data that are
not overwritten in the guaranteed retention time when they
optimize SSDs via retention relaxation [33]. Our proposal
differs from these in that they are trying to reduce the refresh
overhead while ours extends the refresh cycle with incremental
redundancy.

PCM (Phase Change Memory), another type of new emerg-
ing non-volatile memory, also suffers from retention errors due
to the phenomenon called resistance drift, which is similar
to charge loss in flash memory. To overcome this problem,
several studies also make use of data scrubbing. For instance,
Awasthi et al. discuss how to extend scrub mechanisms for
MLC PCM with stronger ECC codes, headroom schemes,
and adaptive rates [34]. Liu et al. propose a smart refreshing
scheme that eliminates unnecessary refreshing operations for
their NVM-duet architecture [35].

III. INCREMENTAL REDUNDANCY IN SSDS

Our solution to data retention errors due to lengthy data re-
tention periods is to incrementally reinforce the data recovery
capability as needed. This is done by incrementally increasing
redundancy. Simply, redundancy can be incremented in SSDs
upon need, for example, when the error rate starts to exceed
a certain level, by dynamically constructing a stripe with
data and writing parities for them. Incrementally increasing
redundancy with such dynamic striping requires extra effort
such as managing the stripe map and reconstructing stripes
during garbage collection. Hence, a naive approach may negate
the benefits brought about through incremental redundancy.



1.0E-­‐36	
  

1.0E-­‐32	
  

1.0E-­‐28	
  

1.0E-­‐24	
  

1.0E-­‐20	
  

1.0E-­‐16	
  

1.0E-­‐12	
  

1.0E-­‐08	
  

0	
   200	
   400	
   600	
   800	
   1000	
  

U
nc
or
re
ct
ab

le
	
  P
ag
e	
  
Er
ro
r	
  R

at
e 

Time	
  (day) 

UPER	
   UPER_str	
  

Safe	
  level	
  (1.0E-­‐15)	
  

Parity	
  wri)en	
  (IR)	
  

Safe	
  period 
Extended	
  safe	
  period 

A	
  

Scrubbing	
  Scrubbing	
  

Fig. 3: Error rate variation with traditional data scrubbing and IR
when P/E cycles = 3K

Thus, for IR to become a promising solution for data retention
errors, it should be implementable in existing SSDs with little
overhead. To this end, in this section, we present vertical
striping, a low overhead IR scheme. Then in the next section,
we derive the mathematical analyses of vertical striping IR.

Let us start with Fig. 2 to illustrate vertical striping. Assume
initially that data D0∼D15 are striped over PBN (Physical
Block Number) i and data D16∼D31 are striped over PBN j
of Chips 0∼3. This is typically what is done in today’s SSDs.
Updating data in PBN i and j results in pages that are occupied
by invalid data, which are shown as shaded pages in Fig. 2.
Note that the last pages of PBN i’s and j’s are reserved for
other purposes to be explained later. Some of these turn out
to be space overhead required of vertical striping. However,
we later show that this overhead is minimal compared to the
gains possible through IR.

After a certain observation period, SSD firmware determines
that PBN i’s are cold data blocks and PBN j’s are hot
data blocks. In general, this decision can be made quickly
because hot data tend to be updated quickly due to temporal
locality [3], [36]. Once the hot and cold decision is made,
different actions are taken based on this decision. For hot data
blocks, the firmware uses the reserved pages for write requests.
In particular, data D32∼D35 are written to the reserved pages
as shown in Fig. 2(b). The basic premise behind this choice is
that a hot data block will be reclaimed soon and thus, data in
the block will be refreshed through garbage collection (GC).

For cold data, though, a different action is taken. To explain
the actions, we first define two terms. The first is safe level,
which is the data error rate level at which the firmware
considers the data in the block to be unsafe. The other is
safe period, which to be the time period from write of data to
the time when the block reaches its safe level. Now, assume
that PBN i’s are rarely updated until the safe period expires as
they are holding cold data. Then, the firmware writes parities
to the reserved pages and constructs stripes to protect data in
those blocks as shown in Fig. 2(c). In particular, parity for data
D0, D4, D8, and D12 is calculated and written to the reserved
page of PBN i in Chip 0. Likewise, parities for data in PBN i
of Chips 1∼3 are calculated and written to the reserved pages

Symbol Description
RBER Raw Bit Error Rate
RBERth Threshold RBER
RBERth str Threshold RBER with striping applied
CPER Correctable Page Error Rate
DPER Detectable Page Error Rate
UPER Uncorrectable Page Error Rate
UPERstr UPER with stripe constructed
UPERth Threshold UPER equal to HDD (10−15)
Tsafe Safe Period
Tesafe Extended Safe Period
U User Space
u Utilization of Block
a Over-Provisioning Factor a = ExtraSpace

UserSpace

pu Update probability (# of writes
data space

)
Dwrite Amount of write requests per day (U · pu)
Dscrub(n) Amount of scrubbed data

TABLE I: Symbols used in modeling

in PBN i. In Fig. 2(c), the firmware constructs four stripes,
each of them consisting of four data pages and one parity page
within the same block. The number of parities per stripe can
be increased by preserving more parity pages in a block to
provide stronger data recoverability.

We refer to this as dynamic vertical striping as stripes are
constructed dynamically and vertically within the same block.
In practice, writing parities is orthogonal to processing read
and write requests and can be done in background between the
observation period and the safe period, minimizing impacts on
performance. Notice that IR can be implemented by reinforc-
ing recovery capabilities of blocks in SSDs through vertical
striping as the safe level expires.

The data in PBN i may be updated after parities are written.
Recall that flash memory uses out-of-place updates and that
invalid data is retained until garbage collected. Likewise, if
data in a vertical stripe is updated, new data is written to new
locations while old data and parities are retained, in PBN i
in this example, until they are garbage collected. Hence, the
old data and parities, though invalid, may still contribute in
recovering the remaining valid data within the vertical stripe
if ECC-uncorrectable bit errors happen to occur among the
valid pages.

Though the safe period is extended by virtue of parities,
the data error rate will reach the safe level again after long
retention period. Then data scrubbing is employed to rewrite
the data or garbage collection may be performed for any reason
before it. Anyway, in this case, valid data in PBN i’s are copied
to other locations, PBN k’s in Fig. 2(d), and PBN i’s become
empty blocks that will be used later for data scrubbing or GC
operations. Note that parities in PBN i are not copied and just
disappear.

Let us now consider the relation between the error rate and
dynamic striping. Assume that when the safe period expires
data scrubbing or IR is required to protect data from errors.
Fig. 3 shows the error rate variations from data writing time
to data scrubbing. In the figure, x- and y-axes denote time and
error rate, respectively.

When data is written to SSD at time 0, it has the the lowest
error rate. As time progresses, the error rate increases due



1.0E-­‐08	
  

1.0E-­‐07	
  

1.0E-­‐06	
  

1.0E-­‐05	
  

1.0E-­‐04	
  

1.0E-­‐03	
  

1.0E-­‐02	
  

1.0E-­‐01	
  

1.0E+00	
  

0	
   100	
   200	
   300	
   400	
  

Ra
w
	
  B
it	
  
Er
ro
r	
  R

at
e 

Time	
  (day) 

100	
   1500	
  

3000	
   6000	
  

12000	
   24000	
  

P/E	
  cycles	
  

Fig. 4: RBER vs. P/E cycle and retention period

to data retention errors. We assume that the specific error
rate denoted ‘A’ in Fig. 3 is the safe level, and this level
is reached after 200 days. At this moment, the conventional
data scrubbing scheme rewrites the data to new locations and
the newly written data has again the lowest error rate at time
0. (The lowest error rate at time 0 becomes higher as flash
memory chips undergo P/E cycles, but we ignore this effect
in this example.) In contrast, the red line denotes the error rate
after using IR with parities written at time 200 (See PBN i in
Fig. 2(c)). By virtue of the parities, the error rate decreases
and the safe period is extended to time 1000. At time 1000,
the error rate reaches the safe level again and this time data
scrubbing is employed to rewrite the data (See Fig. 2(d)).
Naturally, the newly written data has the lowest error rate as
at time 0.

Obviously, incremental redundancy incurs parity write over-
head. However, this additional parity write is needed only
when the error rate reaches the safe level. We will see later
that this overhead is a small price to pay for attaining the
performance and lifetime benefits through IR. It should also be
noted that though parities in stripes can greatly extend the safe
period even when the stripe size is large, additional parities
or data scrubbing is needed to protect data from errors when
even the extended safe period expires.

IV. ERROR MODELING AND SAFE PERIOD

We now derive the mathematical analyses for performance
and lifetime of data scrubbing and IR. Symbols used in our
analyses are listed in TABLE I. To implement vertical striping
only one bit per block is needed to keep track of whether
each block is a constructed stripe or not. For example, if
SSD capacity is 128GB and the block size is 512KB, then
the number of blocks is about 262K; thus, additional map
management overhead for vertical striping is only 32KB.
In our mathematical analyses, we ignore map management
overhead as it is relatively small.

Also, reserving pages for vertical striping may increase GC
cost as the unused pages need to be reserved until the hot/cold
decision is made. However, as our analyses and experimental
results show, the space loss can be compensated for by reduced
overhead through delayed data scrubbing. As with previous

1.0E-­‐64	
  

1.0E-­‐56	
  

1.0E-­‐48	
  

1.0E-­‐40	
  

1.0E-­‐32	
  

1.0E-­‐24	
  

1.0E-­‐16	
  

1.0E-­‐08	
  

1.0E+00	
  

0	
   100	
   200	
   300	
   400	
  

U
nc
or
re
ct
ab

le
	
  P
ag
e	
  
Er
ro
r	
  R

at
e 

Time	
  (day) 

100	
   1500	
  

3000	
   6000	
  

12000	
   24000	
  

UPER	
  threshold	
  (1.0E-­‐15)	
  

P/E	
  cycles	
  

Fig. 5: UPER vs. various P/E cycles and retention period

studies, we consider only write requests in this study as read
requests have negligible effects on long-term performance
and lifetime of SSDs. We start off with modeling errors and
deriving the safe period.

Assume that ECC can correct k errors and detect 2k bit
errors as coding theory suggests. Then, error rate less than
k + 1 bits, that is, the Correctable Page Error Rate (CPER)
can be define as follows [8], [12], [14], and with it, the rate of
more than k bits failing, that is, the Uncorrectable Page Error
Rate (UPER) naturally follows.

CPER(n, k) =

k∑
i=0

(
n

i

)
·RBERi · (1−RBER)n−i (1)

UPER(n, k) = 1− CPER(n, k) (2)

Note that RBER (Raw Bit Error Rate) of a page is not
a fixed value but a function of two parameters, the block
P/E cycle, that is, the P/E cycle state at which the data was
written and the data retention period, that is, the length of time
since data was written. The actual relation between RBER and
the two parameters are inherent to the characteristics of the
individual flash memory chips. Hence, the exact relation can
only be obtained through observations of these characteristics.
For example, we can make use of data such as shown in Fig. 4,
which is for a 2-bit MLC NAND flash device manufactured in
3xnm technology, obtained from a previous study that inves-
tigated data error rates in relation to P/E cycles and retention
period [28].3 In general, the RBER function RBER(c, d) can
be formulated through curve fitting of these data resulting in
a formula of the form

RBER(c, d) = dr(c) · d (3)

where dr(c) is the deterioration rate, that is, the rate at
which RBER deteriorates per d (Day), which is a function of
parameter c (P/E cycles). In the particular case of Fig. 4, we
obtain dr(c) = 10−13 · c1.71 through curve fitting. Then, with
RBER(c, d), Eqs. 1 and 2 simply become CPER(n, k, c, d)
and UPER(n, k, c, d) with the added c and d parameters,
assuming that one bit error correction code is employed.

3Note that, unless otherwise mentioned, we make use of these data for all
examples and formulations for the rest of the paper.



1.0E-­‐07	
  

1.0E-­‐06	
  

1.0E-­‐05	
  

1.0E-­‐04	
  

1.0E-­‐03	
  

1.0E-­‐02	
  

4	
   8	
   12	
   16	
   20	
   24	
   28	
   32	
  

RB
ER

	
  th
re
sh
ol
d 

#	
  of	
  correctable	
  bits	
  by	
  ECC 

RBER_th	
  

RBER_th(RAID-­‐5)	
  

RBER_th(RAID-­‐6)	
  

(a) RBER threshold

0	
  
200	
  
400	
  
600	
  
800	
  
1000	
  
1200	
  
1400	
  
1600	
  

4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

Sa
fe
	
  p
er
io
d	
  
(d
ay
) 

P/E	
  cycles 

T_safe	
  

T_esafe(RAID-­‐5)	
  

T_esafe(RAID-­‐6)	
  

(b) Safe period and extended safe period

0	
  
200	
  
400	
  
600	
  
800	
  
1000	
  
1200	
  
1400	
  
1600	
  

8	
   16	
   32	
   64	
   128	
  

Sa
fe
	
  p
er
io
d	
  
(d
ay
) 

Stripe	
  Size 

(c) Extended safe period for different stripe size
(P/E cycles=4K)

Fig. 6: Result when using different stripe size: 1 (RAID-5) or 2 (RAID-6) parities

Fig. 5 presents UPER functions when P/E cycles are 100,
1,500, 3,000, 6,000, 12,000, and 24,000. In the figure, the
dotted horizontal line denotes the error rate of HDD and the
x and y axes denote data retention time in days and UPER,
respectively. Like RBER in Fig. 4, UPER increases as data
retention period and P/E cycles increase.

Now let UPERth denote the threshold UPER, that is, the
target safe level. Then, the safe period is simply the number
of days RBER stays below this threshold RBER given the
deterioration rate dr(c). Hence, the safe period becomes

Tsafe =
RBERth

dr(c)
(4)

where RBERth is obtained from Eqs. 1∼3 given
UPER(n, k) = UPERth.

For the remainder of the paper we will assume the safe
level to be the UPER of an HDD. Thus, the safe period is the
data retention period when UPER is less than or equal to that
of the HDD. Then, with the RBER function in Eqs. 3 and 4
with dr(c) = 10−13 · e1.71, the safe period is calculated to
192 days when P/E cycles are 3000 and 18 days when P/E
cycles are 12,000. These are points where the UPER graph
crosses the HDD UPER in Fig. 5 for the respective P/E cycle
values. These results suggest that cold data in aged SSDs may
become volatile in a couple of months without appropriate
data protection measures even though ECC may be employed.
In contrast, we observe that when the P/E cycle is relatively
small, say 1500, UPER does not reach the threshold level
until 629 days, and hence, one can argue that for all practical
purposes, the data written will be safe without being concerned
with retention errors.

The derivation so far determined the safe period. Typically,
at the end of the safe period, that is, at every Tsafe interval,
the action taken is to perform data scrubbing of the cold data.
In this paper, we proposed the use of incremental redundancy
as an alternative action. We now analyze how much we gain
through incremental redundancy. We denote this extra gains
in the safe period as the extended safe period.

To derive the extended safe period, we need to calculate
the UPER after a stripe is formed with the associated parity,
which we will denote as UPERstr. To do this, we start with

results from previous studies that derive UPERstr of SSDs
that employ the RAID architecture [14], [27].

UPERstr(N) =
1− CSERstr(N)

N
(5)

In the following, we show how we extend this to take into
account the c and d parameters. Based on the assumption that
ECC can tolerate up to k bit errors and detect 2k bit errors,
the Detectable Page Error Rate (DPER), that is, the probability
that the number of errors is more than k and less than or equal
to 2k among n bits is as follows.

DPER(n, k, c, d) =

2k∑
j=k+1

(
n

j

)
RBER(c, d)j

·(1−RBER(c, d))n−j

(6)

With Eq. 6, we can derive the Correctable Stripe Error Rate
(CSER) as follows, where N is the stripe size and P is the
number of parities.

CSERstr(N,P, c, d) =

P∑
j=0

(
N

j

)
CPER(n, k, c, d)N−j

·DPER(n, k, c, d)j

(7)

Then, we derive UPERstr(N,P, c, d), the Uncorrectable
Page Error Rate when striping is constructed, as follows.

UPERstr(N,P, c, d) =
1− CSERstr(N,P, c, d)

N
(8)

Let RBERth str be the raw bit error rate that makes
UPERstr equal to that of HDD through Eqs. 1∼3 and
Eqs. 6∼8. Then, with the given RBER function in Eq. 3, we
can calculate the extended safe period, Tesafe, as follows.

Tesafe =
RBERth str

dr(c)
(9)

With the given RBER function, we calculate both RBERth

and RBERth str for various numbers of correctable bits
by ECC, and Fig. 6(a) shows the results. In this figure,
RBERth(RAID − 5) and RBERth(RAID − 6) refers to



….. 

Used Block Pool 

Free Block Pool 

Data 
Write 

Time 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GC	
  Period	
  
Safe	
  Period	
  

(a) GC Period < Safe Period

….. 

Used Block Pool 

Free Block Pool 

Data 

Write 

Time 

!!!!!!!!!!!!!!!GC!Period!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Safe!Period!

: Free block 

: Used block 

: Victim block 

(b) GC Period > Safe Period
Fig. 7: Two scenarios according to relative size of GC period and
safe period

the raw bit error rate that makes UPERstr equal to the HDD
error rate when RAID-5 and RAID-6 is employed inside the
SSD, respectively. As the number of correctable bits by ECC
increases, higher raw bit error rate can be tolerated. However,
a much higher raw bit error rate can be tolerated if RAID-5 or
RAID-6 is employed. On the other hand, without parities as
denoted RBERth, the raw bit error rate must be much lower
than RAID-5 or RAID-6 to keep UPERstr below the HDD
error rate. This result shows that the RAID scheme effectively
lowers the error rate and for ECC only deployment, a much
stronger ECC is required to provide reliability comparable to
RAID schemes.

Fig. 6(b) shows examples of Tsafe and Tesafe when ECC
can correct 8 bit errors. For Tesafe, we assume stripe size
128 and one or two parity page(s) for each stripe. (Note that
in Fig. 2, we showed the case with only one reserved page
which would be needed for RAID-5. We can extend this to
two reserved pages for use with RAID-6.) In the figure, we
observe that dynamic striping extends the safe period even
with one parity per stripe, and even more with two parities
per stripe. Also, in Fig. 6(c), we calculate the implication of
the stripe size when P/E cycle is 4K. The results show that
using RAID-6 compared to RAID-5 can extend the safe period
much more than decreasing the stripe size. The conclusion that
we make from these results is that incremental redundancy
through dynamic striping has the potential to reduce data
scrubbing overheads in aged SSDs and this can be done with
relatively small parity write overhead.

V. WAF UNDER RANDOM WORKLOAD

As WAF (Write Amplification Factor) determines perfor-
mance and lifetime of flash memory storage, many studies
focus on deriving and reducing WAF of flash memory storage.
From now, we derive WAFs of data scrubbing and IR under
random workload.

A. Garbage collection period

Before deriving WAF, we derive the GC period, that is, the
time span from data write to block reclamation under random
workload. In particular, we assume that data are updated
randomly with the same probability and that the LRW (Least
Recently Written) policy is used to select victim blocks for
GC [25]. For further derivations of GC period and effective
OPS (Over Provisioning Space) size in the next section, we
briefly present results of a previous study that derives the
utilization of the victim block for GC [37].

We assume that a is the over-provision ratio such that
a = E

U , where E is the number of over-provisioned extra
pages for GC and U is the number of pages holding valid user
data. Then, for each update request, the update probability of
data is 1

U and the survival (not-update) probability is 1 − 1
U .

Then, a block is reclaimed (selected as a victim block for
GC) after U(1 + a)(1 − u) update requests. With the above
equations, utilization, u, of the victim block selected for GC
can be derived as follows:

u = (1− 1

U
)U(1+a)(1−u) (10)

Assuming that U is extremely large, u can be transformed
by applying the Euler’s limit and the Lambert-W function as
follows [37], [38]:

u = e−(1+a)(1−u) = −W (−(1 + a)e−(1+a))

1 + a
(11)

Now that we have utilization u of the victim block selected
for GC, let us now derive the GC period. Assume that,
under random workload, the same amount of data is updated
everyday with update probability pu. Then, the utilization of
a block after t days, u′, is such that u′ = (1 − pu)

t. As the
block is reclaimed when u′ becomes u in Eq. 11, we replace
u′ with u and transform the above formula to obtain the GC
period TGC in day units as follows:

TGC =
log(u)

log(1− pu)
(12)

Under random workload, GC operations are performed
after t days since data were written unless data scrubbing is
performed before GC. During the GC operation, u · np pages
are copied to a newly erased block, where (1− u) · np clean
pages are used for the write requests that follow.

B. Relation between safe period and GC period

Data scrubbing may be performed before GC operations if
the safe period is smaller than the GC period. Technically, the
GC operation and data scrubbing are the same in that they
copy valid data to new blocks and generate some clean pages.
Therefore, GCs are not needed if data scrubbing generates
clean pages before it. Likewise, if GCs are performed before
data scrubbing, data scrubbing is not needed as data are
refreshed during GC operations. Derivation of WAF must
consider these situations.



There are two cases that need to be considered according
to the relative size of the safe period (Tsafe) and GC period
(TGC). In the first case where the safe period is larger than
the GC period as seen in Fig. 7(a), GC operations refresh data
before the safe period expires and, naturally, data scrubbing is
never performed. Then, WAF in this case is calculated with u
in Eq. 11 as follows:

WAFGC =
1

1− u
(13)

The other case occurs when the safe period is shorter than
the GC period. In this case, data scrubbing refreshes data while
generating clean pages and thus, the GC operation is never
performed as we see in Fig. 7(b). We should note that, in
this case, data scrubbing is performed because the safe period
expires, not because there is no clean page for write requests.
In other words, the OPS may not be fully utilized because
data scrubbing generates free space before free space runs out.
Hence, in this case, WAF is irrelevant to u and is determined
only by the amount of write requests, Dwrite, and the scrubbed
data size, Dscrub, as follows:

WAFscrub =
Dwrite +Dscrub

Dwrite
(14)

In the above equation, the amount of write requests per day,
Dwrite is calculated from the update probability per day, pu,
and amount of user data, U , such that Dwrite = U · pu. To
calculate Dscrub, let s = 1− pu and t = Tsafe for brevity. In
the first period, Dwrite data are initially written and Dwrite ·st
data survive after t days and are refreshed by data scrubbing.
Consequently, in the next period, Dwrite and Dwrite · st are
written and, after t days again, (Dwrite + Dwrites

t)st data
survive and are refreshed. Continuing in this manner, after n
safe period iterations, we can derive Dscrub(n), the size of
refreshed data after n safe periods, as follows:

Dscrub(1) = Dwrite · st

Dscrub(2) = (Dwrite +Dwrites
t)st = Dwrites

t +Dwrites
2t

...

Dscrub(n) = Dwrite · st +Dwrite · s2t + ...+Dwrite · snt
(15)

As Dscrub(n) is a form of geometric series, we can obtain
the sum of an infinite geometric series as follows:

Dscrub = lim
n→∞

n∑
j=0

Dwrites
t ∗ sjt

=
Dwrite · st

1− st

(16)

Through Eqs. 14 and 16, we can calculate WAFscrub.
As we will see later, the difference between WAFGC and
WAFscrub can make a big difference in terms of performance
and lifetime. We emphasize again that, if the safe period is
shorter than the GC period, some OPS is not fully utilized and
is wasted. In the next section, we will calculate the effective
OPS size for the data scrubbing case. Our analyses and

experimental results show that OPS larger than the effective
OPS size is wasted.

C. Relation between extended safe period and GC period

Now we investigate the benefits of IR that extends the
safe period. Again, we have two cases according to the
relative size of the GC period and the extended safe period.
If the extended safe period is larger than the GC period,
data scrubbing is never performed as GC operations refresh
data before the extended safe period expires. Specifically,
the probability of this case occurring is much higher than
conventional data scrubbing without IR because the safe period
can be significantly extended with parities. However, some
extra space is consumed to write parities and thus, WAF in
Eq. 13 has to be calculated with the modified u that is again
calculated with a = E−P

U , where P is the size of the parity
space.

Let us now calculate P . If the stripe size is sstr and nparity

parity page(s) is written for (sstr − nparity) data pages, then
P = U/(sstr − nparity) if we assume that all data have
associated parities. Otherwise, if only some cold data have
parities, we can calculate P with the size of cold data having
associated parities such that P = C/(sstr − nparity), where
C is the amount of cold data.

Now we discuss the other case where the GC period is
larger than the extended safe period. In this case, WAF is as
follows, where Dparity is the amount of parity writes made
for striping.

WAFscrub =
Dwrite +Dscrub +Dparity

Dwrite
(17)

In the above equation, Dscrub can be obtained from Eq. 16
by setting t = Tesafe. Also, Dparity is calculated from stripe
size, sstr, and the number of parities in a stripe, nparity,
such that Dparity = Dwrite/(sstr − nparity). Later, through
experiments, we show that IR can improve the lifetime of
SSDs significantly by extending the safe period with little
overhead for parity writes for the workloads that we consider.

VI. EFFECTIVE OPS SIZE AND HOT/COLD SEPARATION

In this section, we extend our analyses to calculate the
effective OPS size and to separate hot and cold data. As we
mentioned above, OPS is not fully utilized if data scrubbing
is performed before GC operations and we can calculate the
effective OPS size as well as the space wasted in this case.

A. Effective OPS size

To calculate the effective OPS size, we first calculate the
utilization of the block selected for data scrubbing. Let uscrub

be the utilization of the block selected for data scrubbing. For
each update request, data is updated with probability pu and,
thus, (1 − pu)

Tsafe data survive after Tsafe under random
workload. Consequently, uscrub = (1 − pu)

Tsafe if data
scrubbing is performed after Tsafe and uscrub = (1−pu)

Tesafe

if it is performed after Tesafe. With uscrub, we can derive the



0"

0.05"

0.1"

0.15"

0.2"

0.25"

4k" 5k" 6k" 7k" 8k" 9k" 10k"

W
as
te
d'
a 

P/E'cycles 

model" sim"

(a) Wday = 1%

0	
  

0.05	
  

0.1	
  

0.15	
  

0.2	
  

0.25	
  

4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

W
as
te
d	
  
a 

P/E	
  cycles 

model	
   sim	
  

(b) Wday=0.5%

Fig. 8: Wasted over-provision ratio a

effective over-provisioned ratio, aeffective, through Eq. 11 as
follows:

aeffective =
ln(uscrub)

(1− uscrub)
− 1 (18)

Recall that the initial over-provision ratio a is E
U . Now, we

define the wasted over-provisioned ratio, awasted as follows:

awasted = a− aeffective (19)

From Eqs. 18 and 19, we find that the number of effective
extra pages is U · aeffective, and the rest are being wasted.
Fig. 8 shows the fraction of wasted OPS when the safe period
is shorter than the GC period. In the figure, more OPS area is
wasted as P/E cycles increase because the safe period becomes
shorter as flash memory ages and thus, the error rate increases.
If some OPS is wasted for the given workload, using the
wasted OPS for other purposes may be beneficial and we will
discuss this in the next section. We also note that extending
the safe period may reap performance benefits by allowing
control over when GC operations are performed [25].

B. Hot and cold separation

We consider a more realistic workload pattern, that is,
the mixture of hot and cold references. In particular, real
workloads have locality such that a small fraction of data
occupies a majority of references. Hence, we divide user space
into two areas, namely hot and cold areas [39]. We assume
that the hot area takes s fraction of user space and occupies
r ratio of total write requests, while the cold area takes 1− s
fraction of the user space and occupies 1 − r ratio of the
writes. Also, assume that the OPS is divided into two spaces
that are allocated separately to the hot and cold areas. Then we
consider the two areas to be two independent storage devices,
each one serving either hot or cold references. In particular,
the hot area has U ·s user data pages and E ·o extra pages and
the cold area has U · (1− s) user data pages and E · (1− o)
extra pages, where o is the fraction of OPS allocated to the
hot area and 1− o is the fraction allocated to the cold area.

Now, for the given hot references bound for the hot area, we
can calculate Thot GC , GC period, and WAFhot GC , WAF, of
the hot area using Eqs. 12 and 13 when OPS is reclaimed by
GC operations. We assume that IR is applied to extend the
safe period. (In this discussion, we omit the case without IR

for brevity and also as it is trivial.) Then, we can calculate
Thot scrub, the extended safe period, and WAFhot scrub, the
WAF in the hot area, using Eqs. 9 and 17 if data scrubbing
generates clean pages before GC. Similarly, for the given
cold references bound for the cold area, we can calculate
Tcold GC , WAFcold GC , Tcold scrub, and WAFcold scrub in
the cold area.

In a previous study, Desnoyers derived the optimal o that
maximizes performance by minimizing the overall WAF of
flash memory storage as follows [25]:

WAF = r ×WAFhot GC + (1− r)×WAFcold GC (20)

Let oopt be the optimal over-provision ratio determined by
Desnoyers’ solution. Then, the hot and cold area has E · oopt
and E · (1 − oopt) extra pages, respectively. Let T opt

hot GC

and T opt
cold GC be the GC period for the hot and cold areas,

respectively, calculated with the optimal OPS size for each
area. Then, we have to consider four cases according to the
relative size between T opt

hot GC and Thot scrub and between
T opt
cold GC and Tcold scrub. In the first case where T opt

hot GC ≤
Thot scrub and T opt

cold GC ≤ Tcold scrub, data scrubbing is never
performed. In other words, the OPS of both the hot and cold
areas is reclaimed by GC operations and the overall WAF can
be calculated from Eq. 20.

Now, let us consider the second case where T opt
hot GC ≤

Thot scrub and T opt
cold GC > Tcold scrub. In this case, GC

operations reclaims the OPS in the hot area, but in the cold
area, data scrubbing generates clean pages during data refresh
after the extended safe period. Recall that we can calculate
the effective over-provision ratio, aeffective, of the cold area
through Eq. 18 and, in turn, the effective OPS size, that is,
U · aeffective. Also, note that extra pages more than the
effective size is wasted, but GC operation efficiency generally
increases as more OPS is given. Therefore, if the OPS size of
the cold area is larger than the effective size, reassigning the
excess OPS to the hot area, which we refer to as OPS tuning
hereafter, would benefit performance. In this case, WAF tune,
the WAF obtained after OPS tuning becomes as follows:

WAF = r ×WAF tune
hot GC + (1− r)×WAFcold scrub (21)

Similarly, we can minimize overall WAF for the third case
where T opt

hot GC > Thot scrub and T opt
cold GC ≤ Tcold scrub by

OPS tuning, which reassigns the excess OPS in the cold area
to the hot area. This case seems to be unrealistic as, in real
systems, hot data tend to be updated faster than cold data. Even
so, in this case, some OPS in the hot area is being wasted and
thus, reassigning the excess OPS in the hot area to the cold
area benefits performance. WAF, in this case, becomes

WAF = r ×WAFhot scrub + (1− r)×WAF tune
cold GC (22)

In the last case where T opt
hot GC > Thot scrub and

T opt
cold GC > Tcold scrub, data scrubbing generates clean pages

during data refresh in both the hot and cold areas. Therefore,



0	
  

4	
  

8	
  

12	
  

16	
  

2K	
   3K	
   4K	
   5K	
   6K	
   7K	
   8K	
   9K	
   10K	
  

W
AF

 

P/E	
  cycles 

model(scrub)	
  
sim(scrub)	
  
model(IR)	
  
sim(IR)	
  

2.6	
  
2.8	
  
3	
  

3.2	
  
3.4	
  

6K	
   7K	
   8K	
  

(a) Wday = 1%

0	
  

4	
  

8	
  

12	
  

16	
  

2K	
   3K	
   4K	
   5K	
   6K	
   7K	
   8K	
   9K	
   10K	
  

W
AF

 

P/E	
  cycles 

model(scrub)	
  
sim(scrub)	
  
model(IR)	
  
sim(IR)	
  

(b) Wday = 0.5%

0	
  

4	
  

8	
  

12	
  

16	
  

2K	
   3K	
   4K	
   5K	
   6K	
   7K	
   8K	
   9K	
   10K	
  

W
AF

 

P/E	
  cycles 

model(scrub)	
  
sim(scrub)	
  
model(IR)	
  
sim(IR)	
  

(c) Wday = 0.25%

Fig. 9: WAF under Random Workload

some OPS is wasted in both areas and the excess OPS may
be used for other purposes such as duplicating crucial data
in flash memory storage without compromising performance.
(Utilizing wasted OPS for other purposes is beyond the scope
of this paper.) For this case, WAF is irrelevant to OPS size
and becomes

WAF = r×WAFhot scrub+(1−r)×WAFcold scrub (23)

VII. EVALUATION

In this section, through experiments, we validate our math-
ematical analyses and compare IR with conventional data
scrubbing. For the experiments, we use a random workload,
denoted Random Workload, and a mixture of hot and cold
references that we denote Hot/Cold Workload.

A. Experiment Setup

For the experiments, we implement a simulator that emu-
lates the behaviour of a page-mapping FTL including mapping,
GC, and data scrubbing. To validate our simulator, we compare
the simulation results with those of a previous study [25]
and confirmed that they are almost the same. The total flash
memory space is 128GB and we assign 80% of total space to
user data space and 20% to OPS. In the experimental results,
Write Ratio per Day (Wday) refers to the ratio of updated data
per day in user data space. For example, if Wday = 1%, then
1% of user data is updated every day. Also, we assume that
ECC can correct up to 8 bit errors and detect up to 16 bit
errors in codeword unit and a page consists of 8 codewords.
Both PPB (Pages per Block) and stripe size are set to 128.
A stripe comprises 127 data pages and one parity page. In
the experiments under Random Workload, the FTL has one
write frontier and applies the LRW (Least Recently Written)
policy to select the block for GC while, under the Hot/Cold
Workload, each of the hot and cold areas has its own write
frontier and applies the LRW policy independently. Initially,
the optimal OPS size is calculated through Desnoyers’ solution
and the optimal portion of OPS is given to hot and cold areas
under the Hot/Cold Workload.

B. Evaluation with Random Workload

Under Random Workload, we measure WAFs of conven-
tional data scrubbing and IR referred to as “Scrub” and “IR”,

respectively. In both schemes, OPS is tuned if there is wasted
OPS in one area. In Fig. 9, to validate our mathematical
analyses, we present values obtained from the analyses and
experiments with Wday = 1%, 0.5%, and 0.25%. We observe
that the results of the analyses and the experiments are very
close showing that our mathematical analyses quite accurately
estimate WAFs. Now we investigate the effect of Wday . With
smaller Wday , less data are updated every day such that the P/E
cycle increases more slowly. Hence, compared to Wday = 1%,
more days elapse for Wday = 0.25% to reach the same P/E
cycle, and ultimately, the safe period expires on lower P/E
cycles. For this reason, WAF starts to increase with lower P/E
cycles with smaller Wday as shown in Fig. 9.

Now, let us compare the results of “Scrub” and “IR”. In
the early stages of the experiments with small P/E cycles,
“IR” and “Scrub” have the same WAF as data scrubbing is
not performed. Then, WAFs of both schemes diverges at P/E
cycles 7K, 5K, and 3K for Wday = 1%, 0.5%, and 0.25%,
respectively. From these points on, WAF sharply increases
for “Scrub” as data scrubbing occurs. It should be noted that
WAF continuously increases as the P/E cycle increases. The
reason behind this is that as the P/E cycle increases RBER
increases and the safe period becomes shorter, ultimately
scrubbing more data every day. Note also that WAF is almost
constant for “IR” except when the P/E cycle is 9K∼10K with
Wday = 0.25% as data scrubbing is rarely performed due to
the extended safe period.

C. Evaluation with Hot/Cold Workload
Figs. 10 and 11 show WAF under the Hot/Cold Workload.

We set s = 0.2 and r = 0.8 for the results of Fig. 10
and s = 0.1 and r = 0.9 for the results of Fig. 11. The
results in the figures show that the mathematical analyses and
experiments are very close, again confirming the accuracy of
the mathematical analyses. Also, we observe trends similar to
the previous results in that, with smaller Wday , the safe period
expires with smaller P/E cycles resulting in higher WAF.

In Figs. 10 and 11, WAF of “Scrub” becomes higher than
that of “IR” as the P/E cycle increases though they are the
same at the beginning of the experiments. In particular, WAF
diverges at P/E cycles 5K, 3K, and 2K in Fig. 10(a), (b),
and (c), respectively, while it diverges at 3K, 2K, and 2K in
Fig. 11(a), (b), and (c), respectively. From these points on,



0	
  

4	
  

8	
  

12	
  

16	
  

2k	
   3k	
   4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

W
AF

 

P/E	
  cycles 

model(Scrub)	
  
sim(Scrub)	
  
model(IR)	
  
sim(IR)	
  

1.9	
  
2	
  

2.1	
  
2.2	
  

3k	
   4k	
   5k	
  

(a) Wday = 1%

0	
  

4	
  

8	
  

12	
  

16	
  

2k	
   3k	
   4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

W
AF

 

P/E	
  cycles 

model(Scrub)	
  
sim(Scrub)	
  
model(IR)	
  
sim(IR)	
  

(b) Wday = 0.5%

0	
  

4	
  

8	
  

12	
  

16	
  

2k	
   3k	
   4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

W
AF

 

P/E	
  cycles 

model(Scrub)	
  
sim(Scrub)	
  
model(IR)	
  
sim(IR)	
  

(c) Wday = 0.25%

Fig. 10: WAF under Hot/Cold Workload (s=0.2, r=0.8)

0	
  

4	
  

8	
  

12	
  

16	
  

2k	
   3k	
   4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

W
AF

 

P/E	
  cycles 

model(Scrub)	
  
sim(Scrub)	
  
model(IR)	
  
sim(IR)	
  

1.4	
  

1.6	
  

1.8	
  

2k	
   3k	
   4k	
  

(a) Wday = 1%

0"

4"

8"

12"

16"

2k" 3k" 4k" 5k" 6k" 7k" 8k" 9k" 10k"

W
AF

 

P/E'cycles 

model(Scrub)"
sim(Scrub)"
model(IR)"
sim(IR)"

(b) Wday = 0.5%

0	
  

4	
  

8	
  

12	
  

16	
  

2k	
   3k	
   4k	
   5k	
   6k	
   7k	
   8k	
   9k	
   10k	
  

W
AF

 

P/E	
  cycles 

model(Scrub)	
  
sim(Scrub)	
  
model(IR)	
  
sim(IR)	
  

(c) Wday = 0.25%

Fig. 11: WAF under Hot/Cold Workload (s=0.1, r=0.9)

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

2K
 

3K
 

4K
 

5K
 

6K
 

7K
 

8K
 

9K
 

10
K

 

W
A

F 

O
PS

 ra
tio

 

P/E cycles 

hot cold hot(tune) WAF WAF(tune) 

(a) Wday = 1% (b) Wday = 0.5% 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

2K
 

3K
 

4K
 

5K
 

6K
 

7K
 

8K
 

9K
 

10
K

 

W
A

F 

O
PS

 ra
tio

 

P/E cycles 

hot cold hot(tune) WAF WAF(tune) 

Fig. 12: Effect of OPS tuning (Scrub)

WAF starts to soar for “Scrub”, but for “IR” we see only a
slight increase as P/E cycle increases. These results show that
IR is highly efficient in decreasing WAF while paying only a
small price for parity writes.

D. Effect of OPS tuning

To investigate the effects of OPS tuning, we measure WAFs
of “Scrub” and “IR”, each with and without OPS tuning for the
Hot/Cold Workload (s = 0.2, r = 0.8). For the experiments,
we set Wday to 1% and 0.5% for “Scrub” and 0.5% and 0.25%
for “IR”. (Note that the safe period of “Scrub” is much shorter
than “IR”. Hence, we set different Wday values for “Scrub”
and “IR” as our goal is not to compare the results, but is to
observe the effect of OPS tuning.) In the experiments, data
scrubbing occurs earlier in the cold area compared to the hot
area. Recall that we initially assign the optimal portion of OPS
to the hot and cold areas. In Figs. 12 and 13, the vertical bars
on the leftmost side consists of shaded and black boxes, which

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

2K
 

3K
 

4K
 

5K
 

6K
 

7K
 

8K
 

9K
 

10
K

 

W
A

F 

O
PS

 ra
tio

 

P/E cycles 

hot cold hot(tune) WAF WAF(tune) 

(a) Wday = 0.5% (b) Wday = 0.25% 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 

2K
 

3K
 

4K
 

5K
 

6K
 

7K
 

8K
 

9K
 

10
K

 

W
A

F 

O
PS

 ra
tio

 

P/E cycles 

hot cold hot(tune) WAF WAF(tune) 

Fig. 13: Effect of OPS tuning (IR)

denotes the hot and cold OPS sizes that were initially equally
divided to their optimal size. As the P/E cycle increases, some
of the black boxes divides into black and white boxes, where
the white box is the ratio of OPS reassigned to the hot area
by OPS tuning.

In Figs. 12 and 13, the triangles and diamonds linked
with a solid line denote the WAFs with and without OPS
tuning, respectively. As we can see, WAF falls slightly for
both schemes with OPS tuning. Specifically, in the case of
“Scrub”, WAF is lowered by OPS tuning when the P/E cycles
are 5K∼9K with Wday = 1% and 3K∼6K with Wday = 0.5%.
In the case of “IR”, OPS tuning lowers WAF when P/E
cycles are 8K∼10K with Wday = 0.5% and 6K∼10K with
Wday = 0.25%. These experimental results confirm what the
mathematical analyses predict, that is, optimally assigned OPS
may be wasted when data scrubbing occurs and WAF can be
lowered further by reassigning wasted OPS.

Interestingly, the total OPS ratio is less than 1 when P/E



Workload Function Read (GB) Write (GB) s r Avg. Wday

Total Working set Total Working set
hm0 Hardware monitoring 10.99 1.86 22.86 1.63 0.014 0.990 3.19%
mds0 Media server 3.30 2.94 7.79 0.33 0.002 0.986 1.09%
mds1 Media server 87.20 83.84 1.55 0.60 0.002 0.824 0.22%
rsrch0 Research projects 1.39 0.08 11.02 0.29 0.002 0.991 1.54%
stg0 Web staging 7.39 6.14 15.78 0.39 0.004 0.991 2.20%
stg1 Web staging 79.70 79.60 6.00 0.40 0.002 0.979 0.84%
wdev0 Test web server 2.76 0.20 7.36 0.34 0.003 0.991 1.03%
web0 Web/SQL server 17.45 7.19 12.16 0.70 0.006 0.992 1.70%

TABLE II: Parameters of real workload

0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
9	
  

10	
  

hm0	
   mds0	
   mds1	
   rsrch0	
   stg0	
   stg1	
   wdev0	
   web0	
  

W
AF

	
  

Workload	
  

model(Scrub)	
  
sim(Scrub)	
  
model(IR)	
  
sim(IR)	
  

Fig. 14: WAF in Real Workload under Hot/Cold separation

cycles are 8K∼10K and 5K∼10K in Fig. 12(a) and (b),
respectively, and 10K in Fig 13(b). Our in-depth analyses
reveal that, with more OPS reassigned to the hot area, the GC
period becomes longer in the hot area and, eventually, exceeds
the safe period. Then, data scrubbing starts to occur and some
OPS in the hot area are wasted, resulting in the total OPS ratio
being smaller than 1. Moreover, with P/E cycles 7K∼10K in
Fig. 12(b), even the initial hot area assigned OPS is not fully
utilized and is wasted as the gray box shorter than 0.5 reveals.
In this situation, utilizing wasted OPS for other purposes may
be considered.

E. Evaluation with Real Workloads

In this section, we evaluate IR and data scrubbing with
real workload traces, namely hm, mds, rsrch, stg, wdev and
web [40]. As the time span of requests in these traces is
less than one week, we run the traces a few hundred times
to observe data scrubbing for cold data. Data referenced
more than once in each trace iteration are regarded as hot
while the others are cold. To expedite the experiments, we
assume that initially flash memory has 6K P/E cycles. Through
preprocessing, we extract parameters r, s, and Wday for each
trace and the results of mathematical analyses are obtained
with these parameters as listed in Table II. Fig. 14 shows
WAFs of “Scrub” and “IR”, each with results of experiments
and analyses.

The results in the figure show that the WAFs of the
experiments and analyses are similar, though the WAFs of
the experiments are slightly higher than the ones from the
analyses. The reason behind this is that blocks with many
valid data are sometimes garbage collected in real traces as
we apply LRW, and not the Greedy policy, to select blocks for
GC. In contrast, the mathematical analyses assumes that data
in the blocks are invalidated at a constant rate with time and

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

hm0	
   mds0	
   mds1	
   rsrch0	
   stg0	
   stg1	
   wdev0	
   web0	
  

W
AF

	
  

Workload	
  

IR	
  (RAID-­‐5)	
  

IR	
  (RIAD-­‐6)	
  

Fig. 15: WAF of IR with one parity per stripe (RAID-5) and two
parties per stripe (RAID-6)

thus, it expects only a small number of valid data in the LRW
block selected for GC. For all traces, “IR” has much smaller
WAFs than “Scrub” as “IR” extends the safe period, ultimately
reducing the data scrubbing cost. In particular, for mds1, which
has a relatively large number of requests to cold data, “IR”
has a much smaller WAF than “Scrub”. This is because,
through extending safe period, “IR” provides cold data more
opportunities to be refreshed by write requests, while “Scrub”
refreshes many cold data through data scrubbing when the safe
period expires.

We now compare the WAFs of “IR” with one parity and two
parities per stripe denoted as “IR (RAID-5)” and “IR (RAID-
6)”, respectively, in Fig. 15. For brevity, we only present the
results of the analyses, but the experimental results are also
similar. The results show that “IR (RAID-6)” has lower WAF
than “IR (RAID-5)” as two parities per stripe extends the
safe period further than the single parity case, resulting in
lower data scrubbing overhead. This is despite the fact that
“IR (RAID-6)” reserves one more page for parity and has one
more parity write overhead than “IR (RAID-5)”. This shows
that even space reserved for the two parities and the extra
write overhead is clearly compensated for by the reduced data
scrubbing overhead, confirming that IR is a promising solution
to overcome the data retention problem.

VIII. CONCLUSIONS

As multi-bit cell flash memory are widely used in SSDs,
reducing retention errors is a serious issue that must be handled
with urgency. To handle this issue, we propose and analyse
the use of incremental redundancy (IR) that extends the data
scrubbing period by paying a small overhead for striping. In
this paper, we developed and presented mathematical analyses
to compare and estimate the performance of conventional



data scrubbing and IR. We validated the accuracy of our
mathematical analyses through experiments and also com-
pared the performance and lifetime of IR with conventional
data scrubbing. Also, from the mathematical analyses and
experimental results, we observed significant performance and
lifetime benefits with IR. This study suggests that IR can
be a promising solution to overcome data retention errors of
contemporary multi-bit cell flash memory.

ACKNOWLEDGMENT

We would like to thank our shepherd Xiaosong Ma and
the anonymous reviewers for their detailed comments that
helped to improve the presentation of the paper. We also
thank Yongseok Oh for providing useful comments. This
research was supported in part by Seoul Creative Human
Development Program funded by Seoul Metropolitan Govern-
ment(No. HM120006), by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MEST)
(No. 2012R1A2A2A01045733), and by Basic Science Re-
search Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and
Technology(2010-0025282).

REFERENCES

[1] “Samsung Releases TLC NAND Based 840 SSD,”
http://www.anandtech.com/show/6329/samsung-releases-tlc-nand-
based-840-ssd.

[2] L. M. Grupp, J. D. Davis, and S. Swanson, “The Bleak Future of NAND
Flash Memory,” in Proc. USENIX FAST ’12, 2012.

[3] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-Aware Sector
Translation for NAND Flash Memory-based Storage Systems,” ACM
SIGOPS Operating Systems Review, vol. 42, no. 6, pp. 36–42, 2008.

[4] H. Kwon, E. Kim, J. Choi, D. Lee, and S. H. Noh, “Janus-FTL: Finding
the Optimal Point on the Spectrum between Page and Block Mapping
Schemes,” in Proc. EMSOFT ’10, 2010.

[5] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation Layer
Employing Demand-based Selective Caching of Page-level Address
Mappings,” in Proc. ASPLOS ’09, 2009.

[6] “OCZ TECHNOLOGY LAUNCHES NEXT GENERATION
INDILINX EVEREST SSD CONTROLLER PLATFORM,”
http://www.ocztechnology.com/aboutocz/press/2012/491.

[7] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf, “Characterizing Flash Memory: Anomalies,
Observations, and Applications,” in Proc. MICRO 42, 2009.

[8] N. Mielke, T. Marquar, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill, “Bit Error Rate in NAND Flash
Memories,” in Proc. IEEE Int’l Reliability Physics Symp., 2008.

[9] H. Sun, P. Grayson, and B. Wood, “Quantifying Reliability of Solid-
State Storage from Multiple Aspects,” in Proc. SNAPI ’11, 2011.

[10] S. Chen, “What Types of ECC Should be Used on Flash Memory?”
http://www.spansion.com/Support/AppNotes/, 2007.

[11] E. Deal, “Trends in NAND Flash Memory Error
Correction,” http://www.cyclicdesign.com/whitepapers/
Cyclic Design NAND ECC.pdf, Cyclic Design, White Paper, 2009.

[12] Y. Wang, L. A. D. Bathen, N. D. Dutt, and Z. Shao, “Meta-Cure: a
Reliability Enhancement Strategy for Metadata in NAND Flash Memory
Storage Systems,” in Proc. DAC ’12, 2012.

[13] S. Im and D. Shin, “Flash-Aware RAID Techniques for Dependable
and High-Performance Flash Memory SSD,” IEEE Transactions on
Computers, vol. 60, no. 1, pp. 80–92, 2011.

[14] S. Lee, B. Lee, K. Koh, and H. Bahn, “A Lifespan-Aware Reliability
Scheme for RAID-based Flash Storage,” in Proc. SAC ’11, 2011.

[15] Y. Lee, S. Jung, and Y. H. Song, “FRA: A Flash-Aware Redundancy
Array of Flash Storage Devices,” in Proc. CODES+ISSS ’09, 2009.

[16] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS Codes and their
Application to RAID type of Architectures,” IEEE Transactions on
Information Theory, vol. 59, no. 7, pp. 4510–4519, 2013.

[17] K. M. Greenan, D. D. Long, E. L. Miller, T. J. Schwarz, and A. Wildani,
“Building flexible, fault-tolerant flash-based storage systems,” in Proc.
HotDep ’09, 2009.

[18] X. Jimenez, D. Novo, and P. Ienne, “Phoenix: Reviving MLC Blocks
as SLC to Extend NAND Flash Devices Lifetime,” in Proc. DATE ’13,
2013.

[19] R.-S. Liu, C.-L. Yang, C.-H. Li, and G.-Y. Chen, “DuraCache: A Durable
SSD Cache Using MLC NAND Flash,” in Proc. DAC ’13, 2013.

[20] L.-P. Chang, “Hybrid Solid-State Disks: Combining Heterogeneous
NAND Flash in Large SSDs,” in Proc. ASP-DAC ’08, 2008.

[21] S. Im and D. Shin, “ComboFTL: Improving Performance and Lifespan
of MLC Flash Memory using SLC Flash Buffer,” Journal of Systems
Architecture, vol. 56, no. 12, pp. 641–653, 2010.

[22] J.-W. Park, S.-H. Park, C. C. Weems, and S.-D. Kim, “A Hybrid Flash
Translation Layer Design for SLC-MLC Flash Memory Based Multi-
bank Solid State Disk,” Microprocessors and Microsystems, vol. 35,
no. 1, pp. 48–59, 2011.

[23] W. Wang, Y. Zhao, and R. Bunt, “HyLog: A High Performance Ap-
proach to Managing Disk Layout,” in Proc. USENIX FAST ’04, 2004.

[24] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write
Amplification Analysis in Flash-based Solid State Drives,” in Proc.
SYSTOR ’09, 2009.

[25] P. Desnoyers, “Analytic Modeling of SSD Write Performance,” in Proc.
SYSTOR ’12, 2012.

[26] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Caching Less for Better
Performance: Balancing Cache Size and Update Cost of Flash Memory
Cache in Hybrid Storage Systems,” in Proc. USENIX FAST ’12, 2012.

[27] J. Kim, J. Lee, J. Choi, D. Lee, and S. H. Noh, “Improving SSD
Reliability with RAID via Elastic Striping and Anywhere Parity,” in
Proc. DSN ’13, 2013.

[28] Y. Cai, E. F. Haratsch, O. Mutlu, and K. Mai, “Error Patterns in MLC
NAND Flash Memory: Measurement, Characterization, and Analysis,”
in Proc. DATE ’12, 2012.

[29] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long, A. Hospodor, and
S. Ng, “Disk Scrubbing in Large Archival Storage Systems,” in Proc.
MASCOTS ’04, 2004.

[30] Y. Cai, G. Yalcin, O. Mutlu, E. F. Haratsch, A. Cristal, O. S. Unsal,
and K. Mai, “Flash Correct-and-Refresh: Retention-aware Error Man-
agement for Increased Flash Memory Lifetime,” in Proc. ICCD ’12,
2012.

[31] Y. Pan, G. Dong, Q. Wu, and T. Zhang, “Quasi-nonvolatile ssd: Trading
flash memory nonvolatility to improve storage system performance for
enterprise applications,” in Proc. HPCA ’12, 2012.

[32] V. Mohan, S. Sankar, S. Gurumurthi, and W. Redmond, “reFresh SSDs:
Enabling High Endurance, Low Cost Flash in Datacenters,” University
of Virginia, Technical Report, CS-2012-05, 2012.

[33] R.-S. Liu, C.-L. Yang, and W. Wu, “Optimizing NAND Flash-based
SSDs via Retention Relaxation,” in Proc. USENIX FAST ’12, 2012.

[34] M. Awasthi, M. Shevgoor, K. Sudan, B. Rajendran, R. Balasubramo-
nian, and V. Srinivasan, “Efficient Scrub Mechanisms for Error-prone
Emerging Memories,” in Proc. HPCA ’12, 2012.

[35] R.-S. Liu, D.-Y. Shen, C.-L. Yang, S.-C. Yu, and C.-Y. M. Wang, “NVM
Duet: Unified Working Memory and Persistent Store Architecture,” in
Proc. ASPLOS ’14, 2014.

[36] J.-W. Hsieh, L.-P. Chang, and T.-W. Kuo, “Efficient On-line Identifica-
tion of Hot Data for Flash-memory Management,” in Proc. SAC ’05,
2005.

[37] R. Stoica and A. Ailamaki, “Improving Flash Write Performance by
Using Update Frequency,” VLDB Endow., vol. 6, no. 9, pp. 733–744,
2013.

[38] R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth,
“On the LambertW function,” Advances in Computational Mathematics,
vol. 5, no. 1, pp. 329–359, 1996.

[39] M. Rosenblum and J. K. Ousterhout, “The Design and Implementation of
a Log-Structured File System,” ACM Transactions on Computer Systems,
vol. 10, no. 1, pp. 26–52, 1992.

[40] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage, vol. 4, no. 3, p. 10, 2008.


