
Self-Sorting SSD: Producing Sorted Data Inside
Active SSDs

Luis Cavazos Quero
luis@skku.edu

College of Info. & Comm. Engineering
Sungkyunkwan University

Suwon, South Korea

Young-Sik Lee
yslee@calab.kaist.ac.kr

Computer Science Dept.
KAIST

Daejeon, South Korea

Jin-Soo Kim
jinsookim@skku.edu

College of Info. & Comm. Engineering
Sungkyunkwan University

Suwon, South Korea

Abstract—Nowadays solid state drives (SSDs) are gaining
popularity and are replacing magnetic hard disk drives (HDDs) in
enterprise storage systems. As a result, extracting the maximum
performance from SSDs is becoming crucial to deal with the
increasing storage volume and performance needs. Active disks
were introduced as a way to offload data-processing tasks from
the host into disks freeing system resources and achieving better
performance.

In this work, we present an active SSD architecture called Self-
Sorting SSD that targets to offload sorting operations which are
commonly used in data-intensive and database environments and
that require heavy data transfer. Processing sorting operations
directly on the SSD reduces data transfer from/to the storage
devices, increasing system performance and the lifetime of SSDs.
Experiments on a real SSD platform reveal that our proposed
architecture outperforms traditional external merge sort by up
to 60.75%, reduces energy consumption by up to 58.86%, and
eliminates all the data transfer overhead to compute sorted
results.

I. INTRODUCTION

Solid State Drives (SSDs) have become a common device
in computer systems due to superior characteristics that makes
them more attractive when compared to traditional magnetic
hard disk drives (HDDs). Some of the characteristics are: high
sequential and random performance, low power consumption,
small and lightweight form factor, and shock resistance. These
advantages result in an increasing adoption in data-intensive
computing and database systems where I/O performance is
critical. However, the ever increasing volume and performance
needs demand new methods to extract more performance out
of SSDs.

The concept of active disks [1] was introduced in order to
increase performance by using the hardware resources already
available in disks. The main idea is simple: by processing data
within the disk, expensive data transfer to the host can be
avoided resulting in increased performance and lower power
consumption. As processing capabilities of SSDs become more
powerful, we believe that there are new opportunities to further
improve performance by expanding the type of operations
that can be performed within the disk. Sorting operations,
which involve expensive I/Os, are used extensively in data

intensive computing and database systems [2] making it a good
candidate for our scheme.

In this paper we propose an active SSD architecture called
Self-Sorting SSD which enables to completely offload sorting
operations into an SSD. The basic idea is to build an index
within the SSD. Once the index is built, sorted output is
available as we fetch records by traversing the index. Since a
full index is already available, it is also possible to serve other
functions directly such as selection, range queries, min, max,
etc. The index can be produced by two different mechanisms:
The first one is called sort-on-write and it produces the index
by parsing the input data when it is written to the SSD. The
second mechanism is called sort-on-command and it generates
the index on-demand by issuing a special command to the
Self-Sorting SSD.

Having two indexing mechanisms adds flexibility in the
ways Self-Sorting SSD can be employed. For example, recent
NoSQL systems such as Couchbase Server supports several
views on the stored documents using secondary indexes. Sec-
ondary indexes allow users to decide which fields within the
documents they want to query at view definition time [3]. In
this case, a primary index for new documents can be built
at writing time by employing the sort-on-write mechanism in
Self-Sorting SSDs. Later, when a secondary index is needed,
it can be built on-demand by using the sort-on-command
mechanism.

The main benefit of the proposed architecture is the total
elimination of data transfer overhead to compute sorted results,
which reduces the elapsed time and energy consumption,
and improves the lifetime of SSDs. Our evaluation results
using the Jasmine OpenSSD platform show that our scheme
outperforms the traditional external merge sort scheme by up
to 60.75% and ActiveSort[4] , a novel active SSD architecture
that accelerates external sorting using on-the-fly merge by
27.35%. Additionally our scheme reduces up to 58.86% power
consumption.

II. BACKGROUND

A. SSDs

SSDs are composed of an array of NAND flash memory
chips, DRAM, and an SSD controller. While the flash memory978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

chips serve as permanent storage, the available DRAM is used
to maintain management data structures to service data from
flash memory. The SSD controller orchestrates the exchange
of data. Internally the SSD controller is composed of one
or more embedded processors, a series of flash memory
controllers which handle the low-level operations required to
drive the flash memory chips, a DRAM controller, a host
interface controller that serves as the interface with the host
and implements one of the standard interface protocols such
as SATA, SAS or PCIe. One of the principal functions of the
controller is to present the SSD as block device to the host
and hide some of the complexities of flash memory. These
complexities include:

• Erase before write: Only previously erased pages can be
written.

• Erase and write granularity: Erase operations are per-
formed on batches of pages called blocks, while write
operations are performed in single page granularity. Erase
operations take longer than write operations to complete.

• Cell wear: Flash cells have a limited number of erase
operations.

In order to hide these peculiarities, the SSD controller
implements an abstraction layer called flash translation layer
(FTL). The FTL separates the logical block device seen by
the host from the physical flash media by translating logical
block address (LBA) requests into physical page requests that
are serviced internally by the SSD controller. This address
translation information is stored inside the DRAM in the form
of translation tables. The logical-physical separation not only
helps hiding the complexities of flash memory but also enables
a wide range of options to optimize SSDs performance without
having to modify anything in the host.

B. External Merge Sort

External sort refers to those algorithms in which the data to
be sorted does not fit into the main memory of a system and
external memory must be used to handle the sorting process.
It is widely used in almost all large-scale sorting applications
[5]. External merge sort is a specific algorithm that solves the
problem by sorting large data sets in two or more phases. The
first phase creates subsets of sorted data (commonly called
runs) by using an in-memory sorting algorithm and writing
the partial sorted results as temporal data stored on external
memory. Once all runs have been processed the second phase
takes place by merging each run into a single array of data.
The merging process can be done in several passes; however,
usually a one pass merge phase is preferred. The reason is
that for every pass the corresponding data has to be read
and written at least one time from/to disk, thus generating
expensive I/O operations.

III. DESIGN AND IMPLEMENTATION

A. Overall Architecture of Self-Sorting SSD

We present Self-Sorting SSD which provides a new external
sorting scheme by exploiting the internal hardware infrastruc-
ture of SSDs. The hardware architecture of Self-Sorting SSD

is the common architecture found in any SSD as described
in II-A. SSDs employ the FTL abstraction layer to serve
data requests and hide the storage management tasks from
the host. In order to process the sort operations internally the
standard software architecture of the SSDs must be modified.
In addition to the standard address translation algorithms found
in SSDs, we have implemented and indexing algorithm based
on the B+-tree data structure that will be used to produce
sorted data. This data structure is maintained in the available
DRAM of the drive. The B+-tree data structure is used to
maintain all the index information. Once an index is built it
is possible to use it to redirect requests and deliver the data
in different ways other than how it was originally written.

B. External Sorting with Self-Sorting SSD

From the host perspective the external sorting operation
using Self-Sorting SSD has two phases. The first one is the
generate tree phase which can be performed in two different
ways depending on the application.

• sort-on-write: The generation of the sorted index is
performed simultaneously with the write operation of the
input data. As data is being written into the SSD, for
each record, the key information is parsed and inserted
into the B+-tree data structure.

• sort-on-command: The host explicitly sends a generate
command to the SSD when needed. Once the command
is received the SSD will internally read the unsorted input
data, parse the key information, and generate the index
by inserting the key into the B+-tree.

The second phase is the active read phase which involves
reading the sorted data back to the host. From the host perspec-
tive this only requires generating read requests for the output
data, which is nothing different from the traditional approach.
Inside the SSD the sorted index previously generated using the
B+-tree will be used to redirect the host requests to read the
sorted output. The redirection method is explained in III-D.

C. Building Indexes

In order to build an index for our Self-Sorting SSDs,
we make use of the B+-tree data structure. The B+-tree
is a structure commonly used to retrieve information. The
information is stored in the form of key-record pairs, and the
keys can be used to retrieve the record data. This kind of
tree has two types of nodes: internal nodes which store keys
but no record information and are used for indexing, and leaf
nodes which are nodes at the bottom of the tree containing
both key and record information. Leaf nodes are linked left-
to-right which produce a sequential ordered set making it ideal
for our scheme.

An important consideration is that the amount of informa-
tion that can be stored by a node is variable, in other words
a node can direct to multiple nodes and store multiple keys.
The amount of information that a node can store is known
as fanout. By selecting different fanout values the shape of
the tree can be modified and tuned for specific purposes. In
our implementation, we chose a fanout of 128 which produces

Flash Memory

P. Address Key

21 5

22 7

23 2

24 1

Translation Table

L. Address P. Address

0 21

1 22

2 23

3 24

B+ Tree

L. Address Key

3 1

L. Address Key

2 2

L. Address Key

0 5

L. Address Key

1 7

Req: 3

Req: 0

Req: 24

Self-Sorting SSD

Fig. 1. An example of redirection process.

a node size of 2,060 bytes. This value was selected since it
produces the most compact tree without compromising B+-
tree insertion performance. Also the overhead of the node data
structures is reduced as the fanout value increases. B+-trees
are well suited for both random and sequential processing as
described by Comer in [6].

The B+-tree data structure resides in the DRAM memory,
however in order to guarantee durability it is possible to
flush this information into non-volatile flash memory. Even
on power shortages the index information can be retrieved in
a similar fashion as in µ-Tree [7] which employs a similar
index structure tailored to the characteristics of flash memory.

D. Reading Sorted Results from Self-Sorting SSD

The B+-tree data structure is used to redirect read requests
from the host when sorted data is requested. The tree itself
does not possess any logical-physical translation information,
instead the leaf nodes only contain the logical address and
the key of each record stored in flash. An example of the
redirection process can be seen in Fig. 1. In this example we
assume the index has been previously generated by any of the
two mechanisms in the generate tree phase. The input data
has been written to the active Self-Sorting SSD at logical
address 0. The translation table shows the corresponding
physical location starting from physical address 21, and the
corresponding record is in flash memory. In the active read
phase, the host issues a read request for the sorted data at the
same location of the original data (logical address 0 (Req: 0)).
The B+-tree handles the read request. Since the request is for
the first record, the tree will take the first logical address on its
left most node and change the logical address from the request
to the one associated with the key (Req: 3). Then the physical
address is obtained from the translation table (Req: 24) and the
data is served to the host. The following requests are served by
visiting the next entries in the B+-tree until all the requested
data is served. We found this scheme to be beneficial for the
following reasons:

• Any modification to the input records on flash (as long

as the corresponding key is not modified) can be serviced
by the standard FTL allowing high read and write per-
formance.

• Using a redirection approach enables to maintain the
original input data and the sorted data for the space
footprint of only the original data.

E. Self-Sorting SSD Interface

Before generating indexes the Self-Sorting SSD must have
the format information of the data. Required information such
as record size, key size, and key offset location within the
record must be passed by the application on the host to the
SSD to be used as indexing parameters. A simple approach in
which required information is written by the host to a pre-
defined LBA as a normal write request was implemented.
When the firmware detects a request targeting the pre-defined
LBA it uses the data in the request to configure the indexing
parameters. Other functions such as enabling the sort-on-
write scheme, the generate command required by the sort-
on-command scheme, enabling reading the sorted results from
the Self-Sorting SSD and generating secondary indexes are
implemented in a similar fashion.

The implementation of the generate command required by
the sort-on-command scheme over a write request has a special
consideration. Generating long indexes might take a long time
which can trigger a time-out on the host side while waiting
for the SSD’s response. This issue is handled by breaking
down the indexing process in smaller chunks. By iterating the
generate command, large indexes can be generated without
timeouts.

F. Prototype Implementation

In order to study the advantages of Self-Sorting SSD we
have implemented our firmware in the Jasmine OpenSSD
platform [8] which consists of an SSD controller integrated
by a 87.5MHz ARM7TDMI CPU, 64 MB DRAM, and four
32 GB flash modules connected to its own channel. The flash
chips have been configured in single plane mode such that the
physical page size is 16KB wide. A page-level mapping FTL
is used to handle the standard disk requests. Accesses to the
SSD are performed using DIRECT IO to avoid page caching
effects. Any required information such as record or key size
can be communicated to the SSD as explained in III-E and
similar to [9].

IV. EXPERIMENTS

A. Evaluation Methodology

In this section we evaluate the performance of the four
schemes described in section IV-C. Each sort scheme will
involve sorting the same random input data. The experiments
were performed in a 3.4GHz Intel Core i5 powered machine
with 16GB of main memory running Ubuntu 12.04. Since
external sort is used for data sets that are larger than the
free memory size the amount of main memory available to
the operating system has been reduced to 3GB using boot
commands. The input data consists of 16KB long records that

Se
lf

-S
o

rt
(W

)

Generate

Write

P. Sort

P.Sort

P. Sort

P.Sort

Merge

Read

Write Read

Generate and Write Partial Sort Merge(W) Read

M
er

ge
So

rt

WriteRead

Se
lf

-S
o

rt
(C

)

Generate

Generate Tree(W) Active Read

Active
Read

Build
Index

Redirection

Generate

Write

Generate and Write Generate Tree Active Read

Active
ReadBuild

Index

Redirection

Read

Command

Read

Active Merge

A
ct

iv
eS

o
rt

Active
Merge

Generate

Write

P. Sort

P.Sort

P. Sort

P.Sort

Generate and Write Partial Sort

WriteRead

Fig. 2. Various sorting schemes and their phases. Each arrow arriving or
leaving a cylinder represents an access to storage. The triangles represents
the use of B+-tree for indexing inside of active SSDs.

include a 10-byte key. The total input data size is set to 8GB
(524,288 records) due to the limited memory of the Jasmine
OpenSSD platform. The standard read and write operations of
the four sorting schemes are served by the same page-mapping
FTL thus allowing us to compare the active operations of the
ActiveSort and Self-Sorting SSD algorithms side by side.

B. B+-Tree Performance

The fanout controls the shape of the B+Tree. Higher values
create short and wide trees, while low values create tall and
narrow trees. Trees of different shapes have different properties
that affect the performance of the Self-Sorting SSD. The B+-
Tree in the Self-Sorting SSD was evaluated using different
fanout values. The results indicate that as the fanout value
increases, the time required to complete the key insertion into
the tree increases. The reason is that the number of keys that
must be compared in each node while traversing the tree
in order to find the insertion point increases. Using lower
fanout values improve the insertion performance, however this
comes at the cost of an increasing memory footprint of the
B+-Tree caused by an increasing number of required nodes
and larger overhead of the node data structures. A fanout
value of 128 provides the most compact B+-Tree without
significantly affecting insertion performance. Using the 128
fanout configuration the required memory footprint to handle
the 8GB (524,288 records) experiments is 12,103 KB.

C. Sorting Schemes Evaluated

In this section, we compare MergeSort, ActiveSort, and our
Self-Sorting SSD to sort data. Fig. 2 illustrates the different
data transfer operations involved in the sorting process of each
scheme. All the schemes begin with a Generate and Write

(Gen. and W.) phase, where the input data is generated and
then written into the storage. We explain the details of each
phase for the different schemes below:

1) MergeSort: The MergeSort scheme uses the traditional
external merge sort algorithm to sort the input data. Fig. 2
breaks down the phases followed to produce the sorted output.
MergeSort reduces the host main memory requirement by
breaking down the sort process into two parts. In the first
part, presorted chunks of data called runs are generated by
reading chunks of data into the host, sorting and writing
back the partial sorted results to disks. This is an iterative
process that should be repeated to process the whole input
data. The number of iterations required is equal to the ratio
of the original data size and the chunk size processed in each
iteration. This process is represented as a partial sort phase
in Fig. 2. The second part involves merging each of the runs
previously produced into one complete stream of sorted data.
Traditionally this merged stream is written back to storage. For
this reason we have depicted this phase as merge (W) denoting
that the output of the stream is written to disk.

2) ActiveSort: ActiveSort uses on-the-fly data merge to
accelerate external sorting[4]. This process is divided into two
parts. The first is similar to that of MergeSort in the sense
that runs of presorted data are generated by the host (partial
sort phase). However the second process called active merge
employs on-the-fly data merge to generate the final sorted
stream. Active merge works by writing the sorted runs from
the partial sort phase into special LBA regions. Once the
output is requested the active SSD will internally merge the
partial sorted data by comparing the record key, and serve it
to the host. By transforming what would be write operations
on the merge (W) phase into read operations, it is possible to
reduce the time to service the requests since read operations
are processed faster than write operations and will eventually
reduce erase operations increasing the SSD’s lifetime.

3) Self-Sorting SSD: The Self-Sorting SSD schemes take a
more radical approach, they completely eliminate the sorting
processes into the SSD. This eliminates the overhead of
read and write operations completely. Since there are two
mechanisms to generate indexes, there are two Self-Sorting
schemes: Self-Sort(C) refers to the sort scheme that uses
the sort-on-command mechanism to generate the index, while
Self-Sort(W) refers to the scheme that uses the sort-on-write
mechanism.

Self-Sort (C) has three phases. The first one, generate and
write, is same as in the previous schemes. The second phase
named generate tree is activated on demand by the host when
required. To activate the indexing process in the second phase
the host must send a generate command to the active disk.
Once the command is received the Self-Sorting SSD will read
the unsorted input data internally and generate the index. The
final phase (active read) just involves the host issuing standard
read requests. The index will handle the requests and provide
the sorted data.

In Self-Sort (W), the sorting process is divided into two
phases: the generate tree phase which triggers the internal

Fig. 3. The total elapsed time of each scheme. The final read phase of each
scheme (Read, Active Merge, and Active Read) has been grouped into the
Read category.

TABLE I
BANDWIDTH (MB/S) OF IMPORTANT I/O OPERATIONS. PS INDICATES THE

USE OF PRE-SORTED INPUT DATA.

Scheme Write Read Active
Op.

Merge
(W)

Generate
Tree

MergeSort 38.60 111.73 27.53
ActiveSort 35.55 111.09 74.62
ActiveSort-PS 35.54 111.14 112.02
Self-Sort (C) 36.78 63.99 53.54
Self-Sort (C)-PS 36.14 113.03 51.26
Self-Sort (W) 64.21 36.20
Self-Sort (W)-PS 112.46 35.25

indexing process on the Self-Sorting SSD. To indicate that the
index generation of the sort-on-write mechanism takes place
during write we have marked it with (W). Since Self-Sort(W)
indexes on write operations we have grouped the gen. and
w. and generate tree phases together. The next active read
phase involves the host issuing read requests for the sorted data
which are served by the Self-Sorting SSD. As seen in Fig. 2
the creation of partial sorted data has been completely removed
from the process and instead replaced with the generate tree
phase that only involves data read and processing but no write.

D. Performance

Fig. 3 compares the elapsed time of each sort scheme to sort
8GB of input data. Complementing the elapsed information
is Table I which shows the bandwidth seen at each phase
involving data transfers to/from the SSD storage. Additionally,
to compare the overhead of performing data computation
within the SSD, presorted data tests results are shown as (PS)
next to the scheme name. Using a presorted data set maximizes
the internal parallelism enabling us to extract the overhead of
data computation. The following observations for each scheme
must be noted:

MergeSort: Although read and write operations can be
performed at top speed, the need to write the partial runs
increases the elapsed time. Moreover seeing the extremely low
performance in the merge (W) phase suggests that offloading
this phase is a good opportunity to increase performance.

ActiveSort: The time for generate and write and partial sort
are similar to that of MergeSort. However, by transforming the
expensive write operations of MergeSort into read operations
using active merge it is possible to achieve better overall
performance. As seen in the ActiveSort(PS) algorithm of
Table I, the overheads of performing merge operations (key
comparison and memory copy) within the SSD are completely
hidden. This is possible since the input data is previously
sorted so the partially sorted chunks are accessed sequentially
and are perfectly striped across the SSD’s flash channels
fully utilizing the SSD internal parallelism. When using the
random input data, the requests cannot be striped across the
channels and the parallelism is reduced resulting in a decreased
performance of 74.62 MB/s. Conveniently, this performance is
still better than the average write performance (36.98 Mb/s)
thus explaining the performance gain.

Self-Sort(C): Following the same approach as the ActiveSort
scheme, the Self-Sorting SSD seeks to replace write operations
with read operations. However, while ActiveSort replaces only
the write operations in the merge (W) phase, Self-Sorting SSD
replaces all the write operations across all the sort process. To
do so, it uses the generate tree and active read phases both
of which are read based. The overhead of sorting within the
SSD is expected to be larger than that of merging. Table I
shows that the generate tree and active read from Self-Sort
SSD have lower performance than the active merge phase of
ActiveSort. However, the performance of those two phases are
still better than that of the combined read-write operations
they seek to replace. When using the presorted input data
(PS) to verify the overhead of this scheme, we also find that
increasing parallelism could potentially hide completely the
cost of performing sorting operations within the SSD.

Self-Sort(W): This scheme moves the index generation
when the input data is being written. From Table I, the
generate tree operation is composed of three parts: the gen-
eration of the input data, the writing process of the data, and
the indexing of the data. This operation has a bandwidth of
36.20 MB/s which is slightly lower than the average write
bandwidth of 38.09 MB/s which is the standard write operation
bandwidth of the Jasmine OpenSSD platform. The bandwidth
while reading using the internal index is 64.21 MB/s which is
similar to that of Self-Sort(C). Self-Sort(C) reduces time by
generating the index simultaneously with the write operation
avoiding executing an internal read of the data input that is
required by the Self-Sort(C) scheme. By employing sort-on-
write, Self-Sort(W) reduces the duration by 60.75% compared
to MergeSort and by 27.35% when compared with ActiveSort.

E. Energy

Power measurements were taken during the execution of the
four sort schemes using a Yokogawa WT210 digital power
meter configured to integrate the registered power over the
elapsed time of the scheme. The configured sample rate on
the power meter was 0.25 seconds. Energy consumption results
are shown in Fig. 4. Since energy is a product of power and
time, the energy consumption follows a similar performance

Fig. 4. Energy Consumption Results

Fig. 5. I/O Operations Overhead

behavior to the elapsed time results. Using the Self-Sorting
SSD with the sort-on-command mechanism yields energy
savings of 46.44% while using the sort-on-command yields
58.86% savings in comparison with MergeSort.

F. I/O Operations Overhead

The amount of data overhead was logged during the evalua-
tions to study the advantages of the Self-Sorting SSD scheme.
A request that is neither part of the initial unsorted data
writing process nor of the sorted output reading process is
considered as an overhead. It was found that when comparing
the MergeSort and ActiveSort schemes, the later one reduced
the amount of write I/O by almost 50% potentially doubling
the lifetime of the SSDs. Moreover, in the case of Self-Sorting
SSD scheme write operations required to sort the data have
been completely removed.

V. DISCUSSION

The current SSD prototype platform runs on a single core
embedded processor at lower frequencies compared to those
found in new multi-core embedded processors based SSDs that
are commercially available nowadays. Higher clock speeds and
multi-core technologies will further speed up the processing
capabilities. Increasing internal parallelism could potentially

increase the complexity and amount of operations that could
be hidden when performing active operations.

An alternative to the external merge sort algorithm is an
index sort algorithm executed in the host. In this algorithm,
the host parses records as they are about to be written into the
SSD and generates an index in memory using the record keys.
Then the host uses the index to read the data from disk in an
ordered fashion. This algorithm can avoid the write overhead
of the external merge sort algorithm. However, we believe
there are still some benefits of using Self-Sort SSD. The first
is freeing the host system resources by generating the index
within the SSD. Second, performance scalability: by adding
more Self-Sorting SSDs the indexing performance increases
linearly. Third, in order to read the sorted data the host index
sort algorithm needs to generate one I/O request per record.
This can become a performance issue since the number of
I/O requests will be affected by the record size. Short records
particularly will have more overhead. The Self-Sorting SSD
avoids this problem.

VI. RELATED WORK

Active disks were introduced to offload data processing
functions to hard disk drives in [1][10][11][12][13] mainly
focusing in filter and aggregation functions.

Recently, researchers have applied the same concept to
SSDs. Some approaches use custom hardware such as Kim
et al. in [14] where porting the scan function used in data-
intensive applications to SSDs is explored, and obtains better
results that those obtained previously with hard disk drives
by employing a special purpose computing module inside
the SSD controller. In [15], Cho et al. proposes a model
of active disk using an SSD with an added reconfigurable
stream processor per flash memory channel at marginal cost
to speedup data-intensive applications.

Previous research to improve the performance of external
merge sort using SSDs include: Park and Shim [16], who
introduce the flash-aware external sorting algorithm which
utilizes multiple reads instead of heavy writes to improve sort
performance. Liu et al. [17] propose using natural occurring
runs whose range of values do not overlap each other to
accelerate sorting. Compared to these work, we can completely
remove I/O operations during external merge sort by building
indexes inside of SSDs.

VII. CONCLUSION

In this paper, we have evaluated the Self-Sorting SSD
architecture which completely offloads sorting operations into
SSDs by creating indexes at write time or on demand as
required. The evaluation results show that the proposed scheme
can completely eliminate write operations from the external
sorting process, improving performance and the lifetime of
SSDs.

ACKNOWLEDGMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea Government
(MSIP) (No. 2013R1A2A1A01016441).

REFERENCES

[1] A. Acharya, M. Uysal, and J. Saltz, “Active disks: Programming
model, algorithms and evaluation,” in Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1998.

[2] G. Graefe, “Implementing sorting in database systems,” ACM Computing
Surveys (CSUR), vol. 38, no. 3, 2006.

[3] “Couchbase Server 3.0,” Couchbase, 2014.
[4] Y.-S. Lee, L. Cavazos Quero, Y. Lee, J.-S. Kim, and S. Maeng,

“Accelerating external sorting via on-the-fly data merge in active SSDs,”
in Proceedings of the USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage), 2014.

[5] P.-A. Larson and G. Graefe, “Memory management during run gen-
eration in external sorting,” in Proceedings of the ACM SIGMOD
International Conference, 1998.

[6] D. Comer, “The ubiquitous b-tree,” Computing Surveys, vol. 11, no. 2,
pp. 121–137, June 1979.

[7] D. Kang, D. Jung, J.-U. Kang, and J.-S. Kim, “µ-tree: an ordered index
structure for NAND flash memory,” in Proceedings of the International
Conference on Embedded Software (EMSOFT), 2007, pp. 144–153.

[8] “The OpenSSD Project,” http://www.openssd-project.org/.
[9] D. Tiwari, S. Boboila, S. S. Vazhkudai, Y. Kim, X. Ma, P. J. Desnoyers,

and Y. Solihin, “Active flash: Towards energy-efficient, in-situ data
analytics on extreme-scale machines,” in Proceedings of the USENIX
Conference on File and Storage Technologies (FAST), 2013.

[10] L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan,
G. R. Ganger, E. Riedel, and A. Ailamaki, “Diamond: A storage
architecture for early discard in interactive search,” in Proceedings of the
USENIX Conference on File and Storage Technologies (FAST), 2004.

[11] E. Riedel, G. Gibson, and C. Faloutsos, “Active disks for large-scale data
mining and multimedia,” in Proceedings of the International Conference
on Very Large Databases (VLDB), 1998.

[12] E. Riedel, C. Faloutsos, G. Gibson, and D. Nagle, “Active disks for
large-scale data processing,” Computer, vol. 34, no. 6, Jun. 2001.

[13] E. Riedel, C. Faloutsos, and D. Nagle, “Active disk architecture for
databases,” Carnegie Mellon University, Tech. Rep., 2000.

[14] S. Kim, H. Oh, C. Park, S. Cho, and S.-W. Lee, “Fast, energy efficient
scan inside flash memory solid-state drives,” in Proceeedings of the
International Workshop on Accelerating Data Management Systems
(ADMS), 2011.

[15] S. Cho, C. Park, H. Oh, S. Kim, Y. Yi, and G. R. Ganger, “Active
disk meets flash: A case for intelligent SSDs,” in Proceedings of the
International Conference on Supercomputing (ICS), 2013.

[16] H. Park and K. Shim, “Fast: Flash-aware external sorting for mobile
database systems,” Journal of Systems and Software, vol. 82, no. 8, pp.
1298–1312, 2009.

[17] Y. Liu, Z. He, Y.-P. P. Chen, and T. Nguyen, “External sorting on
flash memory via natural page run generation,” The Computer Journal,
vol. 54, no. 11, pp. 1882–1990, 2011.

