
GCTrees: Garbage Collecting Snapshots

Chris Dragga and Douglas J. Santry
Advanced Technology Group, NetApp Inc.

chris.dragga@netapp.com, douglas.santry@netapp.com

Abstract—File-system snapshots have been a key component
of enterprise storage management since their inception. Creating
and managing them efficiently, while maintaining flexibility and
low overhead, has been a constant struggle. Although the cur-
rent state-of-the-art mechanism, hierarchical reference counting,
performs reasonably well for traditional small-file workloads,
these workloads are increasingly vanishing from the enterprise
data center, replaced instead with virtual machine and database
workloads. These workloads center around a few very large files,
violating the assumptions that allow hierarchical reference count-
ing to operate efficiently. To better cope with these workloads,
we introduce GCTrees, a novel method of space management
that uses concepts of block lineage across snapshots, rather than
explicit reference counting. As a proof of concept, we create a
prototype file system, gcext4, a modified version of ext4 that uses
GCTrees as a basis for snapshots and copy-on-write. In evaluating
this prototype analytically, we find that, though they have a
somewhat higher overhead for traditional workloads, GCTrees
have dramatically lower overhead than hierarchical reference
counting for large-file workloads, improving by a factor of 34 or
more in some cases. Furthermore, gcext4 performs comparably
to ext4 across all workloads, showing that GCTrees impose minor
cost for their benefits.

I. INTRODUCTION

Storage usage in modern data centers has changed dra-
matically over the previous decade. The introduction of vir-
tual machines and the proliferation of database deployments
have created new demands on storage systems, making data
management more important than ever. This paper describes
GCTrees, a file-system-agnostic scheme for implementing
snapshots that is optimized for such workloads.

Virtualization has had a profound effect on the modern
data center. Applications no longer run on dedicated machines
with their root file system on a local disk. Instead, physical
servers have been virtualized to support many virtual machines
sharing hardware. The root file systems of VMs have also
been virtualized. A VM’s root file system can be encapsulated
in a file, called a disk image, and placed on shared storage.
The classic sequential/append workload is directed to the file
system inside the disk image, but the workload appears to be
random I/O to the disk image. There has also been an explosion
of OLTP database deployment in recent years, and this too
has been affected by virtualization. It is common practice to
place a database’s data in a LUN accessed by iSCSI, and
store the LUN on a shared storage server (the LUN can be
represented by a large file internally on the remote storage
server). Access to OLTP LUNs is also random. Due to these
trends, the historically important workload for shared storage,
a “home directory” style workload, which is characterized by
sequential reading and writing or appending, has lost much of
its importance.

There are many advantages to employing shared storage.
Shared storage offers location transparency, disaster recovery,
and advanced data management features. Snapshots have be-
come an indispensable tool for data management. Snapshots
offer a consistent read-only point-in-time view of a file system.
Such views are important when a consistent backup is required.
Snapshots can also be used to conveniently recover from data
loss, potentially without the need for a system administrator’s
assistance.

A space-efficient implementation of snapshots has to man-
age block sharing well. As a result, snapshot implementations
must be able to efficiently detect which blocks are shared.
Consider a new snapshot. It is initially identical to the active
file system; all of its blocks are shared. When a shared block
is updated in the active file system, it is left intact in the
snapshot and the new version of the block is placed in the
active file system (copy-on-write, or COW); sharing must be
detected efficiently to determine if COW is necessary. The
same problem exists when a block is deleted: the system must
be able to determine quickly if a block can be released or if
it is still in use.

The problem of block sharing is usually addressed on a
per data structure (file system) ad hoc basis. Storage systems
vary widely in their choice of data structures. Consequently,
the implementation of snapshots in NetApp R⃝ WAFL R⃝ [1] is
vastly different from that found in FFS [2].

One potentially unifying approach is that of Rodeh’s hierar-
chical reference counting [3]; this is currently considered to be
state of the art. Rodeh’s methods make minimal assumptions
about the structure of the underlying file system and could be
superimposed on many file systems that need to support shared
blocks. There are two key pieces to the system. First, block
usage accounting is expanded from a binary relation of either
used or free in a bitmap to wider entries to support multiple
references, that is, more than a bit is devoted to the state of
a block; we call the resulting structure an Rmap. Second, the
reference counts (refcounts) persisted in the Rmap are actually
just the lower bounds on the number of extant references to a
block—references can also be inherited from a parent in the
file-system tree.

To illustrate how the scheme works, consider the situation
depicted for a file tree of indirect blocks in Figure 1; leaf
nodes contain data and the arrows are indirect pointers stored
in indirect blocks (interior nodes). The top block, A, has two
references to it and thus has a reference count of 2, but its
children only have explicit reference counts of 1; the second
reference is implied. If the block D in R2 is modified, then
COW is performed from D up the path to the root, A; the
result is depicted in the right half of Figure 1. Only now do
the implicit reference counts become explicit.978-1-4673-7619-8/15/$31.00 c⃝ 2015 IEEE

A

2

B

1

C

1

D

1

R1 R2

RC=1

RC=1

RC=1

A

1

B

1

C

1

D

1

R1 R2

RC=2

RC=2

RC=2

A’

1

B’

1

C’

1

D’

1

Modify D � D’

Fig. 1: Update Storm. Behavior of hierarchical reference counting
when a single block, D, is modified in a file with a deep metadata
tree. The reference count of A changes from 2 to 1, while all other
refcounts not directly on the path from A to D change from 1 to 2.

Hierarchical reference counting is efficient when it can
postpone explicitly counting references. A side-effect of the
COW is that a number of refcounts must be updated as a result
of becoming explicit. The number of refcounts that need to be
updated is proportional to the fan-out of the tree multiplied by
the height. As the fan-out of such trees can be on the order of
hundreds or even thousands, a significant number of refcounts
may be updated. These refcount changes need to be propagated
to the Rmap, which can generate substantial random I/O. We
refer to this I/O as an update storm.

Rodeh conceived a further refinement to hierarchical ref-
erence counting to mitigate the update storm: the refcount
log [4]. When a refcount change needs to be recorded, it is
first logged. The log contains the increments and decrements
to each modified refcount—not the absolute counts. When the
log is full, the file system processes its entries and propagates
them to the Rmap.

Accumulating entries in the log can introduce two miti-
gating effects (as opposed to simply postponing the update
storms). First, opposite refcount deltas may cancel one another
out in the log, leaving the net count unchanged and no work
to be done. Second, multiple updates to an Rmap block can
amortized over a single I/O. It should be noted that in the
absence of cancellation in the log, this scheme exacerbates the
update storm by unleashing a number of them simultaneously.

A number of artifacts of this scheme are potentially prob-
lematic. First, one never truly knows if a block is free. A block
with a positive refcount may well be free; we just do not know
yet, as the decrements might be waiting in the refcount log.
This can be a problem if a file system is desperate for free
space. Note, however, that it is impossible for a block to be
referenced and have a zero count in the Rmap.

A potential drawback for some workloads is the inherent
nature of the algorithm. Consider Figure 1 again: it is clear
that the number of refcount updates required is at a maximum
when the divergence between two trees is a minimum. The
number of refcounts to update is proportional to the number
of shared blocks between the trees. For a workload that exhibits
a lot of sequentiality, this makes sense (everything changes, or
nothing changes). For random I/O, this behavior is the exact
opposite of what we want. We would like the amount of work
required to maintain the metadata to be proportional to the

data that changes, not the inverse. While this might not be a
severe problem for the traditional workstation workload, it is
not well suited for servers hosting disk images and LUNs.

The contribution of this paper is the introduction of
GCTrees, a new system for implementing snapshots in file
systems. The target workload is that of large files and random
writes, such as disk images and LUNs. The system is suitable
for retrofitting to many extant file systems that require snap-
shots. We describe and evaluate an implementation of GCTrees
for Linux ext4. The evaluation shows that GCTrees handle
snapshots efficiently while adding little overhead.

II. ARCHITECTURE

This section presents Generational Chain Trees (GCTrees).
The GCTree system consists of two pieces: a graph overlaid
on top of the file-system tree and a background process, the
scanner, that garbage collects. The GCTree graph represents
the relationships between blocks with respect to COW. The
scanner examines block relationships to discover blocks to
free. Both pieces are described in this section.

Efficient implementations of snapshots require block shar-
ing. When blocks are shared, their states can no longer be
captured by a simple binary state of either free or used.
Consequently, writing and freeing blocks is complicated by
the file system needing to determine the state of a block
before making decisions. The GCTrees scheme addresses these
problems with a unique approach to tracking the state of
blocks.

GCTrees track relationships between blocks instead of
directly counting references. When a shared immutable block
is updated in a GCTree system, the COW is performed, but
instead of performing any sort of reference counting directly,
GCTrees records that the new block is descended1 from
the immutable block. As will be shown, this information is
sufficient to perform efficient space management and block
sharing. An Rmap is not required; the usual form of space
management, such as a bitmap, is all that is needed.

To track the relationships between blocks, GCTrees intro-
duce a small amount of metadata to the objects that are shared.
Objects that are not leaves in the file-system tree, such as
indirect blocks and inodes, must include the metadata. The
leaves of the file-system tree, data blocks, do not need the
metadata.

Figure 2 depicts the fields in the GCTree metadata. The
fields are used as follows: the head pointer is the head of a
doubly linked list of blocks that are descended from the block,
that is, those blocks that are COWed from it. The source pointer
is used to point to the block from which it is descended, that
is, the block from which it was COWed. The previous and
next fields are used to implement the doubly linked list of
descendants. The list of descendants is required to support
data structures such as B+ trees. A B+ tree node may split
following COW, producing multiple descendants from a single
block. File systems whose tree nodes do not split, such as
FFS, can safely omit the previous and next pointers. Finally,

1We use descend and descendant exclusively with respect to GCTrees, not
file trees (in the latter case, we use child or child block).

s h

p n

�

source

previous
head

next

Borrowed Bit

Fig. 2: GCTree Fields. Layout of the fields present in a GCTree
metadata item.

s h

p n

B

DC A

s h

p n

� �

B’

A’

Fig. 3: GCTree COW Example. How GCTrees allow block
sharing when COW occurs. A′ and B′ have been COWed from A and
B, respectively; B′ still shares blocks C and D with B, however.

the metadata includes a field of borrowed bits. A bit indicates
whether the parent block is the oldest block in the chain to
point to a child. As will be seen, this information is used
when garbage collecting and deciding to COW.

A. Relating Blocks

To illustrate how these fields are used, Figure 3 presents a
simple example. Consider a data block, A, that is a child of the
indirect block, B, in a snapshot. A does not include GCTree
metadata, because it is a leaf in the file system tree, but B does.
Initially all of the GCTree fields in B are null. Now consider
the case of updating A in the active file system, so that COW
produces a new data block, A′. The indirect block, B, must be
updated with the address of A′, precipitating a further COW
and producing B′. B′ is descended from B. The relationships
between the blocks are recorded as follows: B′ source points
to B, B head points to B′, and as B′ is the only descendant of
B, the previous and next pointers remain null.

While B′ is in the active file system and points to the
new block, A′, the remaining children of B′ are shared with
B. To reflect ownership, the borrowed bits must also be set.
Continuing with our example, the pointers that B′ inherits have
their borrowed bits set as B owns them, but the new block, A′,
is owned by B′, so its borrowed bit is clear. At this point, B′

is free to diverge further from B without updating its ancestor
again. As new pointers are written to B′, their corresponding
borrowed bits are cleared. The insight is that the update storm
has been replaced with a single I/O to the source COW block
when B was first updated in the active file system.

B. Garbage Collecting

In this section we describe how the GCTrees scheme uses
the GCTree graph to manage space, one of the most important
responsibilities of a file system. At some point, space in
the file system will have to be reclaimed. The COW and
free operations must efficiently determine the level of sharing
before proceeding.

GCTrees use the relationship graph overlaid on the file-
system graph to discover free blocks. Files in the active file
system and snapshots have the same deletion algorithm applied
to determine if blocks are available. Unlink and snapshot
deletion remove objects—inodes and root blocks—from the
user-visible namespace and pass them to the scanner. The
scanner’s job is to identify and free blocks inside the objects.
Only indirect blocks and inodes are read from disk; data blocks
are never read from disk by the scanner. The scanner applies
the following algorithm recursively.

Free blocks are identified in two phases. The first phase
identifies blocks that are owned by an earlier snapshot; these
are then ignored. The second ensures that the remaining blocks
are not required by snapshots or the active file system.

The first phase proceeds when the scanner brings in a
potential indirect block or inode, or victim, for release. It first
identifies a set of candidate blocks for deletion corresponding
to the range covered by victim’s child block pointers. Then
it checks the victim’s borrowed bitmap. For each bit set, it
removes the child blocks for the corresponding pointer from
the candidate set; such blocks are borrowed from an ancestor
and are still in use. The candidate set now consists of those
blocks that are not required in any past snapshots.

The second phase ensures that a block in the candidate set
is not in later snapshots or the active file system, and thus
which blocks are safe to delete. The scanner must examine
each of the victim’s immediate descendants. For each borrowed
pointer in a descendant, the scanner checks whether that
pointer covers any blocks in the candidate set. If so, the
scanner transfers ownership of those blocks to the descendant
by clearing the borrowed bit for that pointer and removing the
corresponding blocks from its candidate set.

Once the set of free blocks has been finalized, the scanner
updates the GCTree pointers of the block’s neighbors, setting
the head pointer of the victim’s ancestor to point to the
first descendant and setting the source pointer of the first
descendant to point to the ancestor. In addition, if the victim
block was part of a descendant list, its descendant blocks must
be inserted into this list. Finally, at this point the victim block

can be deallocated. If the remaining blocks in the candidate
set are data blocks, these can also be deallocated; otherwise,
the scanner must repeat this algorithm on each of these blocks
in turn. Note that if a block has no ancestors or descendants,
nearly all of these steps can be omitted. In the common case
when deleting a snapshot block, the scanner has to perform
two reads and writes to maintain the GCTree graph. In the
worst case, the length of the descendant list must be traversed;
this is rare. Moreover, as will be seen, we have determined
empirically that for our target workload this is much cheaper
than an update storm.

III. IMPLEMENTATION

Fully validating GCTrees requires testing them in a real file
system. To accomplish this, we add GCTrees to Linux’s ext4
file system, implementing both copy-on-write and snapshot
capabilities in the process, creating a new file system, gcext4.
This section begins with a basic overview of ext4’s features
and then describes our implementation process, highlighting
some of the pitfalls that we encountered along the way.

A. Ext4 Background

Ext4 is the fourth and most recent iteration of Linux’s ext
file system. As it is the default file system of several major
distributions, including Ubuntu and Fedora, it has a broad user
base, spanning both enterprise and personal use, and is known
for its robustness and stability. For these reasons, we choose
to implement GCTrees in this file system, even though it lacks
support for snapshots and copy-on-write. Before we delve into
our changes, we first provide a brief overview of its most
relevant details to our work.

In many ways, ext4 bears a strong resemblance to UNIX’s
original FFS [5]. As in FFS, ext4 divides the disk into fixed-
size block groups, each of which contains allocation metadata
and a fixed number of inodes and general-purpose blocks. Each
file is rooted in an inode, which is uniquely identified by its
inode number; file contents are stored in data blocks. Although
the file system treats files and directories differently, they use
identical data structures on disk and in memory.

Despite these similarities, ext4 diverges in a number of
critical ways, adding features like delayed allocation, directory
indexing, and journaling. Most importantly, it maps blocks to
files using extents, ranges of contiguous blocks as large as
128MB. As in the FFS model, inodes can either point directly
to their extents, or they can point to intermediate index blocks;
unlike indirect blocks in FFS, these index blocks are arranged
in a B+ tree. Although ext4’s implementation of most B+
tree operations is minimal—nodes are seldom merged, and
rebalancing happens only in a limited fashion—extents provide
substantial performance and efficiency gains [6].

As our main focus is to provide a proof-of-concept imple-
mentation, we omit some of ext4’s more advanced features.
In particular, we do not support direct I/O, delayed allocation,
or directory indexing. However, because of their importance
in file-system robustness and efficiency, we do support both
journaling and extents. Although support for journaling is
mostly trivial, thanks to the flexibility of ext4’s journal, ac-
commodating extents adds noticeable complications.

Inode Header Inode Data Inode Tail X-attrs

Gcext4 Inode (256 B):

GCTree

Extent Header Extent Pointers (334)
Extent

Tail

Gcext4 Index Block (4096 KB):

GCTree

Fig. 4: GCTree Placement. Placement of GCTree metadata in
gcext4’s on-disk structures. The unshaded areas are those present in
unmodified ext4 (note that inode header and tail aggregate a number
of separate fields), and the shaded area indicates the location of
the GCTree metadata. For inodes, GCTree metadata consumes some
of the space for extended attributes, and for index blocks, GCTree
metadata consumes several extent pointers.

B. Implementing Snapshots in ext4

Because ext4 is a file system that only overwrites data in
place, adding snapshot support requires implementing COW.
Doing so involves several steps: adding GCTree metadata to
the appropriate structures, creating and maintaining snapshots,
and correctly performing COW. In each of these, we seek
to minimize the impact of our changes to ext4’s existing
functionality, both to simplify our task and to take better
advantage of ext4’s robust codebase. This section describes
our implementation of each of these steps in turn and some of
the more serious issues we encountered in this process.

1) Adding GCTree Metadata: Supporting COW snapshots
by using GCTrees requires adding metadata to all file-system
structures that contain disk pointers. In ext4, these consist of
inodes, index blocks, and directory entries, which contain the
inode numbers of the files to which they point. For inodes
and indirect blocks, we simply inline the GCTree metadata
with the existing structures. For directory entries, however, this
approach would add prohibitive overhead to each COW, as the
file system would have to modify every directory on the path
from the newly copied file to the root. Therefore, we employ a
different method for directory entries, using a special file, the
ifile, to add a layer of indirection between directory entries
and inodes.

Embedding GCTree metadata. We represent GCTree
metadata as a simple structure containing the source, head,
next, and previous pointers and a bitmap indicating which file
system pointers are borrowed from an ancestor (see Figure 2).
Since disk pointers in gcext4 are 48-bit, the four GCTree
pointers occupy 24 bytes. The size of the bitmap varies
depending on the number of file system pointers; thus inodes,
which have four pointers, use only a byte for their bitmap,
whereas index blocks require 42 bytes.

In order to avoid additional random I/O upon copy-on-
write, we inline the GCTree metadata in its corresponding
structure, as shown in Figure 4. This proves simple for inodes,
since ext4 leaves substantial amounts of additional space
in its inodes for extended attributes. As these are optional,
we appropriate some of this space for GCTree metadata. In

Foo.txt 14

Directory Entry:

. . . 342 209 476 477 . . .

Ifile:

0-11 12 13 14 15

. . . 475 476 477 478 . . .

Inodes

Fig. 5: Ifile Usage. Lookup of the file foo.txt. Its directory entry
stores logical inode number 14; this is used to index into entry 14 in
the ifile, which points to physical inode 476.

contrast, index blocks are tightly packed; thus we have to
sacrifice several file system pointers, reducing the total from
340 to 334.

Ifile. Handling the addition of GCTree metadata to di-
rectory entries is not as simple. COWing a file assigns it
a new inode; as inode numbers in ext4 translate directly to
physical disk locations, the file thus receives a new inode
number. A straightforward implementation would then update
the directory entries pointing to the inode with the new inode
number, using GCTree metadata to keep track of lineage. This
approach, however, ultimately requires that all inode COWs
proceed upward through the entire namespace, which does
not scale as the file system grows; it also necessitates reverse
lookup of directory entries, which is nontrivial in Linux.

We solve this problem by removing physical inode numbers
from directory entries, replacing them with logical inode
numbers. These logical inode numbers are then used to look up
the physical inode numbers in the ifile, a special file that stores
the logical-to-physical mappings, as shown in in Figure 5.
Logical inode numbers remain unchanged across snapshots;
when an inode is COWed, the file system simply changes
the physical portion of the mapping. While this may require
COWing portions of the ifile, the activity generated is generally
substantially smaller and more predictable than COWing the
namespace hierarchy.

Because physical inode pointers represent disk pointers,
each mapping requires a borrowed bit in order to track its
lineage. To simplify our implementation, we use the high bit
of each physical mapping for this purpose. We do not require
GCTree pointers for each ifile data block, however, because
those contained in the parent metadata suffice.

2) Snapshot Management: Although GCTrees provide a
foundation for tracking sharing across snapshots, they provide
no mechanisms for managing the snapshots themselves. Thus,
before implementing copy-on-write, the file system requires
a means of creating, accessing, and deleting snapshots. We
discuss the first two here, deferring snapshot deletion until
Section III-C, where we discuss deletion more generally.

As described in the previous section, the ifile contains
pointers to all inodes currently in use by the file system. Thus
the ifile, along with the corresponding root directory, uniquely
identifies a snapshot and the inodes associated with it, a fact

that gcext4 exploits for snapshot creation. Specifically, when
the file system creates a snapshot, it immediately COWs both
the root inode of the active file system and the current ifile. The
original root inode then becomes the root of the new snapshot.
To link the root inode with its ifile, the file system stores the
physical inode number of the original ifile in an on-disk field
of the original root inode. Finally, the file system adds an
entry for the new snapshot root to a special snapshot directory,
completing the snapshotting process.

Accessing snapshots takes similar advantage of the ifile. By
default, namei uses the ifile associated with the active file sys-
tem to perform logical-to-physical inode number translations.
However, if it encounters a directory inode with a valid ifile
pointer, it recognizes that the directory represents a snapshot
root and uses the stored ifile to perform all further translations,
switching seamlessly into the snapshot’s namespace.

3) Implementing Copy-On-Write: To preserve the data in
each snapshot, we add COW capabilities to gcext4’s file data
and metadata items, using shadow-paging techniques like those
in WAFL and btrfs [7]. Unlike these systems, we COW
only once per object per snapshot, to avoid disrupting ext4’s
attempts at preserving spatial locality. Even though shadow-
paging is a known technique, we nonetheless encounter several
challenges in implementing it in ext4.

The first difficulty in implementing COW in ext4 is cor-
rectly determining which items need to be COWed. For this,
we rely principally on GCTree metadata: if a block has its
borrowed bit set in one of its parents, then it must be COWed.
Similarly, if the borrowed bit for a given inode is set in its ifile
mapping or in one of the mapping’s parent metadata blocks,
that inode needs to be COWed. Conversely, if all borrowed
bits are clear, it is safe to overwrite.

Although correct, this strategy performs poorly with
Linux’s page cache, which allows data blocks to be retrieved
without checking their metadata upon access. As it is necessary
to verify the COW status of a block every time it is written, a
naive implementation would simply traverse the metadata tree
upon each block write, which would likely add unacceptable
CPU and disk overhead. To avoid this, the file system creates
a global generation counter that it increments upon each
snapshot, as well as individual generation counters for each
inode and data block. When a block or inode is brought into
memory, the file system checks its metadata to determine
whether it needs to be COWed. If so, its counter is initialized
to zero; otherwise, its counter is initialized to the global
generation number. Upon writing that object, if its counter
equals the global generation counter, the file system performs
the write in place; otherwise, it COWs the object, updating its
counter to the global value when finished.

The other challenge in implementing COW in ext4 is
dealing correctly with extents. Because extents can address
up to 128 MB, COWing full extents on single block writes
would prove prohibitively expensive. Instead, we COW only
those blocks that are needed, splitting the extent into multiple
parts. The unmodified extents have their borrowed bits set, and
the newly written extents do not. Additionally, because ext4
manages extents in a B+ tree, we have to establish GCTree
relations across node splits and to reset GCTree pointers during
tree growth (we move the parent’s GCTree metadata into

Inode

X

X

Extent

Blocks

Data Blocks

Fig. 6: Truncate Example. Truncation of a file with five data
blocks pointed to by two separate index blocks. Shaded blocks
represent those blocks to be deleted, and Xs indicate the pointers to
be removed. The shaded extent block will be enqueued for deletion,
as it completely covers the last two data blocks and it may require
GCTree processing; the shaded data block, however, will be directly
deleted, since it is not involved in GCTree relationships by definition.

the new child node and change pointers accordingly). For
simplicity, however, we disable movement of pointers into
neighboring nodes while performing B+ tree rebalancing if
the nodes lack a GCTree relationship.

C. Deletion Scanner

Although GCTrees strive to add minimal overhead to
ordinary file-system operations, they do impose additional I/O
during file and snapshot deletion, as described in Section II-B.
Thus, rather than perform deletions synchronously, we execute
them in a background task, the deletion scanner. In this section,
we first explain how the scanner handles the deletion of
ordinary objects and then describe how it handles the more
complex task of snapshot deletion.

1) Active File-System Deletion: Deletion of files and blocks
in the active file system is straightforward. The scanner itself
consists of a group of kernel threads that monitor a shared
message queue. When the user unlinks or truncates a file,
the file system places a deletion message onto the queue.
A scanner thread then wakes up and performs the deletion,
following the algorithm in Section II-B.

Although most of the work of deletion occurs in the back-
ground, some foreground actions must still occur. Unlinking a
directory entry requires removing it from the parent directory
and adjusting the link count of the target inode, both of which
may require COWs. Truncating a file is more involved, as
the truncated file remains fully accessible in the namespace,
allowing the user to reuse the truncated space before the
scanner has processed it. To handle this without resorting to
superfluous data COWs, truncation searches the file’s metadata
tree for the highest-level blocks that completely cover a range
of bytes to be truncated. If these blocks are metadata, it
enqueues them for deletion; otherwise, if they are data, it
directly frees them. Finally, it removes the pointers to the
blocks to be deleted from the parent. Figure 6 illustrates this
process.

Because deletion happens after blocks become inaccessible,
special measures are necessary to ensure that deletions are
not lost during crashes. For inodes, we take advantage of
ext4’s orphan list, an on-disk, singly linked list that contains

all inodes that are in the process of being deleted. We add a
similar list for deleted metadata blocks, repurposing two fields
in the extent header after deletion to point to the next block in
the list. Maintaining these lists imposes three additional I/Os
per enqueued block, but the total impact should be minimal,
since we enqueue blocks at the highest possible levels of the
file’s metadata tree.

2) Deleting Snapshots: Deleting snapshots requires more
effort than deleting inodes, although it proceeds similarly.
When the user wants to delete a snapshot, he or she simply
deletes the root directory for the snapshot, which enqueues a
normal deletion message for its inode. When a scanner thread
dequeues the message, however, it recognizes that the inode
to be deleted is a snapshot root and deletes its ifile before
deleting the snapshot root itself.

Ifile deletion follows a special procedure similar to the
deletion of ordinary files, but with several additional steps:

1) For each inode mapping in the ifile:
a) Determine whether the mapping is borrowed

by the ifile’s successor.
i) If so, transfer ownership to the succes-

sor ifile.
ii) Otherwise, enqueue a deletion message

for the inode and invalidate any existing
in-memory structures for the inode2.

b) Reduce the size of the ifile by the size of
the mapping to prevent the scanner from
processing the mapping again if it resumes
following a crash.

2) Delete the ifile.
3) Delete the snapshot root inode that points to the ifile.

As described, this procedure risks deleting snapshot roots
more than once, since they are assigned logical inodes, and,
thus, ifile mappings. We avoid this by marking all snapshot
roots borrowed in every ifile, regardless of when they were
created. Thus the scan of the ifile skips over every snapshot
root, since the ifile does not appear to own that inode. Further-
more, as snapshots are immutable, snapshot roots never lose
their borrowed status, ensuring that no erroneous deallocation
occurs.

IV. EVALUATION

Now that we have outlined the implementation of a file
system with snapshots built upon GCTrees, we evaluate how
well GCTrees function in practice. In this section, we first
examine our prototype’s performance against unmodified ext4,
demonstrating that our addition of snapshots comes at an
acceptable performance cost and that deletion in the back-
ground does not harm performance. Then, more importantly,
we compare the work that our file system does to that of
btrfs and that of a hypothetical hierarchical reference counting
system. We find that, although it produces more overhead in
NFS-like workloads, our GCTree system requires dramatically
fewer writes per operation—in some cases, up to 34 times
fewer—for the enterprise-centric workloads that we target.

2We do this for simplicity, though it does technically violate POSIX
semantics, as existing snapshot file descriptors will return stale error codes
when accessed.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
o
rm

a
liz

e
d
 T

h
ro

u
g
h
p
u
t

FS FS-snap OLTP OLTP-snap VM VM-snap

Experiment

Fig. 7: Normalized Benchmark Throughput. Mean gcext4
throughput for the Filebench fileserver (FS), OLTP, and VM bench-
marks, normalized to mean ext4 throughput (7.94, 0.144, and 7.70
MB/s, respectively). Bars labeled “-snap” have snapshots taken
during the run. Error bars show normalized standard deviation.

A. Overall Performance of Gcext4

Before we can begin to analyze the effectiveness of GC-
Trees themselves, we must show that they can be implemented
efficiently in a file system. To do so, we run a series of mac-
robenchmarks against gcext4 and compare its performance,
both with and without actively creating snapshots, to that
of its source file system, ext4, showing that gcext4 imposes
acceptable overhead. Our test machine consists of a desktop
with a 3GHz Intel Core 2 Duo processor, 6GB of RAM, and
a 7200 rpm 160 GB Hitachi Deskstar P7K500 hard drive,
running the Linux 3.9.4 kernel.

We focus on two benchmarks from the Filebench suite [8],
each exercising a different type of workload. OLTP reproduces
a typical database workload, performing a combination of
small reads and writes to several large files, as well as writes
to a log; all writes are synchronous. Fileserver emulates the
file-system activity of an NFS server and contains an even
mixture of metadata operations, appends, and whole-file reads
and writes. To adequately stress the disk, we configure each
benchmark to have a footprint at least twice the size of memory
(ten 1332MB files for OLTP and 10,000 files for fileserver);
we leave the other parameters at their default values. To
examine gcext4’s performance in virtualized environments, we
also configure the fileserver benchmark to run in an Oracle
VirtualBox VM, running stock Ubuntu 13.04 with ext4. The
disk image is 17GB, providing 12GB of usable space, is
fully preallocated, and uses the host buffer cache. We run
the benchmark with 9,000 files and refer to this as the VM
benchmark.

To test the effect that snapshots have on performance,
we choose intervals that reflect those commonly used by
enterprises. OLTP workloads are likely to be mission critical,
so we snapshot every five minutes during that benchmark. In
contrast, we snapshot the fileserver and VM benchmarks once
per hour, since they emulate less important workloads.

Figure 7 shows the average throughput of gcext4 and
gcext4 with snapshots over five three-hour runs for the file-
server, OLTP, and VM benchmarks. We normalize the values
shown to the mean performance of ext4 for each benchmark
and indicate the standard deviation of the normalized value
with error bars.

Across all benchmarks, performance without snapshots
shows no statistically significant difference from ext4, indi-
cating that the indirection added by the ifile comes at little
cost. Adding snapshots does hurt performance in some cases:
the fileserver and VM benchmarks degrade by 30% and 40%,
respectively. In both of these cases, the performance penalty
that we observe is unrelated to GCTrees.

The performance degradation that we observe in the file-
server benchmark occurs because we currently synchronize
files to disk when their inodes are COWed to ensure that any
reads from the snapshotted version contain all data present in
the file at snapshot creation time. The fileserver benchmark
ordinarily performs no synchronous writes, so the additional
synchronizations cause performance to suffer. More sophis-
ticated sharing of pages between inodes and their COWed
descendants could likely remove the need for this flush to disk
and reduce or eliminate the slowdown we observe. To verify
this hypothesis, we remove the synchronization step and repeat
the benchmarks with snapshots. We find that performance is
on par with gcext4 without snapshots, confirming that the
slowdown is an artifact of our implementation and not caused
by GCTrees.

In contrast, the VM benchmark is relatively unaffected by
additional synchronization. The VM’s disk image is the only
file in this benchmark, so only one synchronization occurs
per snapshot. However, the image file suffers from significant
fragmentation over the course of the benchmark due to COW.
We verify that this is the case by reexecuting the benchmark
on the fragmented VM image with COW disabled. When we
do so, the performance remains degraded, indicating that the
degradation is unrelated to GCTree I/O. This is a problem for
any file system that supports COW—we observe a performance
degradation of similar magnitude when executing the same
benchmarks on btrfs with snapshots3—and can be addressed
with defragmentation techniques and online cleaning. As our
file system is a prototype, we have implemented neither of
these and leave them for future work.

Finally, we observe virtually no performance penalty in
the OLTP benchmark. All writes are synchronous in this
benchmark and reads are small and random, causing disk I/O
from the benchmark to dominate in all cases.

B. Comparison to Hierarchical Refcounts

Although direct performance numbers show that our imple-
mentation performs comparably to unmodified ext4, they indi-
cate little about the efficacy of GCTrees themselves compared
to the current state-of-the-art method, hierarchical reference
counting. To evaluate this, we instrument both btrfs, a modern
file system that uses hierarchical refcounts, and gcext4 to
measure the number of block writes that each system requires
to maintain its snapshot metadata. In addition, as btrfs differs
from ext4 substantially (for instance, ext4 writes in place,
whereas btrfs never overwrites), we also simulate, within
gcext4, a hypothetical hierarchical reference counting system
and measure the blocks it would write.

Our comparison focuses on blocks written because this
is the factor most likely to affect performance. Under most

3See Section IV-B3 for our experimental setup; notably, we set it to COW
data once per snapshot, as in gcext4.

conditions, metadata in the working set will be small enough
to be cached in memory, whereas metadata writes must always
reach the disk to ensure persistence. Even when metadata is
not cached, the worst case number of additional blocks read for
both systems will be roughly commensurate with the number
of blocks written. The only exception to this can occur with
snapshot deletion for GCTrees: B+ tree node splits may lead
to chains of descendants that have to be read in, even if they
are not written. In practice, we have found this latter case to be
rare, occupying no more than 0.6% of the total block overhead.
Thus, as the number of reads in practice is difficult to measure
correctly and because the worst case reads are comparable, we
omit these numbers from our totals and report only writes.

In tracking block writes, we are careful to account for
the effects of the page cache, which may absorb redundant
writes and thus reduce the total write burden. To do so, we
only measure blocks that actually reach disk, during either
page cache writeback or explicit synchronization. As we use
the default writeback settings in our experiments, our results
represent a reasonable compromise between durability and
write reduction and are likely to reflect overhead observed in
practice.

Using this metric, we confirm our hypothesis that, although
hierarchical reference counting performs well for traditional
small-file workloads, update storms present a problem for
modern large-file workloads, dramatically inflating the write
overhead. In contrast, although GCTrees add some overhead
relative to hierarchical refcounts for traditional workloads, they
minimize overhead for modern workloads.

1) Btrfs Background: Btrfs is a new, currently in-
development Linux file system based entirely around B-trees.
Unlike ext4 and gcext4, which use inodes in fixed locations
and a separate metadata tree for each inode, btrfs organizes
all of its file metadata per snapshot into a single, reference-
counted B-tree. By default, btrfs never overwrites data in place
and instead COWs for every write, although this behavior can
be disabled for data blocks on a per-file or file-system-wide
basis (the nodatacow option).

To our knowledge, btrfs provides the only freely avail-
able implementation of hierarchical reference counting at this
time, using it to support snapshots and clones. We measure
the overhead for hierarchical refcounts by tracking all disk
writes generated exclusively by increments and decrements
to reference counts4, other than those used for allocation and
deallocation.

2) Simulation Rationale and Methodology: While informa-
tive, direct comparison to btrfs may be misleading. As men-
tioned previously, the structure of the two file systems differs
dramatically, and thus observed differences may reflect factors
other than the characteristics of the block-sharing methods. In
addition, its lack of an on-disk log is likely to reduce its ability
to cancel refcount changes, potentially inflating the number of
writes we observe. Therefore, we examine how hierarchical
reference counts would work on top of ext4.

Implementing a counterpart to gcext4 that uses hierarchical
refcounts in lieu of GCTrees would require prohibitive effort,

4We treat btrfs’s back references interchangeably with refcounts, as they
serve the same purposes and are treated similarly in the code.

so we opt instead to simulate the write activity that such a
system would produce, following the full deferred reference
counting system outlined by Rodeh [4]. We build our simu-
lation directly within gcext4, adding an in-memory log that
stores refcount changes and simulates a durable log on disk.
We then instrument each point where gcext4 copies blocks on
write, recording the refcount changes that such an operation
would incur. To make these changes durable, we assume that
the system logs them with a single sequential write of one or
more blocks when it commits the current journal transaction.
Once the log fills, we sort it and sum the refcount changes
for each block. We then record the number of blocks that
must be dirtied when writing the nonzero refcounts to their
fixed locations in the Rmap, assuming that refcounts are 16-
bit. Note that, even though ext4 maps files in extents, we count
references at the granularity of individual blocks, because
tracking refcounts on a per-extent basis would represent a
significant change from ext4’s current block-based allocation.

In addition to block refcounts, we also record refcount
changes and log writes for inode numbers in the ifile, as inodes
need to be reference counted. However, as with btrfs, we do
not record refcount changes for the initial allocation or final
deallocation of blocks or inodes, because these are necessary
for both GCTrees and hierarchical reference counting. Finally,
we track sequentiality of writes to the Rmap. We assume
that the Rmap is entirely colocated on disk (unlike allocation
bitmaps in ext4, which are divided by block group) and that
updates are applied in ascending order. Thus we count as
random any access that skips at least one block.

3) Basic Results: To compare the two space management
techniques, we run gcext4 and btrfs version 0.20-rc1 on the
same machine used in Section IV-A. We mount both file
systems with access times disabled, and, to bring its behavior
closer to that of gcext4, we mount btrfs with the nodatacow
option. Our simulation uses 15MB for its log, as that yields a
reasonable trade-off between the time required to clean the log
and the ability to both amortize and cancel refcount updates.
We represent refcount changes as 64-bit integers (allowing for
both the block address and a flag indicating whether the write
is an increment or a decrement), permitting the log to store up
to 1,966,080 of them. We assume that the file system processes
increments and decrements in the log only when cleaning;
although we have experimented with preprocessing log entries
during transaction commit, this appears to have little effect in
practice.

We use four benchmarks in our experiments: the three
described in Section IV-A, using identical parameters, and an
open source implementation of the SPC-1 benchmark created
by Daniel and Faith [9]. The SPC-1 benchmark uses a 12GB,
sparsely allocated file and reproduces the behavior of a LUN
hosting a database. This benchmark is time-consuming, so we
omit reads, which do not affect our results.

As with our performance measurements, we run each
benchmark for three hours and take snapshots at a rate ap-
propriate to the workload being simulated: every hour for the
fileserver and VM workloads and every five minutes for the
OLTP and SPC-1 benchmarks (measured in simulated time
for SPC-1). In addition to write overhead in the active file
system, we also measure the additional blocks written when
deleting one snapshot produced by each benchmark. To do so,

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10
B

lo
c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(a) Fileserver

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

B
lo

c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(b) OLTP

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

B
lo

c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(c) VM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
lo

c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(d) SPC-1

Fig. 8: Block Write Overhead. These plots show the mean block write overhead for GCTrees and hierarchical refcounts in both btrfs
and our simulation, normalized by benchmark operations performed. Error bars indicate standard deviation.

we remount the file system after each experiment and delete
the middle snapshot. We repeat each experiment five times.

Figures 8 and 9 depict the block-write overhead in our
experiments. Because throughput differs between btrfs and
gcext4, we normalize the results from each benchmark by
the total operations performed; however, as each snapshot
contains roughly the same number of logical blocks, we do
not normalize the blocks for snapshot deletion. In addition,
we separate the simulation overhead into three parts—random
writes to the Rmap (labeled “Random Refcount”), sequential
writes to the Rmap (“Seq. Refcount”), and sequential writes
to the log (“Log”)—as sequential writes are always cheaper
in practice than random writes. Note that GCTree writes are
always random and, due to the write-anywhere nature of the
file system, writes in btrfs are effectively always sequential.

As we anticipated, the degree of overhead we observe is
highly workload dependent. Hierarchical reference counting in
both btrfs and the simulation is more efficient for the fileserver
workload, whereas GCTrees require fewer writes for the VM,
OLTP, and SPC-1 benchmarks.

The difference between GCTrees and hierarchical reference
counting on the fileserver workload is sizable: GCTrees re-
quire, on average, 1.4 times more writes per operation than
btrfs and 6.2 times more than the simulation for the active
workload. During snapshot deletion, GCTrees require 9.1 times
more total writes than btrfs and 2.8 times more than the
simulation. Moreover, the vast majority of the I/O in the
simulation is sequential, in contrast to the random I/O caused
by GCTrees. On examining detailed statistics for these runs,
it becomes clear that the low refcount overhead primarily
results not from refcount cancellation, but from amortization of
nonzero refcounts across blocks when committing them. Even
within the simulation, which employs a large log, an average
of only 1.5 million refcounts out of 6.2 million total changes
cancel; however, the remaining refcount changes require only
an average of about 14,000 block writes to persist. Btrfs fares
worse, with only about 47,000 cancellations out of 840,000
changes on average, resulting in 220,000 block writes. We
observe a similar, though more pronounced, phenomenon with
snapshot deletion, in which our simulation sees no refcount
cancellation at all and btrfs sees cancellations only from
allocation and deallocation.

In contrast, the VM, SPC-1, and OLTP workloads heavily
favor GCTrees, as these three are dominated by many random
writes to a few very large files. Thus these workloads represent
a worst case for hierarchical reference counting: the fan-out
per metadata block is generally high, requiring many writes
to the refcount log, and refcount changes seldom sum to zero,
necessitating a large number of writes when committing them.
Conversely, GCTrees require writes proportional to the file’s
depth, so they are largely unaffected by the high degree of fan-
out. While GCTrees do incur additional writes from B+ tree
operations, like node splits, these writes are also proportional
to file depth and constitute only a small fraction (less than
1%) of the total GCTree-caused writes. As a result, btrfs and
our refcount simulation both require more writes per operation
for these workloads, spanning a range of 2.7 times more for
SPC-1 in the simulation to 34 times for OLTP using btrfs.
Snapshot deletion generally follows a similar pattern, although
btrfs requires only 18 writes on average for the VM workload.
This occurs primarily because a large number of the blocks
written are used for both refcounts and allocation and thus are
ignored in our tally; if we include these blocks, they exceed
those that gcext4 writes.

Accounting for sequentiality mitigates some of the over-
head we observe for hierarchical reference counts, as the
bulk of the refcount overhead, from both the log and the
Rmap, is sequential. This is particularly noticeable in SPC-1;
because it uses a sparsely allocated file, gcext4 is able to pack
distant logical addresses together on disk and thus experiences
few random writes. In contrast, the OLTP and VM-fileserver
workloads, which do not use preallocated files, as well as
SPC-1 deletion, see similar amounts of random writes using
both hierarchical refcounts and GCTrees. Although random
writes are more expensive to process, the additional sequential
writes are not free, and their sheer volume represents sizable
overhead.

4) Varying Reference Counting Parameters: Our results so
far indicate a marked dichotomy between the performance
of GCTrees and hierarchical reference counting on different
workloads. Although hierarchical reference counting requires
substantially fewer writes for traditional fileserver and home
directory workloads, GCTrees appear to outperform hierarchi-
cal reference counting by an even larger margin on large-
file workloads. That said, hierarchical reference counting has

0

3000

6000

9000

12000

15000

18000

21000

24000

27000

30000
B

lo
c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(a) Fileserver

0

13000

26000

39000

52000

65000

78000

91000

104000

117000

130000

B
lo

c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(b) OLTP

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

B
lo

c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(c) VM

0

90

180

270

360

450

540

630

720

810

900

B
lo

c
k
s
 W

ri
tt
e
n
 P

e
r

O
p
e
ra

ti
o
n

Gcext4 Btrfs Simulation

GCTree

Random Refcount

Seq. Refcount

Log

(d) SPC-1

Fig. 9: Snapshot Delete Overhead. These plots show the mean blocks of write overhead for GCTrees and hierarchical refcounts when
deleting a snapshot for each benchmark. Error bars indicate standard deviation.

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

B
lo

c
k
s
 W

ri
tt

e
n

 P
e

r
O

p
e

ra
ti
o

n

1 4 8 12 16 20 24

Snapshot Period (Hours)

GCTree

Random Refcount

Seq. Refcount

Log

Fig. 10: Varying Snapshot Period. Additional write activity
caused by both GCTrees and hierarchical reference counting for the
SPC-1 benchmark as the time between snapshots increases. Error
bars indicate standard deviation.

several parameters—principally, the snapshot period and the
size of the log—which, if configured properly, may be able to
reduce its overhead to levels comparable to that of GCTrees
for those workloads in which it suffers. To analyze this, we
execute two experiments varying these parameters on the SPC-
1 benchmark, as the gap in overhead for this workload was
much smaller than that for the OLTP benchmark. We only
compare gcext4 to our simulation, since it exhibits lower write
overhead than btrfs, and we increase the execution time of the
benchmark to 72 simulated hours, both to permit a broader
array of parameters and to better assess the impact of any
changes; otherwise, we retain all parameters. Again, we run
each experiment five times and report the average and standard
deviation of each set of runs.

We first examine how hierarchical refcounts respond to
changes in the snapshot period. Hypothetically, a longer in-
terval between snapshots should provide more opportunity for
refcount cancellation; thus we would expect the overhead of
GCTrees and hierarchical reference counting to converge as the
snapshot period grows larger. Figure 10 shows our results for
snapshot periods ranging from 1 to 24 hours. As the snapshot
period increases, the number of blocks written per operation by
both GCTrees and hierarchical refcounts decreases; this occurs

0

2

4

6

8

10

12

14

16

18

20

B
lo

c
k
s
 W

ri
tt

e
n

 P
e

r
O

p
e

ra
ti
o

n

1 5 10 15 20 25 30 35 40

Log Size (MB)

GCTree

Random Refcount

Seq. Refcount

Log

Fig. 11: Varying Log Size. Additional write activity caused
by both GCTrees and hierarchical reference counting for the SPC-1
benchmark as the size of the refcount log changes. Error bars indicate
standard deviation.

because the number of snapshots taken decreases. However,
the ratio fails to narrow, hovering between 3.3x and 6.5x, gen-
erally increasing as the period lengthens. Similarly, although
hierarchical reference counting produces fewer random writes
with a longer snapshot period, the overall ratio of random
to sequential writes remains roughly unchanged. Thus, even
accounting for experimental noise, increasing the snapshot
period is unlikely to bring the two systems to parity for this
workload.

Increasing the log size may be more likely to reduce write
overhead: a larger log may allow more refcounts to cancel
and will increase amortization when checkpointing the log. To
evaluate this, we run the SPC-1 benchmark with log sizes rang-
ing from 1MB to 40MB and display our results in Figure 115.
Increasing the log size yields rapid improvements when the log
is small; however, doing so provides increasingly diminishing
returns as the log grows larger than 15MB. Random I/O does
decrease substantially, but even with a 40MB log, which would
require significant effort to checkpoint, hierarchical refcounts
still require nearly four times as much total I/O. Further

5Blocks per operation are higher here than in Section IV-B3 because the
benchmark runs longer, allocating more of the underlying sparse file and thus
triggering additional metadata writes.

increases in size are unlikely to provide much additional
benefit, indicating that large log sizes cannot eliminate the
write gap for SPC-1 here.

V. RELATED WORK

Although we have primarily compared GCTrees to hier-
archical reference counting, a plethora of other techniques
exist for tracking file history, ranging from simple bitmaps
to complex, space-optimized tree structures. In this section,
we provide an overview of some of the more notable of these
methods.

One of the earliest and most straightforward means of
tracking snapshots originates with WAFL [1], which employs
per-block bitmaps. Each bit corresponds to a snapshot; if the
bit is set, the block is present in that snapshot. The simplicity
of this method makes it easy to understand, but it also proves
restricting: WAFL supports only a limited number of snapshots
and requires a layer of indirection to support clones [10].

The original Plan 9 file system takes a different approach,
allowing an effectively unlimited number of snapshots to be
stored on write-once media (specifically, optical disks) [11],
[12]. As with GCTrees, the system uses flags on blocks in
the active file system to determine whether the blocks need
to be COWed for a given snapshot; however, because the
underlying media is write-once, the system does not concern
itself with deletion or space management. Similarly, BlobSeer,
a distributed object store using incremental snapshots and
copy-on-write that seeks to maximize concurrency, avoids
questions of space management by assuming that metadata
and data are immutable once written [13]. Although both
approaches are convenient, the inability to remove snapshots
is prohibitively limiting.

Plan 9 later allowed snapshots to be freed with its Fossil file
system, which assigns an epoch number to each block in the
file system once it is COWed and thus is no longer part of the
active file system [14]. The system then maintains a minimum
epoch number that it periodically increments; it deallocates
any blocks whose epoch number is below this minimum. This
allows space reclamation with relatively low overhead, but at
a high cost: only recent snapshots can be kept, requiring an
auxiliary system for long-term backups.

In addition, Plan 9 later went on to include content-
addressable storage in the Venti system [15]. Content-
addressable storage systems ensure that only one copy of a
datum exists on a system and it is never over-written. Thus, in
this context, snapshots, and hence space reclamation, lie in a
different problem domain from copy-on-write storage systems.

Yet another approach can be found in versioning file
systems, such as Elephant [16], which tie history to individual
file operations and thus tend to have data structures within
files that refer back to previous versions. Elephant, for instance,
stores the inodes for a versioned file in an “inode log,” allowing
earlier versions to be read by scanning the log; it is unclear how
it handles indirect metadata, however. CVFS [17] employs a
similar mechanism for metadata but stores previous versions as
a log of deltas to be applied to the current version, improving
storage efficiency at the cost of performance. For directories, it
employs multiversion B-trees, which store all versions of each

directory entry in the tree. Again, this structure was chosen
for the sake of minimizing metadata size at the expense of
performance in some cases, and may not be appropriate as a
general-purpose file system structure.

Hierarchical reference counting for the COW-friendly B-
trees described by Rodeh [3] originated as a response to the
shortcomings of the prior work described, providing a unified,
efficient mechanism for space and version management that
allows both full-system snapshots and fine-grained version
tracking. Nonetheless, as we have noted, the method has
shortcomings of its own, and ours is not the only work to
have explored other techniques. Btrfs augments its use of
hierarchical refcounts with back-references to facilitate defrag-
mentation and deletion [7]. Twigg et al. [18] note that COW
B-tree performance suffers in the presence of updates and
present stratified B-trees, a data structure involving a hierarchy
of arrays linked with forward references and optimized for
updates and sequential access. These bear some semblance to
GCTrees, but are much more concerned with optimal access,
losing generality.

Finally, it is worth noting that ours is not the first effort
to add copy-on-write and snapshot functionality to an ext file
system. Next3’s approach [19] differs noticeably from ours; it
stores snapshots in a special file, which then must be mounted
to read. When COWing blocks, Next3 explicitly moves the
original contents into the snapshot file and then performs an in-
place overwrite, rather than using the shadow-paging approach
taken by gcext4.

In contrast, ext3cow [20] uses techniques similar to ours,
and thus warrants closer examination. Ext3cow is a file system
designed for regulatory compliance, where the evolution of
file data over time must be tracked. Thus it exposes a time-
shifting interface, where the user accesses snapshotted versions
of files by appending earlier timestamps to directory entries.
It implements this interface by storing in each inode a pointer
to the previous version of the inode, creating a chain which
the file system walks to retrieve any prior version of the
file. To track which blocks have yet to be COWed in the
current version, ext3cow employs a bitmap stored in each
inode and indirect block. Together, these features strongly
resemble those that gcext4 uses to track lineage; however,
the two systems employ them for different purposes. Rather
than use its lineage tree to access snapshots, as ext3cow does,
gcext4 retrieves them using snapshot root inodes that point
to previous ifiles. Conversely, gcext4 uses lineage as a means
of deleting snapshots and reclaiming their space, an operation
that ext3cow does not allow and that would not work well
with ext3cow’s time-shifting semantics. Other, less important
differences exist as well: ext3cow does not use an ifile, instead
relocating old versions of inodes before overwriting them, and,
because it is based in ext3, it lacks facilities to handle B+ trees
and extents.

VI. CONCLUSION

Snapshots constitute a crucial component of any storage-
management solution, offering rapid recovery from user error
and a stable platform for data backups. However, managing
space in snapshots is a challenging task, and it is unclear
whether a single solution exists that can provide flexibility and

efficiency for all file-system workloads. As our analysis shows,
although logged hierarchical reference counts create relatively
little overhead for traditional workloads, they collapse under
the large-file workloads that are coming to dominate data
centers.

To better accommodate these kinds of workloads, we
present GCTrees, a file-system-agnostic alternative to hierar-
chical reference counts. Rather than track references directly,
GCTrees track the lineage of pointers across snapshots on a
block-by-block basis. Using this information, the file system
can quickly determine whether a given block is shared by
multiple snapshots, facilitating deallocation and COW deci-
sions. As a proof of concept, we implement GCTrees within
ext4, creating a prototype file system with dramatically lower
write overhead for database and VM-style workloads than
comparable hierarchical reference counting implementations,
including that used in btrfs.

Despite the efficacy of our prototype for these work-
loads, our implementation is still nascent, with many possible
improvements worth exploring. Support for clones—that is,
writable snapshots—should be possible using the next and
previous pointers, and GCTrees should have little trouble
supporting fine-grained snapshots of file-system objects, such
as directories or individual files. We have yet to investigate
either of these features in detail, however, and they may require
additional machinery to manage properly.

Ultimately, we expect GCTrees to become a full-fledged
alternative to hierarchical reference counts. At this point, the
choice of technique will be decided by the anticipated work-
load; we doubt that any algorithmic tweaks will ever bridge the
substantial dichotomy between the two. Our results underscore
the need for file-system designers to carefully consider their
target use-cases; at least in the case of snapshot management,
a universal solution may be untenable. Increasingly, as enter-
prise file systems move away from traditional workloads, we
anticipate that GCTrees will be the more appealing choice.

VII. ACKNOWLEDGMENTS

We would like to thank John Strunk for his technical advice
and oversight, as well as our anonymous reviewers for their
comments.

REFERENCES

[1] “File system design for an NFS file server appliance.” in Proceedings
of the USENIX Winter Technical Conference, ser. USENIX Winter ’94.

[2] M. K. McKusick and G. R. Ganger, “Soft updates: A technique
for eliminating most synchronous writes in the fast filesystem,” ser.
USENIX ATC ’99. Berkeley, CA, USA: USENIX Association, 1999.

[3] O. Rodeh, “B-trees, shadowing, and clones,” Trans. Storage, vol. 3,
no. 4, pp. 2:1–2:27, Feb. 2008.

[4] ——, “Deferred reference counters for copy-on-write b-
trees,” IBM, Tech. Rep. rj10464, 2010. [Online].
Available: http://domino.watson.ibm.com/library/Cyberdig.nsf/papers/
B7C80D4AF7CB08DF85257712004C5228/$File/rj10464.pdf

[5] M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A fast file
system for unix,” ACM Trans. Comput. Syst., vol. 2, no. 3, pp. 181–197,
Aug. 1984.

[6] A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A. Tomas, and L. Vivier,
“The new ext4 filesystem: current status and future plans,” in Proceed-
ings of the Linux Symposium, vol. 2, 2007, pp. 21–33.

[7] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”
Trans. Storage, vol. 9, no. 3, pp. 9:1–9:32, Aug. 2013. [Online].
Available: http://doi.acm.org/10.1145/2501620.2501623

[8] “Filebench.” [Online]. Available: http://filebench.sourceforge.net/wiki/
index.php/Main Page

[9] S. Daniel and R. Faith, “A portable, open-source implementation of the
spc-1 workload,” in Proceedings of the IEEE International Workload
Characterization Symposium, 2005, ser. IISWC-2005, Oct 2005, pp.
174–177.

[10] J. K. Edwards, D. Ellard, C. Everhart, R. Fair, E. Hamilton, A. Kahn,
A. Kanevsky, J. Lentini, A. Prakash, and K. A. Smith, “FlexVol: flexible,
efficient file volume virtualization in WAFL,” in USENIX 2008 Annual
Technical Conference, ser. ATC’08. Berkeley, CA, USA: USENIX
Association, 2008, pp. 129–142.

[11] R. Pike, D. Presotto, K. Thompson, and H. Trickey, “Plan 9 from Bell
Labs,” in Proceedings of the Summer 1990 UKUUG Conference, 1990,
pp. 1–9.

[12] S. Quinlan, “A cached WORM file system,” Software: Practice and
Experience, vol. 21, no. 12, pp. 1289–1299, Dec. 1991.

[13] B. Nicolae, G. Antoniu, L. Bougè, D. Moise, and A. Carpen-Amarie,
“BlobSeer: next-generation data management for large scale infrastruc-
tures,” Journal of Parallel and Distributed Computing, vol. 71, no. 2,
pp. 169–184, Feb. 2011.

[14] S. Quinlan, J. McKie, and R. Cox, “Fossil, an archival file server.”
[Online]. Available: http://www.cs.bell-labs.com/sys/doc/fossil.pdf

[15] S. Quinlan and S. Dorward, “Venti: A new approach to archival storage,”
2002.

[16] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton,
and J. Ofir, “Deciding when to forget in the elephant file system,”
SIGOPS Oper. Syst. Rev., vol. 34, no. 2, pp. 18–19, Apr. 2000.

[17] C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger,
“Metadata efficiency in versioning file systems,” in Proceedings of the
2nd USENIX Conference on File and Storage Technologies, ser. FAST
’03. Berkeley, CA, USA: USENIX Association, 2003, pp. 43–58.

[18] A. Twigg, A. Byde, G. Miłoś, T. Moreton, J. Wilkes, and T. Wilkie,
“Stratified b-trees and versioned dictionaries,” in Proceedings of the 3rd
USENIX Conference on Hot Topics in Storage and File Systems, ser.
HotStorage’11. Berkeley, CA, USA: USENIX Association, 2011, pp.
1–5.

[19] Amir G., “NEXT3 snapshot design,” Jul. 2011. [Online]. Available: http:
//sourceforge.net/projects/next3/files/Next3 Snapshots.pdf/download

[20] Z. Peterson and R. Burns, “Ext3cow: A time-shifting file system for
regulatory compliance,” Trans. Storage, vol. 1, no. 2, pp. 190–212, May
2005.

