
An Empirical Study of File Systems on NVM

Priya Sehgal, Sourav Basu, Kiran Srinivasan, Kaladhar Voruganti*

NetApp Inc.
Email:{priya.sehgal, sourav.basu, kiran.srinivasan}@netapp.com, kaladhar_voruganti@yahoo.com

Abstract— Emerging byte-addressable, non-volatile memory
like phase-change memory, STT-MRAM, etc. brings persistence
at latencies within an order of magnitude of DRAM, thereby
motivating their inclusion on the memory bus. According to some
recent work on NVM, traditional file systems are ineffective and
sub-optimal in accessing data from this low latency media.
However, there exists no systematic performance study across
different file systems and their various configurations validating
this point. In this work, we evaluate the performance of various
legacy Linux file systems under various real world workloads on
non-volatile memory (NVM) simulated using ramdisk and
compare it against NVM optimized file system -- PMFS. Our
results show that while the default file system configurations are
mostly sub-optimal for NVM, these legacy file systems can be
tuned using mount and format options to achieve performance
that is comparable to NVM-aware file system such as PMFS. Our
experiments show that the performance difference between
PMFS and ext2/ext3 with execute-in-place (XIP) option is around
5% for many workloads (TPCC and YCSB). Furthermore, based
on the learning from our performance study, we present few key
file system features such as in-place update layout with XIP, and
parallel metadata and data allocations, etc. that could be
leveraged by file system designers to improve performance of
both legacy and new file systems for NVM.

Keywords—file system; non-volatile memory; performance

I. INTRODUCTION
The emergence of flash has been a disruptive force that

has led to dramatic changes in how storage systems are
designed. However, there are newer forms of non-volatile
memory (NVM) technologies (e.g. PCM, STT-MRAM,
ReRAM) in the pipeline that promise to be even more
disruptive than flash. These new non-volatile memory
technologies are byte addressable, unlike flash that is block
addressable, and have latencies close to DRAM and densities
better than DRAM [20, 28, 29]. Thus, NVM can augment
DRAM on the memory bus, allowing applications to persist
their working sets close to memory latencies.

Whenever a new media arrives there is a lot of research
on designing and developing new file systems that cater to the
characteristics of this media. For example, for non-volatile
memory, new file systems such as PMFS [16, 33], SCMFS
[19], and BPFS [10] have been proposed. These file systems
leverage byte-addressability and random access features of
NVM to gain maximum performance benefit. Moreover, there
has been a lot of research on persistent memory abstractions
such as Mnemosyne [6], NV-Heaps [9], PMem-Lib [30][8].

While these approaches seem optimal, there exists no work
that evaluates existing block-based file systems on NVM.
Since multiple decades worth of work has gone into these file
systems, it is important to examine whether these legacy file
systems can be fine-tuned using file system configuration
options for NVM.

In this paper, we present a study that evaluates the
performance of various legacy file systems under various real-
world workloads on NVM. We selected commonly used
server-class workloads such as webserver, fileserver,
webproxy, database and key-value stores as they differ from
each other in terms of data access patterns, metadata-data
ratios, etc. We evaluated and compared the results of above
workloads on NVM-aware file system – PMFS, flash-aware
file system – F2FS [3, 25], and five traditional Linux file
systems: Ext2 [22], Ext3 [23], Ext4 [12, 24], XFS [34, 36],
and NILFS2 [32] on NVM. As we wanted to determine
whether legacy file systems could be fine-tuned to perform
comparable to PMFS, we assess the performance of these file
systems under different mount and format options. Some of
the options that we varied include different journaling modes,
allocation policies such as delayed allocation, mechanisms to
bypass buffer cache using execute-in-place (XIP), etc.

Our study shows that existing file systems, with little
reconfiguration or slight changes, perform close to NVM-
aware file systems, for various real-world workloads.
Moreover, we have identified a few file system features that
boost the performance of file systems on NVM. Here is a
summary of some key findings from our study:

1. In-place update vs. log-structured layout: File system
designers prefer a log-structured file (LFS) layout [13] for
different types of media as it mitigates media limitations
such as rotational latency in case of hard disk and block
erasure granularity and write amplification in case of
Flash. LFS is also preferred for memory allocation in
complete DRAM-based systems that are backed by disks
(RAMCloud [18]). Although LFS provides useful
features such as continuous snapshots, our study shows
that pure LFS-based file system (NILFS2) perform much
worse compared to in-place update file systems, such as
ext2, ext3, ext4 and XFS in workloads involving read-
write mix. F2FS, which is a hybrid file system and treats
most of its metadata in-place and data as log-structured,
performs much better than NILFS2 and within 15-25% of
some of the default configurations of in-place file
systems. Moreover, NILFS2 and F2FS employ garbage

* The author was in NetApp when the paper was written 978-1-4673-7619-8/15/$31.00 ©2015 IEEE

collection that utilizes CPU and memory resources for
cleaning obsolete or deleted segments, depriving the
active file system from these useful resources. This
impacts the performance of LFS or hybrid file systems
adversely. Therefore, we conclude that in-place update of
both data and metadata is a preferred layout for NVM file
systems.

2. Execute-in-place vs. Buffered file system: Buffer cache
is useful and helps improve performance when a file
system exists on slow media such as hard disk and is
front-ended with fast DRAM. However, on NVM that has
access latencies similar to DRAM, buffer cache
introduces copy overheads rather than being useful.
Execute-in-place (XIP) [21] helps bypass this extra copy
and improve file system performance running on NVM
by directly performing read and write from/to NVM
media. It also bypasses block level I/O scheduling. PMFS
adopts this feature by default. Our experiments show that
if we only enable XIP feature on existing file systems
(ext2 and ext3), it helps existing file systems to perform at
par with PMFS – about 5-20% performance difference in
many workloads. Opening the file in direct mode
(O_DIRECT) also helps bypass buffer cache, but it only
works for data updates and not for metadata updates.
Moreover, the block layer overhead of scheduling I/O
remains in case of O_DIRECT. Hence, we do not
evaluate this feature in our study.

3. Simple and parallel allocation/de-allocation: We found
that allocation strategies impact the performance of
certain workloads, which involve multiple file
creations/deletions or file size increase (e.g., fileserver
and webproxy). Firstly, features such as allocation
groups [34] (XFS) or block groups (ext3, ext4) help scale
the performance as it allows parallel allocations. In
workloads involving parallel data (read, write) and
metadata (create, delete) operations on a large number of
files (~500K or more), we found that PMFS performed
the worst amongst all the file systems, around 5x worse
compared to ext3 with XIP enabled. This is because it
uses only one singly linked list for data and metadata
allocation (Section IV B) inhibiting its scalability.
Secondly, because of fast random access speed of NVM,
optimization such as delayed allocation (XFS and ext4) is
of no use in data intensive workloads. Nevertheless, if the
workload involves multiple data allocations, delayed
allocation boosts the performance even on high speed
NVM as it amortizes allocation cost.

4. Fixed vs. variable block size (extent): Our experimental
results reveal that the performance across traditional file
systems that manage data using fixed sized blocks versus
variable sized extents is close. Using fixed sized data
blocks simplifies the data structures required to maintain
the free space information and indexing information about
files and directories i.e., inodes. This in turn reduces the
CPU path length of the code required to perform lookups
and maintain these data structures. Hence, it is advisable
to use fixed sized data blocks for NVM file systems such
as in ext2 and ext3 vs. variable sized extents as in XFS
and ext4.

The rest of this paper is organized as follows. Section
II presents the related work; Section III describes our
experimental methodology. We present the evaluations
and analysis in Section IV. Finally, we provide some
recommendations and conclude in Section V.

Fig. 1. Traditional vs. optimized POSIX file systems

II. BACKGROUND AND RELATED WORK
The emergence of low speed, byte-addressable storage

class memory or non-volatile memory (NVM) on the memory
bus has led to a lot of research on methods to access and
manage data stored on this fast media. Prior research related to
NVM primarily falls into two buckets: (i) exploring file
system design alternatives and (ii) exploring interfaces or
programming model alternatives presented to applications.
While (i) is needed for coarse-grained space management and
protection of the NVM media, (ii) is required for efficient
access to data and fine-grained data management by
application. Fig. 1 summarizes the combinations of available
POSIX interfaces: file-io (open, read, write) and mmap-io
(open, mmap and load/store), and file systems: traditional and
NVM optimized, for managing and accessing data from the
NVM media. Existing research can be classified as:

1. Use of POSIX interface (open/read/write or
mmap/load/store) but re-designing the file system for
NVM (category i). PMFS [16, 33], SCMFS [19], and
BPFS [10] fall in this category. These file systems avoid
traditional storage stack overheads and leverage NVM
media features, such as byte-addressability, atomic-
updates, and fast random access speeds.

2. POSIX library interposers bypass the file system during
data path, thereby reducing the latency to access data
(category ii). It accesses kernel file systems only during
the control path i.e., for access control, allocating space
from physical NVM media, etc. Moneta-D [1, 2] and
Bankshot [14] adopt this technique and move some file
system functionality into hardware. Aerie [7] and [17] also
fall in this category but depend on user mode file systems.

Workload Average

file size
Average
directory

depth

No. of
files

I/O Size
(r/w)

Threads R/W
ratio

Fsync Metadata
operations

fileserver 128K 3.8 100K 16K 50 1:2 No Yes (C/D/S)
webproxy 32K 0.7 500K 1M/32K 50 5:1 No Yes (C/D)
webserver 32K 2.5 500K 1M/8K 50 10:1 No No

	

TABLE	
 I.	
 Filebench	
 workload	
 characteristics	
 (Metadata	
 operations	
 –	
 C:	
 Create,	
 D:	
 Delete,	
 S:	
 Stat)	

3. Use of new programming models to simplify direct use of

NVM by applications (category ii). Examples include
Mnemosyne [6], NV-Heaps [9], PMem-Lib [30], and [8].
These libraries provide fine-grained data management,
allocation, de-allocation, persistence, and transaction
management while coarse-grained space management
resides with the file system. NV-Tree [11] and CDDS
[15] propose a consistent and durable data structure
(B+Tree variant) for non-volatile memory.

4. Use of existing POSIX interface and traditional block-
based file systems, but adjust operating system, storage
stack or file system configurations to improve performance
for NVM. To our knowledge there is only one paper [5]
that falls in this category and is closely related to ours.

Lee et al. [5] explore various I/O configuration
parameters such as buffer cache, read-ahead, synchronous,
direct I/O, etc. on NVM and compare it with results on HDD.
They use Ext4 file systems for all their evaluations. Our work
differs from this previous work: we concentrate on evaluating
performance of the following file system configurations under
different workloads on NVM: (a) default access to traditional
file system, (b) fine-tuned access to traditional file systems
through mount and format options, and (c) NVM-optimized
file system, such as PMFS. We use various in-place-update
and log-structured file systems to evaluate traditional file
systems. Section III provides details on the different
workloads and file system configurations that we evaluate.

III. METHODOLOGY AND LIMITATIONS
In this work, we wanted to determine whether it is possible

to reconfigure or fine-tune traditional file systems such that
they perform close to NVM-optimized file systems (PMFS).
Further, we wanted to summarize key file system features that
boost their performance on NVM. To achieve this goal we
evaluated different Linux file systems under varying workloads
on simulated NVM. This section details the experimental
hardware and software setup for our evaluations. We describe
our testbed in Section A. In Section B and C we discuss the
two important dimensions of our evaluation: workloads and
file systems, respectively.

A. Experimental Setup
Our experimental setup consisted of a commodity server

with 8 Intel Xeon 2.40GHz processors. It consisted of 66GB
DRAM, out of which we configured 58GB as ramdisk to
simulate NVM. It is important to note that our experiments
focus on file systems and do not evaluate the different types of
NVM (e.g. PCM, STT-MRAM, ReRAM etc). Thus, we
conduct experiments on ramdisk carved from DRAM, which

does not simulate NVM slower than DRAM or have
asymmetric latencies. Since all performance numbers are
relative, the same observations should be valid for NVM,
which would be slower than DRAM. In order to pin down the
memory pages belonging to ramdisk (NVM), we perform dd
on the entire 58GB ramdisk. In case of PMFS we reserved
58GB of memory using the grub option memmap. User
processes and buffer cache used the rest of the free DRAM
space (6GB). The swap daemon is switched off in every
experiment to avoid swapping off pages to disks (in case of
mmap). We conduct all our experiments on Ubuntu 12.04
using Linux Kernel 3.11.

B. Workload Categories
We wanted to evaluate the performance of file systems

under different workload parameters: file size, directory depth,
read-write ratio, metadata vs. data activity, access patterns (I/O
size, sequential vs. random vs. append). We selected five
common workloads: webserver, fileserver, webproxy, OLTP
database and key-value stores. We used Filebench [27]
benchmark suite to emulate the first three workloads, TPC-C
[35] for the OLTP database workload, while YCSB [4]
benchmark for key-value stores. Table 1 summarizes workload
properties of the first three workloads. We discuss all the
workloads below in more detail.

Fileserver: This workload emulates a server hosting home
directories of multiple users (threads). Each thread picks up a
different set of files based on its ID and performs sequence of
create, delete, append, read, write and stat operations. This
workload exercises both data and metadata activities. The ratio
of metadata to data operations is 1:1.

Webproxy: This emulates a simple webproxy server. It
generates a mix of create, append, read, and delete operations,
simultaneously, from a large number of threads. This workload
is characterized by fairly flat namespace hierarchy, with a
directory depth of 0.7 i.e., all the 500K files are contained
within one large directory. The ratio of metadata to data
operations is 1:3.

Webserver: The webserver workload is characterized by a
read-write ratio of 10:1, consisting of full file sequential reads
by all the threads, emulating web page reads. All the threads
append 8K to a common log file. This workload is primarily
read-intensive. It not only exercises fast lookups and small file
reads, but also concurrent data and metadata updates into
single, growing log file.

OLTP Database: The TPC Benchmark C [35] is intended to
model a medium complexity online transaction processing
(OLTP) workload. The benchmark represents a generic

wholesale supplier workload consisting of 9 tables and 5 stored
procedures. In our evaluation, we ran TPC-C over MySQL
database v5.5. We used 400 warehouses, generating a database
size of 38GB. Since our server consisted of 8 CPUs, we used 8
concurrent threads to generate the input load. Note that after
every transaction commit, MySQL calls fsync on the logfile.

Work
load

Read Update Insert Scan RMW Dist

A 50 50 0 0 0 Zipf
B 95 5 0 0 0 Zipf
C 100 0 0 0 0 Zipf
D 95 0 5 0 0 Latest
E 0 0 5 95 0 Zipf
F 50 0 0 0 50 Zipf

TABLE II. YCSB workload characteristics

Key-Value Stores: The Yahoo! Cloud Services Benchmark
(YCSB) [4] is a workload that is representative of large-scale
services provided by web-scale companies. It is a key-value
workload. We ran YCSB on a NoSQL database – MongoDB
v2.6.7 [31], which performs memory-mapped I/O on its
database files and file-io (write system call) to its journal.
MongoDB calls fsync on its journal every 120 ms and
msync on its database files every 60 seconds. In YCSB, each
tuple consists of unique key and 10 columns of random string
data of 100 bytes each. Thus, the total size of a tuple is
approximately 1KB. YCSB is composed of six workloads – A
to F. Table II describes the percentage of different operations
and distribution of each YCSB workload. For all the
workloads, we set the record count to 16 million and the
operation count to 10 million. This test generated a working
set of 36GB. We used 8 threads to generate the input load.

C. File Systems
We wanted to determine the file system configuration

parameter and feature sets suitable for NVM environment
under different workloads. Based on varying properties, we
ran our workloads on seven different file systems: PMFS,
Ext2, Ext3, Ext4, XFS, NILFS2 and F2FS. The distinguishing
features across all the file systems are:

• Inode data structures: B-Tree vs. linear fixed size

• Block Size: Fixed vs. variable-sized extents

• Layout or update style: In-place update vs. log
structured vs. hybrid

• Allocation strategies: Delayed vs. immediate, parallel
allocation

• Journal modes: None vs. ordered vs. writeback vs. data

• Other features (e.g., atomic updates, XIP) designed for
NVM

We evaluated the above file systems not only in their
default modes but also using diverse mount and format
options. Some of the options that we varied include different
journaling modes, allocation policies such as delayed

allocation, mechanisms to bypass buffer cache using execute-
in-place (XIP) and some more options relevant to specific file
systems. Table III compares the different properties of these
seven file systems based on the factors given above. The last
row of this table provides abbreviations of the file system
variants used in our evaluation.

PMFS: PMFS [16, 33] is a lightweight POSIX file system that
has been explicitly designed for NVM. It is an in-place update
file system that bypasses the buffer cache and block layer (see
Fig. 1). PMFS supports an important feature, called as execute-
in-place (XIP) that allows direct I/O from NVM media. XIP
[21] is a method of executing programs directly from storage
media like ROM or flash memory rather than copying the data
into DRAM. As XIP allows direct access to media bypassing
page or buffer cache (shown in Fig. 1), it appears as an
attractive option for NVM media. PMFS is characterized by
atomic in-place updates to metadata, fine grained undo logging
for consistency, large page support, and low overhead scheme
of protecting the NVM from stray writes, called write-protect.
We do not enable write-protect feature on PMFS for fair
comparison across PMFS and traditional file systems on
ramdisk, which lack this feature.

Ext2 and Ext3:	
 Ext2 [22] and Ext3 [23] had been the default
file system on Linux for years. There is a lot of similarity
between ext2 and ext3 in terms of layout, inode structures, and
free space management. Both ext2 and ext3 divide the
underlying storage (disk or ramdisk) into fixed size block
groups (BG). Each group manages its own free data block
bitmaps, and inodes. The two file systems try to increase
reference locality by keeping files contained within a single
parent directory in the same block group. The maximum block
group size is constrained by block size (4K). For our
experimental setup, the mkfs utility sets the default number of
block groups to 464, based on the ramdisk size and block size.
We report all the numbers for this default block group value.
Ext3 adds journaling support, whereas ext2 has no journal.
Ext3 supports three types of journaling modes: data, ordered
and writeback, with ordered mode being the default. We
evaluate the performance of both ordered and data journal
mode of the file system. As XFS supports writeback journal
mode, by default, we do not experiment writeback mode in
ext3.

We evaluate the performance of ext2 and ext3 when
mounted with XIP feature enabled. In Linux, XIP is
implemented by adding support to block device operations, and
file system operations. A block device operation named
direct_access is used to retrieve a reference to block on
storage. The reference is supposed to be cpu-addressable
physical address. The XIP-enabled file system needs to
implement a special address-space operation named
get_xip_mem that is used to retrieve reference to the page
frame number (of the underlying media) and a kernel address
(virtual address). The file system also implements special read,
write function and page fault handler that make use of
get_xip_mem. Currently, Linux ramdisk block driver and
ext2 support XIP. We have added XIP feature support to ext3
file system (ordered mode) and used it for our evaluations.
Note that XIP feature in ext2 and ext3 is only limited to data

 Ext2 Ext3 Ext4 XFS NILFS2 F2FS PMFS

Inode Structure Linear Linear Hashed
B-Tree

B+Tree B-Tree Linear B-Tree

Block Size Fixed Fixed Variable
Extent

Variable
Extent

Fixed Fixed Fixed (Page Size)

Layout / update
style

In-place In-place In-place In-place Log structured Hybrid In-place

Allocation
Strategy

Immediate Immediate Delayed Delayed Immediate Immediate Immediate

Parallel
Allocation

Yes Yes Yes Yes No Yes (multi-
head logs)

No

Journal None Ordered,
writeback,

data

Ordered,
writeback,

data

Writeback Not
Applicable

Not
Applicable

Fine-grained undo
logging (only

metadata)
Other Feature XIP XIP (added

by us)
 Continuous

Snapshot
Multi-head

log, adaptive
cleaning

XIP, atomic
update, large

blocks
Variants
evaluated

(abbreviations)

ext2-buf,
ext2-xip

ext3-buf,
ext3-xip,
ext3-data

ext4-buf,
ext4-no-del

xfs-buf-4, xfs-
buf-464

nilfs f2fs_2, f2fs_4,
f2fs_6

pmfs

	

TABLE	
 III.	
 File	
 system	
 feature	
 set

operations i.e., while performing copy across user and kernel
data buffers. Unlike PMFS, this feature and atomic updates is	

not applicable to metadata operations such as updates to inode
or journalling in traditional file systems as it involves more
changes in the file system code.

Ext4: Ext4 [12, 24] is an advanced level of ext3 with more
scalability (maximum file size, number of files), and more
features. In contrast to ext3 file system, ext4 is an extent-based
file system that helps reduce metadata overhead. Further, ext4
employs improved allocation strategies such as multi-block and
delayed allocation. While these features are attractive in the
disk world, we wanted to determine their efficacy in case of
non-volatile memory. Hence, we report the results of not only
the default configuration of ext4 but also without delayed
allocation feature.

XFS: XFS [34, 36] was designed for scalability: support
terabyte sized files, unlimited number of files and large
directories. XFS stores its data and metadata in variable sized
extents. It adopts B+ Tree data structure for file/directory
inodes, free space management and dynamic allocation of
inodes. Similar to ext2/3 and ext4, XFS file system is divided
into a number of equally sized chunks called as Allocation
Groups (AG). Each AG manages the free space and inodes of
its group independently. Thus, increasing the AG count scales
up the parallel file system operations, improving its
performance. In our setup, we found that the default AG count
was set to 4. We increased the AG count of XFS to 464 – same
as block group count of ext2 family file systems, and compare
it against the default configuration. Similar to ext4, XFS
employs delayed allocation policy to obtain large contiguous
extent. It supports writeback journaling by default. XFS tracks
AG free space using two B+Trees: (a) based on block number,
and (b) the size of the free space block. While the free space
management and support for unlimited files (using dynamic
inode allocation through B+Tree) seem attractive for the disk
environment, we guage its affect on NVM.

NILFS2: NILFS2 [32] is a pure log-structured (LFS) file
system that supports continuous snapshotting. As NILFS2
creates checkpoints every few seconds or per synchronous
writes, users can recover from any inconsistency or data loss
quickly. Like any log-structured file systems data and metadata
blocks once written, are not updated in place, until they are
erased or garbage collected. NILFS2 volume is divided into a
number of segments of 8MB (default) size, where each
segment is a container of logs. Each log is composed of
summary information, payload blocks and an optional
superblock. The payload block consists of the file data and
metadata (inode BTree). NILFS2 has a segctord kernel
thread that is responsible for constructing these segments that
are cached in memory and flushing them to the underlying
media. We used the default configuration of NILFS2 and kept
the garbage collector (nilfs_cleanrd) on.

F2FS: F2FS [3, 25] is a file system designed for flash media.
The file system builds on top of LFS mechanism but solves
some of its major problems. Firstly, F2FS solves the wandering
tree problem i.e., propagation of index updates recursively
from leaf nodes, to direct nodes to indirect nodes, and so on.
This recursive propagation leads to a lot of copy and cleaning
overhead. Secondly, in LFS the garbage collection process is
expensive; under high disk utilization it impacts performance
of the actual data access. F2FS solves the first problem with
the help of node address table (NAT), which involves an in-
place update of metadata, while only writing the data in log-
structured manner. Hence, F2FS can be considered as a hybrid
file system. To solve the garbage collection problem, F2FS
separates hot and cold data during block allocation. It runs
multiple active log heads concurrently and appends data and
metadata to separate logs based on their anticipated update
frequency. Moreover, at high storage utilization, F2FS changes
the logging strategy to threaded logging, where new data is
written to free space in dirty segments without requiring actual
cleaning process. By default the number of active logs is 6. We

evaluate the performance of F2FS by changing the number of
active log heads to 2 and 4 as well.

D. Limitations
In this work, we perform our experiments on ramdisk

carved from DRAM. We do not simulate NVM slower than
DRAM. We evaluate various file systems on NVM only from
the perspective of performance. We do not examine other
features such as instant durability, consistency, recovery point
objective, and recovery time objective. According to us, all the
file systems in our study, except ext2, can provide file system
consistency, irrespective of the underneath media. This is
because of the journal or log-structured nature of the file
systems. As the buffer cache is not persistent, the data is not
persisted to NVM media immediately, even if the write is
acknowledged. This could result in data loss if there is a
power outage. On the contrary, PMFS and other XIP
configurations of file systems bypass buffer cache and write
the data to NVM immediately. They also flush the hardware
caches before acknowledging the user write. Thus, PMFS and
XIP file system configurations (ext2-xip, ext3-xip) have a
better recovery point objective or they cannot have data loss
once the write is acknowledged, whereas buffered file system
configurations lack this feature.

We use PMFS as a baseline for our comparison as it is the
only open source NVM-aware file system available. We
acknowledge that PMFS is not a production file system. As
the observations and conclusions are tied to the features of
different file systems, the insights from this work can be used
to determine the set of features that can help improve the
performance of a file system on NVM under the influence of
different workloads.

IV. EVALUATION
This section details our results and analysis of various

workloads when executed on different file systems on
simulated NVM environment. We abbreviated the default
configurations of ext2, ext3, ext4, and XFS as ext2-buf, ext3-
buf, ext4-buf and xfs-buf-4, respectively, in all our figures.
XIP configurations of ext2 and ext3 are denoted as ext2-xip
and ext3-xip, while data journal mode of ext3 is denoted as
ext3-data. We denote ext4 without delayed allocation as ext4-
no-del. The figures show XFS with 464 AG counts as xfs-buf-
464, and F2FS as f2fs_2, f2fs_4 and f2fs_6, where 2,4 and 6
stand for the number of active logs. As we do not vary any
options for NILFS2 and PMFS they are denoted as nilfs and
pmfs, respectively. The last row in Table III summarizes all
the file system variants as used in the figures. We ran all the
experiments atleast three to five times and report the average
readings.

A. Fileserver
Fig. 2 shows the results of fileserver workload on NVM.

The y-axis denotes resultant operations per second in units of
1000. We see that PMFS performs the best amongst all file
systems, while NILFS2 performs the worst. PMFS
outperforms all file systems because of its fundamental design

Fig. 2. Performance of file systems under fileserver workload

around non-volatile media. It’s XIP support, atomic-updates,
and fine-grained logging help reduce the latency of the read
and write code paths. Moreover, PMFS adopts simple
allocation and de-allocation policies, where it searches
through a common linked list of unused blocks. Thus,
fileserver workload, which is characterized by data to
metadata ratio of 1:1, benefits from PMFS. It outperformed
buffered file systems such as ext2-buf, ext3-buf, ext4-buf, xfs-
buf-4 (default) by a factor of 1.3, 2, 1.5 and 2.2, respectively.
Buffered configurations suffer because of double copy: (1)
ramdisk to buffer cache, and (2) buffer cache to the user
buffer. Ext2 performs the best amongst other buffered
counterparts, as it does not have journal overhead.

As shown in the figure, the difference between ext3-buf
and ext4-buf reduces from 34% to 23% if we repeat the same
experiment with nodelalloc mount option, which disables
delayed allocation. Since fileserver has create and append
operations, delayed allocation helps improve the performance
of ext4. To prove our point, we ran a micro-benchmark that
was metadata intensive i.e., create-append-close, delete and
stat operations only. Note that the fileset and directory depth
for the micro-benchmark was same as that of fileserver. We
found that in the metadata intensive benchmark, ext4-buf
outperformed ext3-buf by 43%. However, after disabling
delayed allocation feature, ext4-no-del performed only 25%
better than ext3. Thus, delayed allocation is a helpful feature if
workload involves significant data allocations, as it amortizes
the allocation cost even on fast media such as NVM.

On increasing the allocation group (AG) count of XFS
from default value of 4 to 464, improved the performance by
31%. This is because as the AGs increase, XFS’ parallelism
improves too, boosting the performance of operations
involving data and metadata allocations. As discussed in
Section III.C, we choose the value of 464 for AG count from
the default BG count of ext4. The impact of AG count is more
apparent in workloads consisting of metadata mix and writes
(appends) involving allocation because these operations access
and modify the AG descriptors frequently.

One thing to note is that after configuring AG count in
XFS to 464 (optimal), it performed 10% worse compared to

Fig. 3. Performance of file systems under webproxy workload

ext4-buf, whereas the default XFS (4 AG counts) performed
44% below ext4-buf. We found that although XFS employs
features similar to ext4 such as delayed allocation strategy and
extent-based mapping, it performed below ext4, because its
inode and data allocation has a longer code path length than
ext4. As XFS supports unlimited number of inodes, it employs
B+Tree to manage dynamic inode allocation. Further, XFS
allocates data blocks after looking up two B+Trees as
discussed in Section III. On the contrary, ext4 uses a simple
inode bitmap, similar to that on ext3/2 for inode allocation and
de-allocation, thereby improving the performance compared to
XFS.

Surprisingly, PMFS outperformed ext2-xip and ext3-xip
by a large factor – 1.4x and 3x, respectively. This is contrary
to results obtained in all other workloads (Sections IVB-IVE).
We ran 2 micro-benchmarks: 1) complete data-intensive
benchmark consisting of only reads and writes (appends) and
2) metadata-intensive micro-benchmark (mentioned in above
paragraph), on ext2 and ext3 buffered and XIP configurations.
We found that for data-intensive workload ext2-xip and ext3-
xip file systems outperformed their buffered counterparts by
36%, but they perform equally worse compared to ext2-buf
and ext3-buf in metadata-intensive micro-benchmark. We
looked at the code and found that ext2-xip and ext3-xip are
not pure XIP based file systems. XIP is applied only to the
data portion i.e., during reads and writes from/to user/kernel
buffers. However, metadata updates (inode, free space
information), and journaling still follow the block-oriented
methods during the time of persistence or reads. As PMFS
follows XIP and atomic updates for both data and metadata, it
outplays all other XIP- based file systems.

Ext3-data and NILFS2 performed 5x and 6x worse
compared to PMFS. In ext3-data, journaling both data and
metadata is redundant and affects performance on NVM file
system. On analysis we found that kjournald consumed
around 50% of CPU cycles, thereby impacting performance of
ext3-data. Performance of ext3-data is limited by contention to

its common journal used for both data and metadata logging.
Due to the fast access speeds of NVM media, the journal gets
filled up quickly, resulting in frequent flush operation of the
journal. This proves that data journaling is not preferred for
NVM file systems. Since NILFS2 is a pure log-structured file
system, any write to a file or creation of files inside a directory
leads to recursive updates to multiple data and metadata/index
blocks resulting in a “wandering tree” problem [3]. This
results in multiple obsolete data and metadata blocks
aggravating garbage collection and adversely impacting
performance. In case of NILFS2 we found that segctord,
the segment constructor, took around 50-60% of the CPU.
Thus, multiple fileserver threads tend to be bottlenecked by a
single segment constructor kernel thread, when NILFS2 is
used on NVM. The garbage collector, nilfs_clearnd also
ran frequently consuming around 10-15% of CPU.

F2FS, which also follows log-structured approach for
data, performed only 5% worse than ext3-buf. This is because
F2FS is a hybrid file system – it follows both log- structured
and update-in-place approach. It solves the wandering tree
problem by using node address table (NAT), which is updated
in place. Further, it supports 6 active log heads: separating out
hot, cold and warm metadata and data, thereby improving GC
efficiency. Due to these optimizations F2FS performs 3x
better than NILFS2. Note that the number of active logs has
no affect on performance of F2FS for fileserver workload. It
performs well above NILFS2 with even just 2 active logs, i.e.,
by only separating data from metadata and treating latter
differently. We wanted to verify if F2FS performs at par with
buffered file system even under high utilization of ramdisk
space. We reran the fileserver workload, increasing the total
number of files to 200K, which increased the ramdisk
utilization from 22% (with 100K files) to 45% (with 200K
files). We observed that under high utilization F2FS
performed 50% worse compared to ext3-buf. On further
analysis, we found that the performance degradation was due
to background garbage collection. Thus, background
operations such as garbage collection and dirty data flush to

backing store degrade the performance of file system as they
deprive the active file system of CPU and memory resources.

Insights:
It is evident that update-in-place file systems or atleast

supporting in-place updates for metadata is suitable for NVM
as it helps utilize the CPU and memory resources efficiently.
Note that PMFS is also an in-place update file system. While
journaling is needed for consistency on NVM file systems,
data mode journaling turns out to be expensive for such a fast
media. Setting AG count of XFS appropriately for workloads
involving multiple allocations (data and metadata) can help
improve performance significantly. Delayed allocation is a
helpful feature if workload involves significant data
allocations, as it amortizes the allocation cost even on fast
media such as NVM.

B. Webproxy
The black colored bars in Fig. 3 show the performance of

various file system configurations under webproxy workload.
As shown in the figure, ext3-xip performs the best across all
the file systems for webproxy workload. Compared to the
fileserver results, we observe a stark difference in relative file
system performance for this workload. NILFS2 performs
worst (100x) due to slow lookup on flat directories and same
reasons discussed in fileserver. Surprisingly, ext2 variants and
PMFS also exhibit abysmal performance. Ext3-xip performs
100x better than ext2-buf and 41-45x better than ext2-xip and
PMFS. To analyze the reason, we tried changing various
parameters of the workload and found that there were two
workload features that contributed to the abysmal performance
of certain file systems: flat namespace hierarchy or directory
depth of 0.7 and large number of files (500K). In a directory
depth of 0.7 (<1), all the 500K files are contained within one
large directory. The performance of such a fileset depends
upon how lookup and other metadata operations are handled
in large directories. We found that ext3, ext4 and XFS use
hash tree (indexed directory) to store directory entries while
ext2, PMFS and NILFS2 do not, and hence they perform
badly.

To prove our point we re-ran the Webproxy benchmark
by keeping the total number of files same (500K), but
increased the directory depth from 0.7 to 2.1 and 3.4 i.e., this
reduced the number of files in one directory but increased the
subdirectories. Fig. 3 shows the results for directory depths
0.7, 2.1 and 3.4 across different file systems in black, grey and
white color bars, respectively. We see that ext2 variants start
performing better than ext3 once the directory depth is
increased. This is similar to our results in fileserver. The
performance of NILFS2 and F2FS also improves by a factor
of 80x and 2.5x, respectively, once we increase the directory
depth.

The performance of PMFS improves with the increase in
directory depth, but it is 5x and 3x worse compared to ext3-
xip and NILFS2, even for deeper directory depth. PMFS
displays the worst performance across all the file systems. We
repeated the test but reduced the number of files to 100K and
found that PMFS and ext3-xip perform almost the same
(results not shown). Thus, it is evident that the performance of

PMFS plummets in workloads involving parallel
create/deletes and data allocations of large number of files.
Unlike ext2, ext3 and XFS, PMFS lacks parallelism in data
and metadata allocations. When a new inode has to be
allocated, PMFS takes a big lock on the entire inode table and
searches for unused inode. Further, for data allocation, it
searches through a common linked list of unused blocks with
one lock, thereby reducing its scalability. However, ext2 and
ext3 employ features such as block groups, similar to
allocation groups in XFS, which allows parallel allocations of
data and metadata blocks, resulting in better performance than
PMFS in this test.

Another important thing to note is that in contrast to
fileserver, ext3-buf and ext4-no-del (without delayed
allocation) perform similarly, only 15% worse compared to
ext3-xip. Surprisingly, ext4-no-del performed 1.6x better than
ext4-buf (0.7 directory depth). We analyzed and found that the
main reason was large number (500K) of small sized files of
32K. On the other hand, fileserver workload consisted of only
100K files of average size 128K. Thus, delayed allocation
becomes an overhead when there are a large number of
parallel allocations required for small sized files. It is more
beneficial for large sized files, when they are moderate in
number.

Similar to fileserver workload, we observed an
improvement in performance of XFS if we increase the AG
count from 4 to 464; its performance improved by 13-35% for
varying directory depths. Moreover, xfs-buf-464 performs
around 48%, 12% and 10% worse compared to ext4-no-del for
directory depths 0.7, 2.1 and 3.4, respectively. This is because
lookup operation in XFS is much slower than ext4-no-del for
large/flat directories.

F2FS performs 30x better than NILFS2 (0.7 depth) as the
former adopts hashed-directory entries. But, it performance is
3x worse compared to other buffered configurations (ext3-buf
and xfs-buf-464). We found that lookup and create operations
is much slower in F2FS for large (flat) directories compared to
relatively deep directory.

Insights:
It is clear from this experiment that enabling XIP feature

on traditional file system helps boost their performance on
NVM. Further, features like allocation group are of great
importance in workloads involving parallel data and metadata
allocations or metadata and data mix as it helps scale
performance. Thus, it should be considered in file system
design for NVM. While delayed allocation seems useful in
creation of large sized files, it turns out to be expensive in
workloads involving allocations of parallel large number of
small sized files (<=32K).

C. Webserver
As shown in Fig. 4, PMFS performed the best amongst all

file systems. Although the number of files is same as
webproxy (500K), PMFS performs 17% and 20% better than
ext2-xip and ext3-xip, respectively (contrary to the
observation in webproxy). This is because, webserver is a
read-intensive workload involving multiple lookups followed
by full files reads and then appends to a common log file.

Fig. 4. Performance of file systems under webserver workload

Since webserver does not have any metadata operations such
as create or parallel data allocations, the deficiency of PMFS
with respect to parallel allocations is not exercised, resulting
in improved performance. Moreover, ext2-xip and ext3-xip do
not support XIP for metadata operations (lookup and updates);
hence we see a difference between PMFS and other XIP file
systems.

Due to read-intensive workload, buffered configurations
of ext2, ext3 and ext4 and ext3-data perform close to each
other: 60-70% worse compared to PMFS. Because of the same
reason, NILFS2 and F2FS also perform close to buffer and
data journal modes of file systems (around 10-16%
difference). We see a vast difference between XIP and
buffered modes of the file systems because of the extra copy
overhead, as discussed in fileserver workload. We see an
improvement of 15% when number of active logs is increased
in F2FS from 2 to 6. Due to slow lookup operations (discussed
in webproxy), xfs-buf-464 performed around 10-15% worse
compared to other buffered file system configurations.
Further, the performance of ext4-buf and ext4-no-del is close
as the workload does not involve significant data allocations
or file creations.

Insights:
XIP file system configurations (ext2 and ext3) perform

close to PMFS and better than their default counterparts.
Compared to the earlier workloads, for read-intensive
workloads, the performance difference across various buffered
configurations – both update-in-place and log-structured
becomes small (10-16% only). Further, delayed allocation has
no effect on such read-intensive workloads.

D. OLTP Database: TPC-C on MySQL
Fig. 5 shows the results of TPC-C when executed on

MySQL using InnoDB storage engine. It shows the
transactions per minute (tpmC) normalized with respect to
PMFS. Compared to the workload results mentioned earlier,
we observed two differences: (1) PMFS, ext2-xip and ext3-xip
perform the best, but close to each other (less than 5%
difference), and (2) relative performance difference across

Fig. 5. Performance of file systems under tpc-c workload

best file systems (XIP-based) and other configurations
reduced significantly – 13-22% across ext2, ext3, ext4 and
XFS variants, 32% and 42% compared to ext3-data and
NILFS2, respectively.

To better understand the results, we tried to determine
how MySQL transformed TPC-C workload to file system I/O
requests. We analyzed the I/O and thread pattern of MySQL
using strace and found that most read and write requests
come to mainly three of the nine database files stock.ibd
(size=14G), order_line.ibd (size=14G), customer.ibd
(size=5G). Moreover, the read-write ratio as seen by the file
system is 3:1. For every new client connection a MySQL
server thread was created, which performed reads (SELECT)
from database files in 16KB units and writes
(INSERT/UPDATE) to common log file in 512 to 600KB I/O
size. MySQL calls fsync after writing transactions to the log
file. MySQL also performs regular checkpoint operation
where it commits the data buffers from memory to database
files in 16KB I/O size units. In summary, TPC-C on MySQL
exercises data-intensive workload on the underlying file
system and does not perform any allocations or metadata
intensive operations.

We emulated the workload pattern detected above using
Filebench and compared the performance results with those of
TPC-C. We found that there was a performance difference of
around 15-20% across PMFS and ext2/3-xip. Although the
overall performance pattern looked the same as TPC-C, the
relative difference across the file systems increased. On
further investigation we found that the latency measured by
TPC-C client threads include the data transfer across network
socket, which takes around 12-15us. This value is significant
compared to the latency of reads and writes in various file
systems on NVM, resulting in reduction in relative
performance difference.

As discussed in earlier workload sections, XIP-based file
systems beat buffered, data journaled and log-structured file
systems as in XIP the data is directly read or written from/to
memory bypassing the page cache. Moreover fsync is

Fig. 6. File System performance for YCSB Workload A

Fig. 7. File System performance for YCSB Workload B

lightweight in XIP file systems as it involves only flushing of
the CPU caches, while in other file system configurations the
data is actually copied from buffer cache to ramdisk. The
reasons for relative performance of NILFS2 and F2FS remain
the same as discussed in earlier workloads. Varying active
logs from 2 to 6 does not impact F2FS performance. It is 22-
25% worse compared to PMFS.

 In case of XFS, when the AG count increases from 4 to
464, its performance plummets by 10%. This is contrary to the
earlier results. We tried to analyze the reason for this anomaly
using xfs_db - a tool that aids in debugging XFS. We found
that to store a large file of size 5-14GB using 464 AGs, XFS
split the file data to multiple extents in different allocation
groups. As the size of a single allocation group was only
128MB the size of an extent could not grow beyond 128MB.
To address these extents from different allocation groups, XFS
inode required more indirections and entries. On the contrary,
in case of 4 allocation groups, each AG is big enough to
accommodate the whole file in one extent, thereby reducing

metadata overhead. Increased indirections impact the lookup
latency of a data block, thereby degrading performance.

Insights:
For data-intensive workloads, enabling just the XIP

feature on in-place update traditional file systems (ext2/3)
bumps their performance and they perform at par with PMFS.
Allocation group count should be set appropriately based on
the workload – mainly the file sizes, parallelism in data
allocations, and CPU cores.

E. Key-Value Stores: YCSB on MongoDB
We ran YCSB [4] on NoSQL database – MongoDB,

which performs memory-mapped I/O on its database files and
file-io (write system call) to its journal. Thus, READ and
SCAN operation result in memory loads while UPDATE and
INSERT result in memory stores to database files and writes
to journal. MongoDB calls fsync on its journal every 120 ms
and msync on its database files every 60 seconds.

Fig. 8. File System performance for YCSB Workload C

Figures 6 through 11 present normalized latencies of

various YCSB transactions under different workloads (A-F)
for the maximum sustainable input load (IOPS) across various
file systems. Note that contrary to previous graphs, higher is
worse. We take the maximum throughput possible for the
lowest performing file system and measure the latencies
across all file systems for that input load. For example, in
workload A, B and C the output throughput starts dropping
after an input load of 20K ops/sec for the lowest performing
file system ext3-data and F2FS. Thus, we fix the input load for
Workload A, B and C to be 20K ops/sec for all the file
systems and compare their latencies under this fixed load.
Note that we do not report the results for NILFS2. Due to the
log-structured nature of this file system, ramdisk formatted
with NILFS2 gets filled up completely much before the test
finishes. Thus, we could not run YCSB on NILFS2.

Workload A, B, C: Fig. 6 shows the results of Workload A,
when READ-UPDATE ratio is 50:50 at an input load of 20K
ops/sec. As shown in the figure, ext2-xip, ext3-xip and PMFS
perform close to each other (having only 5% difference across
them). All the XIP-based file systems perform the best for
both READ and UPDATE. In case of READ all buffered file
system configurations (ext2-buf, ext3-buf, ext4-buf, xfs-buf-4)
experience 27-36% more latency compared to PMFS. F2FS
and ext3-data experience an increase in latency by 41% and
46%, respectively. In case of UPDATE buffered file systems
perform 19-20% worse whereas F2FS variants and ext3-data
perform 31-37% worse compared to PMFS. The performance
difference across ext4 and ext4-no-del is insignificant (5%
only), as the workload does not involve any allocations.
Similarly, we see no difference across XFS and F2FS variants.

These results are contrary to the results obtained in
Filebench workloads (webserver), where there was atleast 15-
20% difference across PMFS and other XIP file systems and
significant difference across other configurations. We
investigated and found that the main reason for this difference
was the way MongoDB accessed its data i.e., memory-mapped
I/O, whereas the Filebench workloads involved file-io i.e.,
open, read-write calls. As memory-mapped I/O performs loads
and stores and bypasses the kernel and file system during data
path, ideally the performance of all the file systems should be
the same. However, we observe performance difference if (a)

there are substantial number of page faults resulting in file
system page fault handler, or (b) there is a lot of dirty data due
to writes/updates resulting in flush operation to the backing
store.

To corroborate this point, we ran two simple micro-
benchmarks using fio [26]. The first micro-benchmark
involved 100% random loads, while the second performed
100% random stores on a 2GB mmaped file. In both the cases,
the I/O size was 1KB (same as I/O size in YCSB/MongoDB).
We found that all the file systems performed similarly in case
of 100% loads. This is because the cost of page faults
amortizes across multiple load requests. In case of 100%
stores, we observe no difference in performance across ext2-
xip, ext3-xip and PMFS. Buffered file system configurations,
ext3-data and F2FS observe a performance degradation of
2.4x-2.5x compared to XIP-based file system. These file
system configurations experience such abysmal performance
in case of 100% stores because of the flush daemon that tries
to sync the dirty pages from buffer cache to ramdisk (block
device). Further, in case of ext3-data, extra copy of data in
the journal results in more performance degradation compared
to ordered mode. On the contrary, XIP-based file systems
write directly to the media, bypassing the buffer cache and
eliminating this overhead.

Comparing the results of Workload A, B and C, in
Figures 6 through 8, we observe that as the percentage of
UPDATE decreases in YCSB workloads, the relative
difference across file systems also decreases for READ
transactions or they perform almost the same. Hence, in
Workload C, which is a 100% READ workload we see a
maximum of only 8% performance difference across few
buffered configurations and PMFS (similar to the results
obtained from our micro-benchmark involving 100% loads).
However, as we increase the UPDATE percentage – 5% in
case of Workload B to 50% in Workload A, we see a
performance difference across XIP-based and other file
system configurations. Thus, on low latency media such as
NVM, UPDATE operation influences the performance of
READ as well. Hence, we see a difference in performance in
case of READ transactions for Workload A and B. We
repeated these experiments on hard disk and found no such co-
relation across different types of transactions. Thus, we
conclude that in case of low-latency media the slowest
performing function or feature can come in the way of other
better performing features.

Workload D: Workload D exercises READ-INSERT ratio of
95:5 and follows latest distribution. As seen in Fig. 9, all the
XIP and the buffered file systems have similar latencies both
for READ and INSERT at an input load of 15K ops/sec. Only
ext3-data performed 34% worse compared to other file
systems in case of INSERT. We performed two simple YCSB
workload experiments – (a) 100% READ, (b) 100% INSERT,
with latest distribution. We observed that all the file systems
performed similarly for both READ and INSERT, except
ext3-data; it performed 35-47% worse in case of 100%
INSERT only. This is because MongoDB performs loads and
stores, thereby diminishing the effect of various file systems,
as discussed earlier. As data journaling introduces extra
overhead, ext3-data performs the worst in case of INSERT.

Fig. 9. File System performance for YCSB Workload D

Fig. 10. File System performance for YCSB Workload E

 One thing to note is that although both YCSB UPDATE
and INSERT operations involve stores, we observe some
performance difference across file systems in case of
UPDATE (Workload A, B), but absolutely no difference in
case of INSERT (except ext3-data). We tried to analyze and
found that INSERT on MongoDB results in file appends. But,
UPDATE result in read-modify-write type of operation, which
consequently increases the number of page faults, around 13x
more than INSERT operation. Thus, we see performance
difference across file system configurations for UPDATE but
not INSERT.

Workload E: This workload consists of range SCAN and
INSERT at 95:5 ratio. We exercise an input load of 5K
ops/sec. The operation distribution is zifpian and the scan-
length distribution is uniform over a range of 0-100 scan
length. Similar to other YCSB workloads, XIP-based file
systems perform the best as shown in Fig. 10. To our surprise,
all other file systems performed 2.27-2.42x worse in case of
SCAN, although it involves loads. This is contrary to our
results in Workloads A, B, C and, D, which were dominated

by READ operation. In order to determine the difference
between YCSB READ and SCAN operations, we reran 100%
SCAN and 100% READ workload and measured the number
of page faults introduced by each workload. We found that
SCAN operation exercised 62x more page faults than READ
operation. In XIP-based file systems page fault results in
simply mapping the NVM area to the virtual address space,
whereas, in other file systems it involves an extra copy of data
from ramdisk to the memory-mapped area or buffer cache.
Thus, increased number of page faults contributes to the
latency difference across XIP and other non-XIP file system
configurations in case of SCAN operation.

Contrary to our observation from Workload D, we see
significant difference across XIP and buffered file systems for
INSERT transaction. This is because, the dominating
operation (SCAN) influences performance of INSERT as well
in NVM environment. Similar to Workload A and B, we
observe the slowest operation influencing the performance of
the other well-performing operation on NVM.

Fig. 11. File System performance for YCSB Workload F

.

Workload F: Fig. 11 shows the results of Workload F. This
workload incorporates a new type of operation i.e. READ-
MODIFY-WRITES (RMW), where it reads a key, modifies
the same and write it back to the database. Note that RMW is
similar to UPDATE. The ratio of READ to RMW is 50:50.
Due to similarities in read-write ratio between Workload A
and Workload F, we see a similarity in latency pattern across
these two workloads. As the reasons for performance
difference remain the same (as explained in Workload A), we
do not discuss it here.

Insights:

It is evident from the six different workloads of YCSB
that in case of applications/workloads involving memory-
mapped operation simply enabling XIP feature on traditional
file systems such as ext2 and ext3 boosts their performance so
much so that they perform at par with PMFS, which is solely
designed for NVM. The extra copy of data in case of buffered-
mode of the file systems and data journaling turns out to be
redundant and hence impact performance adversely in
memory-mapped applications if they have a mix of loads and
stores.

V. RECOMMENDATIONS AND CONCLUSIONS
Based on our study we found that traditional file systems

can be tuned to perform better than their default setting on
NVM. In some cases these fine-tuned file systems perform at
par with PMFS. Further, we found that features that help
improve CPU and memory utilizations turn out to be better
performing than others on NVM. PMFS, which is an NVM-
aware file system, has most of the features that leverage the
byte-addressability and low latency characteristics of the
media. But, if one wishes to use a traditional file system with
minor modifications or reconfigurations, we recommend few
file system features that can help improve its performance on
NVM. Few of the features include:

1. In-place update layout: In-place update layout is
preferred for non-volatile memories as updating in the
same place reduces extra copies of data and metadata,
thereby obviating the need to garbage collect obsolete
blocks of data and metadata (unlike log-structured file

systems). Moreover, it also helps leverage the random
access feature of NVM. Thus, in-place update layout of
file systems result in better utilization of CPU and
memory, thereby improving their performance. Although
log-structured layout provides with features such as
snapshots, it is not a preferred layout from performance
perspective on NVM.

2. Execute-in-place (XIP): In-place update along with XIP
helps leverage the NVM media to its fullest extent. It helps
bypass extra layers in the software stack, such as buffer
cache, which is redundant in case of NVM. Moreover, as
discussed in ext2 and ext3, adding XIP support only to
data operations (i.e., read and write) is fairly simple and
involves minimal changes in the file system code. One of
the functions that need to be implemented is
get_xip_mem. While accessing both data and metadata
using XIP and atomic updates is optimal (PMFS), enabling
XIP feature only for data also helps improve performance
of traditional file systems and they perform close to PMFS.
We have shown the benefits of XIP on ext2 and ext3 only,
but it can be extended to other in-place update file systems
as well.

3. Simple and parallel allocation strategy: For workloads
involving metadata and data mix, it is advisable to allow
parallel allocations of both data and metadata (inodes).
Having a simple linked list protected by a single lock for
allocations is not efficient and does not scale beyond a few
numbers of files and allocation requests. Instead, a feature
such as Allocation Group is favorable to scale the
performance of file system on memory. Moreover, the
code path for allocation should be simple and short.
Optimizations added for the disk world, such as co-
locating the data based on earlier data blocks or inodes or
size of block (XFS), unnecessarily increase the code path
length, thereby degrading performance. Delayed allocation
can help improve performance even on NVM for
workloads involving multiple parallel data and metadata
allocations of large sized files, as it amortizes allocation
cost.

4. Fixed sized data blocks: Extent-based file systems are
favored in disk world, but on NVM these turn out to be
expensive; they take more memory and CPU resources for

merging and balancing the extents if the workload involves
a lot of writes or appends. The lookup operation (directory
search) also takes more time in case of large directories.
On the other hand, using fixed size blocks, results in
simple index based inodes that are cache friendly, and
helps improve the performance of NVM file systems (e.g.,
PMFS, ext2, ext3).

ACKNOWLEDGMENT
We would like to acknowledge various NetApp ATG
members who helped improve the work through many
brainstorming sessions and reviewing the paper. We would
also like to thank the anonymous reviewers for their valuable
comments.

REFERENCES

[1] A. Caulfield, A. De, J. Coburn, T. Mollov, R. Gupta, and S. Swanson.
Moneta: A High-performance Storage Array Architecture for Next-
generation, Non-volatile Memories. In Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, 2010.

[2] A. Caulfield, T. Mollov, L. Eisner, A. De , J. Coburn, and S. Swanson.
Providing Safe, User Space Access to Fast, Solid State Disks. In
Proceedings of the 17th International Conference on Architectural
Support for Programming Languages and Operating Systems, March 03-
07, 2012.

[3] C. Lee, D. Sim, J. Hwang, and S. Cho. F2FS: A New File System for
Flash Storage. In Proceedings of the 13th USENIX Conference on File
and Storage Technologies, FAST’15, pages 273-286, 2015.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud Computing (SoCC), 2010.

[5] E. Lee, H. Bahn, S. Yoo, and S.H Noh. Empirical Study of NVM
Storage: An Operating System's Perspective and Implications. In IEEE
22nd International Symposium of Modelling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), 2014.

[6] H. Volos, A. J. Tack, and M. Swift. Mnemosyne: Lightweight Persistent
Memory. In Proceedings of the 16th International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS) 2011.

[7] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena, and M.
Swift. Aerie: Flexible File-system Interfaces to Storage-Class Memory.
In Proceedings of the 9th European Conference on Computer Systems,
EuroSys, 2014.

[8] I. Moraru, D. G. Andersen, M. Kaminsky, N. Tolia, P. Ranganathan, and
N. Binkert. Consistent, Durable, and Safe Memory Management for
Byte-addressable Non volatile Main Memory. In TRIOS, 2013.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R.
Jhala, and S. Swanson. NV-Heaps: Making Persistent Objects Fast and
Safe with Next-generation, Non-volatile Memories. In Proceedings of
the 16th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2011.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D.
Coetzee. Better I/O Through Byte addressable, Persistent Memory. In
Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles (SOSP) 2009.

[11] J. Yang, Q, Wei, C Chen, C. Wang, K. L. Yong, and B. He. NV-Tree:
Reducing Consistency Cost for NVM-based Single Level Systems. In
Proceedings of the 13th USENIX Conference on File and Storage
Technologies (FAST), 2015.

[12] M. Cao, S. Bhattacharya, and T. Tso. Ext4: The Next Generation of
Ext2/3 Filesystem. In Linux Storage & Filesystem Workshop, USENIX
Association, 2007.

[13] M. Rosenblum and J. K. Ousterhout. The Design and Implementation of
a Log-structured File System. ACM Transactions on Computer Systems,
1992.

[14] M. S. Bhaskaran, J. Xu, and S. Swanson. Bankshot: Caching Slow
Storage in Fast Non-volatile Memory. In Proceedings of the 1st
Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads (INFLOW), 2011.

[15] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell.
Consistent and Durable Data Structures for Nonvolatile Byte-
addressable Memory. In Proceedings of the 9th USENIX Conference on
File and Storage Technologies (FAST), 2011.

[16] S. R. Dulloor, S. Kumar, A. Keshavamurth, P. Lantz, D. Reddy, R.
Sankaran, and J. Jackson. System Software for Persistent Memory. In
Proceedings of the 9th European Conference on Computer Systems,
2014.

[17] S. Peter, J. Li, D. Woos, I. Zhang, D. Ports, T. Anderson, A.
Krishnamurthy, and M. Zbikowski. Towards High-Performance
Application-Level Storage Management. In 6th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage), 2014.

[18] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured Memory
for DRAM-based Storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST) 2014.

[19] X. Wu and A. L. N. Reddy. SCMFS: A File System for Storage Class
Memory. In Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, 2011.

[20] EverSpin Second Generation DDR3 Compatible STT-MRAM.
http://www.everspin.com/products/second-generation-st-mram.html

[21] Execute-in-place Linux Kernel Documentation.
https://www.kernel.org/doc/Documentation/filesystems/xip.txt

[22] Ext2. https://www.kernel.org/doc/Documentation/filesystems/ext2.txt
[23] Ext3. https://www.kernel.org/doc/Documentation/filesystems/ext3.txt
[24] Ext4. https://www.kernel.org/doc/Documentation/filesystems/ext4.txt
[25] F2FS. https://www.kernel.org/doc/Documentation/filesystems/f2fs.txt
[26] Flexible IO (fio) Tester. http://freecode.com/projects/fio.
[27] Filebench. http://sourceforge.net/apps/mediawiki/filebench.
[28] H. Hellmold. Emerging NVM – Enabling Next-generation Data Storage

Solutions. In FlashMemory Summit 2014.
http://www.flashmemorysummit.com/English/Collaterals/Proceedings/2
014/20140807_301C_Hellmold.pdf

[29] International Technology Roadmap for Semiconductors, (ITRS):
Emerging Research Devices, 2013.

[30] Linux PMem Library. https://github.com/pmem/linux-examples
[31] MongoDB. http://www.mongodb.org
[32] NILFS2.

https://www.kernel.org/doc/Documentation/filesystems/nilfs2.txt
[33] Persistent Memory File System. https://github.com/linux-pmfs/pmfs
[34] SGI. XFS Filesystem Structure.

http://oss.sgi.com/projects/xfs/papers/xfs_filesystem_structure.pdf
[35] Transaction Processing Performance Council, TPC-C, an online

transaction processing benchmark. http://www.tpc.org/tpcc/
[36] XFS. https://www.kernel.org/doc/Documentation/filesystems/xfs.txt

