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Abstract— Emerging byte-addressable, non-volatile memory 
like phase-change memory, STT-MRAM, etc. brings persistence 
at latencies within an order of magnitude of DRAM, thereby 
motivating their inclusion on the memory bus. According to some 
recent work on NVM, traditional file systems are ineffective and 
sub-optimal in accessing data from this low latency media. 
However, there exists no systematic performance study across 
different file systems and their various configurations validating 
this point. In this work, we evaluate the performance of various 
legacy Linux file systems under various real world workloads on 
non-volatile memory (NVM) simulated using ramdisk and 
compare it against NVM optimized file system -- PMFS. Our 
results show that while the default file system configurations are 
mostly sub-optimal for NVM, these legacy file systems can be 
tuned using mount and format options to achieve performance 
that is comparable to NVM-aware file system such as PMFS. Our 
experiments show that the performance difference between 
PMFS and ext2/ext3 with execute-in-place (XIP) option is around 
5% for many workloads (TPCC and YCSB). Furthermore, based 
on the learning from our performance study, we present few key 
file system features such as in-place update layout with XIP, and 
parallel metadata and data allocations, etc. that could be 
leveraged by file system designers to improve performance of 
both legacy and new file systems for NVM. 
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I. INTRODUCTION  
The emergence of flash has been a disruptive force that 

has led to dramatic changes in how storage systems are 
designed. However, there are newer forms of non-volatile 
memory (NVM) technologies (e.g. PCM, STT-MRAM, 
ReRAM) in the pipeline that promise to be even more 
disruptive than flash. These new non-volatile memory 
technologies are byte addressable, unlike flash that is block 
addressable, and have latencies close to DRAM and densities 
better than DRAM [20, 28, 29]. Thus, NVM can augment 
DRAM on the memory bus, allowing applications to persist 
their working sets close to memory latencies. 

Whenever a new media arrives there is a lot of research 
on designing and developing new file systems that cater to the 
characteristics of this media. For example, for non-volatile 
memory, new file systems such as PMFS [16, 33], SCMFS 
[19], and BPFS [10] have been proposed. These file systems 
leverage byte-addressability and random access features of 
NVM to gain maximum performance benefit. Moreover, there 
has been a lot of research on persistent memory abstractions 
such as Mnemosyne [6], NV-Heaps [9], PMem-Lib [30][8]. 

While these approaches seem optimal, there exists no work 
that evaluates existing block-based file systems on NVM. 
Since multiple decades worth of work has gone into these file 
systems, it is important to examine whether these legacy file 
systems can be fine-tuned using file system configuration 
options for NVM.  

In this paper, we present a study that evaluates the 
performance of various legacy file systems under various real-
world workloads on NVM.  We selected commonly used 
server-class workloads such as webserver, fileserver, 
webproxy, database and key-value stores as they differ from 
each other in terms of data access patterns, metadata-data 
ratios, etc. We evaluated and compared the results of above 
workloads on NVM-aware file system – PMFS, flash-aware 
file system – F2FS [3, 25], and five traditional Linux file 
systems: Ext2 [22], Ext3 [23], Ext4 [12, 24], XFS [34, 36], 
and NILFS2 [32] on NVM. As we wanted to determine 
whether legacy file systems could be fine-tuned to perform 
comparable to PMFS, we assess the performance of these file 
systems under different mount and format options. Some of 
the options that we varied include different journaling modes, 
allocation policies such as delayed allocation, mechanisms to 
bypass buffer cache using execute-in-place (XIP), etc.  

Our study shows that existing file systems, with little 
reconfiguration or slight changes, perform close to NVM-
aware file systems, for various real-world workloads.  
Moreover, we have identified a few file system features that 
boost the performance of file systems on NVM. Here is a 
summary of some key findings from our study:  

1. In-place update vs. log-structured layout: File system 
designers prefer a log-structured file (LFS) layout [13] for 
different types of media as it mitigates media limitations 
such as rotational latency in case of hard disk and block 
erasure granularity and write amplification in case of 
Flash. LFS is also preferred for memory allocation in 
complete DRAM-based systems that are backed by disks 
(RAMCloud [18]).  Although LFS provides useful 
features such as continuous snapshots, our study shows 
that pure LFS-based file system (NILFS2) perform much 
worse compared to in-place update file systems, such as 
ext2, ext3, ext4 and XFS in workloads involving read-
write mix. F2FS, which is a hybrid file system and treats 
most of its metadata in-place and data as log-structured, 
performs much better than NILFS2 and within 15-25% of 
some of the default configurations of in-place file 
systems. Moreover, NILFS2 and F2FS employ garbage 
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collection that utilizes CPU and memory resources for 
cleaning obsolete or deleted segments, depriving the 
active file system from these useful resources. This 
impacts the performance of LFS or hybrid file systems 
adversely. Therefore, we conclude that in-place update of 
both data and metadata is a preferred layout for NVM file 
systems. 

2. Execute-in-place vs. Buffered file system: Buffer cache 
is useful and helps improve performance when a file 
system exists on slow media such as hard disk and is 
front-ended with fast DRAM. However, on NVM that has 
access latencies similar to DRAM, buffer cache 
introduces copy overheads rather than being useful. 
Execute-in-place (XIP) [21] helps bypass this extra copy 
and improve file system performance running on NVM 
by directly performing read and write from/to NVM 
media. It also bypasses block level I/O scheduling. PMFS 
adopts this feature by default. Our experiments show that 
if we only enable XIP feature on existing file systems 
(ext2 and ext3), it helps existing file systems to perform at 
par with PMFS – about 5-20% performance difference in 
many workloads. Opening the file in direct mode 
(O_DIRECT) also helps bypass buffer cache, but it only 
works for data updates and not for metadata updates. 
Moreover, the block layer overhead of scheduling I/O 
remains in case of O_DIRECT. Hence, we do not 
evaluate this feature in our study.  

3. Simple and parallel allocation/de-allocation: We found 
that allocation strategies impact the performance of 
certain workloads, which involve multiple file 
creations/deletions or file size increase (e.g., fileserver 
and webproxy).  Firstly, features such as allocation 
groups [34] (XFS) or block groups (ext3, ext4) help scale 
the performance as it allows parallel allocations. In 
workloads involving parallel data (read, write) and 
metadata (create, delete) operations on a large number of 
files (~500K or more), we found that PMFS performed 
the worst amongst all the file systems, around 5x worse 
compared to ext3 with XIP enabled. This is because it 
uses only one singly linked list for data and metadata 
allocation (Section IV B) inhibiting its scalability.  
Secondly, because of fast random access speed of NVM, 
optimization such as delayed allocation (XFS and ext4) is 
of no use in data intensive workloads. Nevertheless, if the 
workload involves multiple data allocations, delayed 
allocation boosts the performance even on high speed 
NVM as it amortizes allocation cost.  

4. Fixed vs. variable block size (extent): Our experimental 
results reveal that the performance across traditional file 
systems that manage data using fixed sized blocks versus 
variable sized extents is close. Using fixed sized data 
blocks simplifies the data structures required to maintain 
the free space information and indexing information about 
files and directories i.e., inodes. This in turn reduces the 
CPU path length of the code required to perform lookups 
and maintain these data structures. Hence, it is advisable 
to use fixed sized data blocks for NVM file systems such 
as in ext2 and ext3 vs. variable sized extents as in XFS 
and ext4.  

The rest of this paper is organized as follows. Section 
II presents the related work; Section III describes our 
experimental methodology. We present the evaluations 
and analysis in Section IV. Finally, we provide some 
recommendations and conclude in Section V.  

 

 
 

Fig. 1. Traditional vs. optimized POSIX file systems 

II. BACKGROUND AND RELATED WORK 
The emergence of low speed, byte-addressable storage 

class memory or non-volatile memory (NVM) on the memory 
bus has led to a lot of research on methods to access and 
manage data stored on this fast media. Prior research related to 
NVM primarily falls into two buckets: (i) exploring file 
system design alternatives and (ii) exploring interfaces or 
programming model alternatives presented to applications. 
While (i) is needed for coarse-grained space management and 
protection of the NVM media, (ii) is required for efficient 
access to data and fine-grained data management by 
application. Fig. 1 summarizes the combinations of available 
POSIX interfaces: file-io (open, read, write) and mmap-io 
(open, mmap and load/store), and file systems: traditional and 
NVM optimized, for managing and accessing data from the 
NVM media. Existing research can be classified as:  

1. Use of POSIX interface (open/read/write or 
mmap/load/store) but re-designing the file system for 
NVM (category i). PMFS [16, 33], SCMFS [19], and 
BPFS [10] fall in this category. These file systems avoid 
traditional storage stack overheads and leverage NVM 
media features, such as byte-addressability, atomic-
updates, and fast random access speeds.  

2. POSIX library interposers bypass the file system during 
data path, thereby reducing the latency to access data 
(category ii). It accesses kernel file systems only during 
the control path i.e., for access control, allocating space 
from physical NVM media, etc. Moneta-D [1, 2] and 
Bankshot [14] adopt this technique and move some file 
system functionality into hardware. Aerie [7] and [17] also 
fall in this category but depend on user mode file systems.  

 



  
Workload Average 

file size 
Average 
directory 

depth 

No. of 
files 

I/O Size 
(r/w) 

Threads R/W 
ratio 

Fsync Metadata 
operations 

fileserver 128K 3.8 100K 16K 50 1:2 No Yes (C/D/S) 
webproxy 32K 0.7 500K 1M/32K 50 5:1 No Yes (C/D) 
webserver 32K 2.5 500K 1M/8K 50 10:1 No No 
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3. Use of new programming models to simplify direct use of 

NVM by applications (category ii). Examples include 
Mnemosyne [6], NV-Heaps [9], PMem-Lib [30], and [8]. 
These libraries provide fine-grained data management, 
allocation, de-allocation, persistence, and transaction 
management while coarse-grained space management 
resides with the file system. NV-Tree [11] and CDDS 
[15] propose a consistent and durable data structure 
(B+Tree variant) for non-volatile memory.  

4. Use of existing POSIX interface and traditional block-
based file systems, but adjust operating system, storage 
stack or file system configurations to improve performance 
for NVM. To our knowledge there is only one paper [5] 
that falls in this category and is closely related to ours. 

Lee et al. [5] explore various I/O configuration 
parameters such as buffer cache, read-ahead, synchronous, 
direct I/O, etc. on NVM and compare it with results on HDD. 
They use Ext4 file systems for all their evaluations. Our work 
differs from this previous work: we concentrate on evaluating 
performance of the following file system configurations under 
different workloads on NVM: (a) default access to traditional 
file system,  (b) fine-tuned access to traditional file systems 
through mount and format options, and (c) NVM-optimized 
file system, such as PMFS. We use various in-place-update 
and log-structured file systems to evaluate traditional file 
systems. Section III provides details on the different 
workloads and file system configurations that we evaluate.  

III. METHODOLOGY AND LIMITATIONS 
In this work, we wanted to determine whether it is possible 

to reconfigure or fine-tune traditional file systems such that 
they perform close to NVM-optimized file systems (PMFS). 
Further, we wanted to summarize key file system features that 
boost their performance on NVM. To achieve this goal we 
evaluated different Linux file systems under varying workloads 
on simulated NVM. This section details the experimental 
hardware and software setup for our evaluations. We describe 
our testbed in Section A. In Section B and C we discuss the 
two important dimensions of our evaluation: workloads and 
file systems, respectively.  

A. Experimental Setup 
Our experimental setup consisted of a commodity server 

with 8 Intel Xeon 2.40GHz processors. It consisted of 66GB 
DRAM, out of which we configured 58GB as ramdisk to 
simulate NVM. It is important to note that our experiments 
focus on file systems and do not evaluate the different types of 
NVM (e.g. PCM, STT-MRAM, ReRAM etc). Thus, we 
conduct experiments on ramdisk carved from DRAM, which 

does not simulate NVM slower than DRAM or have 
asymmetric latencies. Since all performance numbers are 
relative, the same observations should be valid for NVM, 
which would be slower than DRAM. In order to pin down the 
memory pages belonging to ramdisk (NVM), we perform dd 
on the entire 58GB ramdisk. In case of PMFS we reserved 
58GB of memory using the grub option memmap. User 
processes and buffer cache used the rest of the free DRAM 
space (6GB). The swap daemon is switched off in every 
experiment to avoid swapping off pages to disks (in case of 
mmap). We conduct all our experiments on Ubuntu 12.04 
using Linux Kernel 3.11. 

B. Workload Categories 
We wanted to evaluate the performance of file systems 

under different workload parameters:  file size, directory depth, 
read-write ratio, metadata vs. data activity, access patterns (I/O 
size, sequential vs. random vs. append).  We selected five 
common workloads: webserver, fileserver, webproxy, OLTP 
database and key-value stores. We used Filebench [27] 
benchmark suite to emulate the first three workloads, TPC-C 
[35] for the OLTP database workload, while YCSB [4] 
benchmark for key-value stores. Table 1 summarizes workload 
properties of the first three workloads.  We discuss all the 
workloads below in more detail. 

Fileserver: This workload emulates a server hosting home 
directories of multiple users (threads). Each thread picks up a 
different set of files based on its ID and performs sequence of 
create, delete, append, read, write and stat operations. This 
workload exercises both data and metadata activities. The ratio 
of metadata to data operations is 1:1.  

Webproxy: This emulates a simple webproxy server. It 
generates a mix of create, append, read, and delete operations, 
simultaneously, from a large number of threads. This workload 
is characterized by fairly flat namespace hierarchy, with a 
directory depth of 0.7 i.e., all the 500K files are contained 
within one large directory. The ratio of metadata to data 
operations is 1:3. 

Webserver: The webserver workload is characterized by a 
read-write ratio of 10:1, consisting of full file sequential reads 
by all the threads, emulating web page reads. All the threads 
append 8K to a common log file.  This workload is primarily 
read-intensive. It not only exercises fast lookups and small file 
reads, but also concurrent data and metadata updates into 
single, growing log file. 

OLTP Database: The TPC Benchmark C [35] is intended to 
model a medium complexity online transaction processing 
(OLTP) workload. The benchmark represents a generic 



wholesale supplier workload consisting of 9 tables and 5 stored 
procedures. In our evaluation, we ran TPC-C over MySQL 
database v5.5. We used 400 warehouses, generating a database 
size of 38GB. Since our server consisted of 8 CPUs, we used 8 
concurrent threads to generate the input load. Note that after 
every transaction commit, MySQL calls fsync on the logfile.  

 
Work
load 

Read Update Insert Scan RMW Dist 

A 50 50 0 0 0 Zipf 
B 95 5 0 0 0 Zipf 
C 100 0 0 0 0 Zipf 
D 95 0 5 0 0 Latest 
E 0 0 5 95 0 Zipf 
F 50 0 0 0 50 Zipf 

 
TABLE II. YCSB workload characteristics  

 
Key-Value Stores: The Yahoo! Cloud Services Benchmark 
(YCSB) [4] is a workload that is representative of large-scale 
services provided by web-scale companies. It is a key-value 
workload. We ran YCSB on a NoSQL database – MongoDB  
v2.6.7 [31], which performs memory-mapped I/O on its 
database files and file-io (write system call) to its journal. 
MongoDB calls fsync on its journal every 120 ms and 
msync on its database files every 60 seconds. In YCSB, each 
tuple consists of unique key and 10 columns of random string 
data of 100 bytes each. Thus, the total size of a tuple is 
approximately 1KB. YCSB is composed of six workloads – A 
to F. Table II describes the percentage of different operations 
and distribution of each YCSB workload. For all the 
workloads, we set the record count to 16 million and the 
operation count to 10 million.  This test generated a working 
set of 36GB. We used 8 threads to generate the input load. 

C. File Systems  
We wanted to determine the file system configuration 

parameter and feature sets suitable for NVM environment 
under different workloads. Based on varying properties, we 
ran our workloads on seven different file systems: PMFS, 
Ext2, Ext3, Ext4, XFS, NILFS2 and F2FS. The distinguishing 
features across all the file systems are:  

• Inode data structures: B-Tree vs. linear fixed size 

• Block Size: Fixed vs. variable-sized extents 

• Layout or update style: In-place update vs. log 
structured vs. hybrid  

• Allocation strategies: Delayed vs. immediate, parallel 
allocation 

• Journal modes: None vs. ordered vs. writeback vs. data 

• Other features  (e.g., atomic updates, XIP) designed for 
NVM  

We evaluated the above file systems not only in their 
default modes but also using diverse mount and format 
options. Some of the options that we varied include different 
journaling modes, allocation policies such as delayed 

allocation, mechanisms to bypass buffer cache using execute-
in-place (XIP) and some more options relevant to specific file 
systems. Table III compares the different properties of these 
seven file systems based on the factors given above. The last 
row of this table provides abbreviations of the file system 
variants used in our evaluation.    

 
PMFS: PMFS [16, 33] is a lightweight POSIX file system that 
has been explicitly designed for NVM. It is an in-place update 
file system that bypasses the buffer cache and block layer (see 
Fig. 1). PMFS supports an important feature, called as execute-
in-place (XIP) that allows direct I/O from NVM media. XIP 
[21] is a method of executing programs directly from storage 
media like ROM or flash memory rather than copying the data 
into DRAM. As XIP allows direct access to media bypassing 
page or buffer cache (shown in Fig. 1), it appears as an 
attractive option for NVM media. PMFS is characterized by 
atomic in-place updates to metadata, fine grained undo logging 
for consistency, large page support, and low overhead scheme 
of protecting the NVM from stray writes, called write-protect. 
We do not enable write-protect feature on PMFS for fair 
comparison across PMFS and traditional file systems on 
ramdisk, which lack this feature.  
 
Ext2 and Ext3:	
  Ext2 [22] and Ext3 [23] had been the default 
file system on Linux for years. There is a lot of similarity 
between ext2 and ext3 in terms of layout, inode structures, and 
free space management. Both ext2 and ext3 divide the 
underlying storage (disk or ramdisk) into fixed size block 
groups (BG). Each group manages its own free data block 
bitmaps, and inodes. The two file systems try to increase 
reference locality by keeping files contained within a single 
parent directory in the same block group. The maximum block 
group size is constrained by block size (4K). For our 
experimental setup, the mkfs utility sets the default number of 
block groups to 464, based on the ramdisk size and block size. 
We report all the numbers for this default block group value. 
Ext3 adds journaling support, whereas ext2 has no journal. 
Ext3 supports three types of journaling modes: data, ordered 
and writeback, with ordered mode being the default. We 
evaluate the performance of both ordered and data journal 
mode of the file system. As XFS supports writeback journal 
mode, by default, we do not experiment writeback mode in 
ext3.  

We evaluate the performance of ext2 and ext3 when 
mounted with XIP feature enabled. In Linux, XIP is 
implemented by adding support to block device operations, and 
file system operations. A block device operation named 
direct_access is used to retrieve a reference to block on 
storage. The reference is supposed to be cpu-addressable 
physical address. The XIP-enabled file system needs to 
implement a special address-space operation named 
get_xip_mem that is used to retrieve reference to the page 
frame number (of the underlying media) and a kernel address 
(virtual address). The file system also implements special read, 
write function and page fault handler that make use of 
get_xip_mem. Currently, Linux ramdisk block driver and 
ext2 support XIP. We have added XIP feature support to ext3 
file system (ordered mode) and used it for our evaluations. 
Note that XIP feature in ext2 and ext3 is only limited to data  



 
 

 Ext2 Ext3 Ext4 XFS NILFS2 F2FS PMFS 

Inode Structure Linear Linear Hashed  
B-Tree 

B+Tree B-Tree Linear B-Tree 

Block Size Fixed Fixed Variable 
Extent 

Variable 
Extent 

Fixed Fixed Fixed (Page Size) 

Layout / update 
style 

In-place In-place In-place In-place Log structured Hybrid  In-place 

Allocation 
Strategy 

Immediate Immediate Delayed Delayed Immediate Immediate Immediate 

Parallel 
Allocation 

Yes  Yes Yes Yes No Yes (multi-
head logs) 

No 

Journal None Ordered, 
writeback, 

data 

Ordered, 
writeback, 

data 

Writeback Not 
Applicable 

Not 
Applicable 

Fine-grained undo 
logging (only 

metadata) 
Other Feature XIP  XIP (added 

by us) 
  Continuous 

Snapshot  
Multi-head 

log, adaptive 
cleaning 

XIP, atomic 
update, large 

blocks 
Variants 
evaluated 

(abbreviations) 

ext2-buf, 
ext2-xip 

ext3-buf, 
ext3-xip, 
ext3-data 

ext4-buf, 
ext4-no-del 

xfs-buf-4, xfs-
buf-464 

nilfs f2fs_2, f2fs_4, 
f2fs_6 

pmfs 

	
  
TABLE	
  III.	
  File	
  system	
  feature	
  set 

 
operations i.e., while performing copy across user and kernel 
data buffers. Unlike PMFS, this feature and atomic updates is	
  
not applicable to metadata operations such as updates to inode 
or journalling in traditional file systems as it involves more 
changes in the file system code. 
 
Ext4: Ext4 [12, 24] is an advanced level of ext3 with more 
scalability (maximum file size, number of files), and more 
features. In contrast to ext3 file system, ext4 is an extent-based 
file system that helps reduce metadata overhead. Further, ext4 
employs improved allocation strategies such as multi-block and 
delayed allocation. While these features are attractive in the 
disk world, we wanted to determine their efficacy in case of  
non-volatile memory. Hence, we report the results of not only 
the default configuration of ext4 but also without delayed 
allocation feature. 
 
XFS: XFS [34, 36] was designed for scalability: support 
terabyte sized files, unlimited number of files and large 
directories. XFS stores its data and metadata in variable sized 
extents. It adopts B+ Tree data structure for file/directory 
inodes, free space management and dynamic allocation of 
inodes. Similar to ext2/3 and ext4, XFS file system is divided 
into a number of equally sized chunks called as Allocation 
Groups (AG). Each AG manages the free space and inodes of 
its group independently. Thus, increasing the AG count scales 
up the parallel file system operations, improving its 
performance. In our setup, we found that the default AG count 
was set to 4. We increased the AG count of XFS to 464 – same 
as block group count of ext2 family file systems, and compare 
it against the default configuration. Similar to ext4, XFS 
employs delayed allocation policy to obtain large contiguous 
extent. It  supports writeback journaling by default. XFS tracks 
AG free space using two B+Trees: (a) based on block number, 
and (b) the size of the free space block. While the free space 
management and support for unlimited files (using dynamic 
inode allocation through B+Tree) seem attractive for the disk 
environment, we guage its affect on NVM. 

NILFS2: NILFS2 [32] is a pure log-structured (LFS) file 
system that supports continuous snapshotting. As NILFS2 
creates checkpoints every few seconds or per synchronous 
writes, users can recover from any inconsistency or data loss 
quickly. Like any log-structured file systems data and metadata 
blocks once written, are not updated in place, until they are 
erased or garbage collected. NILFS2 volume is divided into a 
number of segments of 8MB (default) size, where each 
segment is a container of logs. Each log is composed of 
summary information, payload blocks and an optional 
superblock. The payload block consists of the file data and 
metadata (inode BTree). NILFS2 has a segctord kernel 
thread that is responsible for constructing these segments that 
are cached in memory and flushing them to the underlying 
media. We used the default configuration of NILFS2 and kept 
the garbage collector (nilfs_cleanrd) on.  
 
F2FS: F2FS [3, 25] is a file system designed for flash media. 
The file system builds on top of LFS mechanism but solves 
some of its major problems. Firstly, F2FS solves the wandering 
tree problem i.e., propagation of index updates recursively 
from leaf nodes, to direct nodes to indirect nodes, and so on. 
This recursive propagation leads to a lot of copy and cleaning 
overhead. Secondly, in LFS the garbage collection process is 
expensive; under high disk utilization it impacts performance 
of the actual data access. F2FS solves the first problem with 
the help of node address table (NAT), which involves an in-
place update of metadata, while only writing the data in log-
structured manner. Hence, F2FS can be considered as a hybrid 
file system. To solve the garbage collection problem, F2FS 
separates hot and cold data during block allocation. It runs 
multiple active log heads concurrently and appends data and 
metadata to separate logs based on their anticipated update 
frequency. Moreover, at high storage utilization, F2FS changes 
the logging strategy to threaded logging, where new data is 
written to free space in dirty segments without requiring actual 
cleaning process. By default the number of active logs is 6. We 



evaluate the performance of F2FS by changing the number of 
active log heads to 2 and 4 as well.  

D. Limitations 
In this work, we perform our experiments on ramdisk 

carved from DRAM. We do not simulate NVM slower than 
DRAM. We evaluate various file systems on NVM only from 
the perspective of performance. We do not examine other 
features such as instant durability, consistency, recovery point 
objective, and recovery time objective. According to us, all the 
file systems in our study, except ext2, can provide file system 
consistency, irrespective of the underneath media. This is 
because of the journal or log-structured nature of the file 
systems. As the buffer cache is not persistent, the data is not 
persisted to NVM media immediately, even if the write is 
acknowledged. This could result in data loss if there is a 
power outage. On the contrary, PMFS and other XIP 
configurations of file systems bypass buffer cache and write 
the data to NVM immediately. They also flush the hardware 
caches before acknowledging the user write. Thus, PMFS and 
XIP file system configurations (ext2-xip, ext3-xip) have a 
better recovery point objective or they cannot have data loss 
once the write is acknowledged, whereas buffered file system 
configurations lack this feature.  

We use PMFS as a baseline for our comparison as it is the 
only open source NVM-aware file system available. We 
acknowledge that PMFS is not a production file system. As 
the observations and conclusions are tied to the features of 
different file systems, the insights from this work can be used 
to determine the set of features that can help improve the 
performance of a file system on NVM under the influence of 
different workloads.   

IV. EVALUATION 
This section details our results and analysis of various 

workloads when executed on different file systems on 
simulated NVM environment. We abbreviated the default 
configurations of ext2, ext3, ext4, and XFS as ext2-buf, ext3-
buf, ext4-buf and xfs-buf-4, respectively, in all our figures. 
XIP configurations of ext2 and ext3 are denoted as ext2-xip 
and ext3-xip, while data journal mode of ext3 is denoted as 
ext3-data. We denote ext4 without delayed allocation as ext4-
no-del. The figures show XFS with 464 AG counts as xfs-buf-
464, and F2FS as f2fs_2, f2fs_4 and f2fs_6, where 2,4 and 6 
stand for the number of active logs. As we do not vary any 
options for NILFS2 and PMFS they are denoted as nilfs and 
pmfs, respectively. The last row in Table III summarizes all 
the file system variants as used in the figures. We ran all the 
experiments atleast three to five times and report the average 
readings. 

A. Fileserver 
Fig. 2 shows the results of fileserver workload on NVM. 

The y-axis denotes resultant operations per second in units of 
1000. We see that PMFS performs the best amongst all file 
systems, while NILFS2 performs the worst. PMFS 
outperforms all file systems because of its fundamental design  

 
Fig. 2. Performance of file systems under fileserver workload 

around non-volatile media. It’s XIP support, atomic-updates, 
and fine-grained logging help reduce the latency of the read 
and write code paths. Moreover, PMFS adopts simple 
allocation and de-allocation policies, where it searches 
through a common linked list of unused blocks. Thus, 
fileserver workload, which is characterized by data to 
metadata ratio of 1:1, benefits from PMFS. It outperformed 
buffered file systems such as ext2-buf, ext3-buf, ext4-buf, xfs-
buf-4 (default) by a factor of 1.3, 2, 1.5 and 2.2, respectively.  
Buffered configurations suffer because of double copy: (1) 
ramdisk to buffer cache, and (2) buffer cache to the user 
buffer. Ext2 performs the best amongst other buffered 
counterparts, as it does not have journal overhead. 

As shown in the figure, the difference between ext3-buf 
and ext4-buf reduces from 34% to 23% if we repeat the same 
experiment with nodelalloc mount option, which disables 
delayed allocation. Since fileserver has create and append 
operations, delayed allocation helps improve the performance 
of ext4. To prove our point, we ran a micro-benchmark that 
was metadata intensive i.e., create-append-close, delete and 
stat operations only. Note that the fileset and directory depth 
for the micro-benchmark was same as that of fileserver. We 
found that in the metadata intensive benchmark, ext4-buf 
outperformed ext3-buf by 43%. However, after disabling 
delayed allocation feature, ext4-no-del performed only 25% 
better than ext3. Thus, delayed allocation is a helpful feature if 
workload involves significant data allocations, as it amortizes 
the allocation cost even on fast media such as NVM.   

On increasing the allocation group (AG) count of XFS 
from default value of 4 to 464, improved the performance by 
31%. This is because as the AGs increase, XFS’ parallelism 
improves too, boosting the performance of operations 
involving data and metadata allocations. As discussed in 
Section III.C, we choose the value of 464 for AG count from 
the default BG count of ext4. The impact of AG count is more 
apparent in workloads consisting of metadata mix and writes 
(appends) involving allocation because these operations access 
and modify the AG descriptors frequently.  

One thing to note is that after configuring AG count in 
XFS to 464 (optimal), it performed 10% worse compared to  



 

 

 

 

Fig. 3. Performance of file systems under webproxy workload 

ext4-buf, whereas the default XFS (4 AG counts) performed 
44% below ext4-buf. We found that although XFS employs 
features similar to ext4 such as delayed allocation strategy and 
extent-based mapping, it performed below ext4, because its 
inode and data allocation has a longer code path length than 
ext4. As XFS supports unlimited number of inodes, it employs 
B+Tree to manage dynamic inode allocation. Further, XFS 
allocates data blocks after looking up two B+Trees as 
discussed in Section III. On the contrary, ext4 uses a simple 
inode bitmap, similar to that on ext3/2 for inode allocation and 
de-allocation, thereby improving the performance compared to 
XFS. 

Surprisingly, PMFS outperformed ext2-xip and ext3-xip 
by a large factor – 1.4x and 3x, respectively.  This is contrary 
to results obtained in all other workloads (Sections IVB-IVE). 
We ran 2 micro-benchmarks: 1) complete data-intensive 
benchmark consisting of only reads and writes (appends) and 
2) metadata-intensive micro-benchmark (mentioned in above 
paragraph), on ext2 and ext3 buffered and XIP configurations. 
We found that for data-intensive workload ext2-xip and ext3-
xip file systems outperformed their buffered counterparts by 
36%, but they perform equally worse compared to ext2-buf 
and ext3-buf in metadata-intensive micro-benchmark. We 
looked at the code and found that ext2-xip and ext3-xip are 
not pure XIP based file systems. XIP is applied only to the 
data portion i.e., during reads and writes from/to user/kernel 
buffers. However, metadata updates (inode, free space 
information), and journaling still follow the block-oriented 
methods during the time of persistence or reads. As PMFS 
follows XIP and atomic updates for both data and metadata, it 
outplays all other XIP- based file systems. 

Ext3-data and NILFS2 performed 5x and 6x worse 
compared to PMFS. In ext3-data, journaling both data and 
metadata is redundant and affects performance on NVM file 
system. On analysis we found that kjournald consumed 
around 50% of CPU cycles, thereby impacting performance of 
ext3-data. Performance of ext3-data is limited by contention to 

its common journal used for both data and metadata logging. 
Due to the fast access speeds of NVM media, the journal gets 
filled up quickly, resulting in frequent flush operation of the 
journal. This proves that data journaling is not preferred for 
NVM file systems. Since NILFS2 is a pure log-structured file 
system, any write to a file or creation of files inside a directory 
leads to recursive updates to multiple data and metadata/index 
blocks resulting in a “wandering tree” problem [3]. This 
results in multiple obsolete data and metadata blocks 
aggravating garbage collection and adversely impacting 
performance. In case of NILFS2 we found that segctord, 
the segment constructor, took around 50-60% of the CPU. 
Thus, multiple fileserver threads tend to be bottlenecked by a 
single segment constructor kernel thread, when NILFS2 is 
used on NVM. The garbage collector, nilfs_clearnd also 
ran frequently consuming around 10-15% of CPU.  

F2FS, which also follows log-structured approach for 
data, performed only 5% worse than ext3-buf. This is because 
F2FS is a hybrid file system – it follows both log- structured 
and update-in-place approach. It solves the wandering tree 
problem by using node address table (NAT), which is updated 
in place. Further, it supports 6 active log heads: separating out 
hot, cold and warm metadata and data, thereby improving GC 
efficiency. Due to these optimizations F2FS performs 3x 
better than NILFS2. Note that the number of active logs has 
no affect on performance of F2FS for fileserver workload. It 
performs well above NILFS2 with even just 2 active logs, i.e., 
by only separating data from metadata and treating latter 
differently. We wanted to verify if F2FS performs at par with 
buffered file system even under high utilization of ramdisk 
space. We reran the fileserver workload, increasing the total 
number of files to 200K, which increased the ramdisk 
utilization from 22% (with 100K files) to 45% (with 200K 
files). We observed that under high utilization F2FS 
performed 50% worse compared to ext3-buf. On further 
analysis, we found that the performance degradation was due 
to background garbage collection. Thus, background 
operations such as garbage collection and dirty data flush to 



backing store degrade the performance of file system as they 
deprive the active file system of CPU and memory resources. 

Insights: 
It is evident that update-in-place file systems or atleast 

supporting in-place updates for metadata is suitable for NVM 
as it helps utilize the CPU and memory resources efficiently. 
Note that PMFS is also an in-place update file system. While 
journaling is needed for consistency on NVM file systems, 
data mode journaling turns out to be expensive for such a fast 
media. Setting AG count of XFS appropriately for workloads 
involving multiple allocations (data and metadata) can help 
improve performance significantly. Delayed allocation is a 
helpful feature if workload involves significant data 
allocations, as it amortizes the allocation cost even on fast 
media such as NVM.   

B. Webproxy 
The black colored bars in Fig. 3 show the performance of 

various file system configurations under webproxy workload. 
As shown in the figure, ext3-xip performs the best across all 
the file systems for webproxy workload. Compared to the 
fileserver results, we observe a stark difference in relative file 
system performance for this workload. NILFS2 performs 
worst (100x) due to slow lookup on flat directories and same 
reasons discussed in fileserver. Surprisingly, ext2 variants and 
PMFS also exhibit abysmal performance. Ext3-xip performs 
100x better than ext2-buf and 41-45x better than ext2-xip and 
PMFS. To analyze the reason, we tried changing various 
parameters of the workload and found that there were two 
workload features that contributed to the abysmal performance 
of certain file systems: flat namespace hierarchy or directory 
depth of 0.7 and large number of files (500K). In a directory 
depth of 0.7 (<1), all the 500K files are contained within one 
large directory. The performance of such a fileset depends 
upon how lookup and other metadata operations are handled 
in large directories. We found that ext3, ext4 and XFS use 
hash tree (indexed directory) to store directory entries while 
ext2, PMFS and NILFS2 do not, and hence they perform 
badly.  

To prove our point we re-ran the Webproxy benchmark 
by keeping the total number of files same (500K), but 
increased the directory depth from 0.7 to 2.1 and 3.4 i.e., this 
reduced the number of files in one directory but increased the 
subdirectories. Fig. 3 shows the results for directory depths 
0.7, 2.1 and 3.4 across different file systems in black, grey and 
white color bars, respectively. We see that ext2 variants start 
performing better than ext3 once the directory depth is 
increased. This is similar to our results in fileserver. The 
performance of NILFS2 and F2FS also improves by a factor 
of 80x and 2.5x, respectively, once we increase the directory 
depth.  

The performance of PMFS improves with the increase in 
directory depth, but it is 5x and 3x worse compared to ext3-
xip and NILFS2, even for deeper directory depth. PMFS 
displays the worst performance across all the file systems. We 
repeated the test but reduced the number of files to 100K and 
found that PMFS and ext3-xip perform almost the same 
(results not shown). Thus, it is evident that the performance of 

PMFS plummets in workloads involving parallel 
create/deletes and data allocations of large number of files. 
Unlike ext2, ext3 and XFS, PMFS lacks parallelism in data 
and metadata allocations. When a new inode has to be 
allocated, PMFS takes a big lock on the entire inode table and 
searches for unused inode. Further, for data allocation, it 
searches through a common linked list of unused blocks with 
one lock, thereby reducing its scalability. However, ext2 and 
ext3 employ features such as block groups, similar to 
allocation groups in XFS, which allows parallel allocations of 
data and metadata blocks, resulting in better performance than 
PMFS in this test.   

Another important thing to note is that in contrast to 
fileserver, ext3-buf and ext4-no-del (without delayed 
allocation) perform similarly, only 15% worse compared to 
ext3-xip. Surprisingly, ext4-no-del performed 1.6x better than 
ext4-buf (0.7 directory depth). We analyzed and found that the 
main reason was large number (500K) of small sized files of 
32K. On the other hand, fileserver workload consisted of only 
100K files of average size 128K. Thus, delayed allocation 
becomes an overhead when there are a large number of 
parallel allocations required for small sized files. It is more 
beneficial for large sized files, when they are moderate in 
number. 

Similar to fileserver workload, we observed an 
improvement in performance of XFS if we increase the AG 
count from 4 to 464; its performance improved by 13-35% for 
varying directory depths. Moreover, xfs-buf-464 performs 
around 48%, 12% and 10% worse compared to ext4-no-del for 
directory depths 0.7, 2.1 and 3.4, respectively. This is because 
lookup operation in XFS is much slower than ext4-no-del for 
large/flat directories. 

F2FS performs 30x better than NILFS2 (0.7 depth) as the 
former adopts hashed-directory entries. But, it performance is 
3x worse compared to other buffered configurations (ext3-buf 
and xfs-buf-464). We found that lookup and create operations 
is much slower in F2FS for large (flat) directories compared to 
relatively deep directory.  

Insights: 
It is clear from this experiment that enabling XIP feature 

on traditional file system helps boost their performance on 
NVM. Further, features like allocation group are of great 
importance in workloads involving parallel data and metadata 
allocations or metadata and data mix as it helps scale 
performance. Thus, it should be considered in file system 
design for NVM. While delayed allocation seems useful in 
creation of large sized files, it turns out to be expensive in 
workloads involving allocations of parallel large number of 
small sized files (<=32K).  

C. Webserver 
As shown in Fig. 4, PMFS performed the best amongst all 

file systems. Although the number of files is same as 
webproxy (500K), PMFS performs 17% and 20% better than 
ext2-xip and ext3-xip, respectively (contrary to the 
observation in webproxy). This is because, webserver is a 
read-intensive workload involving multiple lookups followed 
by  full  files  reads  and  then  appends  to  a common log file. 
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Since webserver does not have any metadata operations such 
as create or parallel data allocations, the deficiency of PMFS 
with respect to parallel allocations is not exercised, resulting 
in improved performance. Moreover, ext2-xip and ext3-xip do 
not support XIP for metadata operations (lookup and updates); 
hence we see a difference between PMFS and other XIP file 
systems. 

Due to read-intensive workload, buffered configurations 
of ext2, ext3 and ext4 and ext3-data perform close to each 
other: 60-70% worse compared to PMFS. Because of the same 
reason, NILFS2 and F2FS also perform close to buffer and 
data journal modes of file systems (around 10-16% 
difference). We see a vast difference between XIP and 
buffered modes of the file systems because of the extra copy 
overhead, as discussed in fileserver workload. We see an 
improvement of 15% when number of active logs is increased 
in F2FS from 2 to 6. Due to slow lookup operations (discussed 
in webproxy), xfs-buf-464 performed around 10-15% worse 
compared to other buffered file system configurations. 
Further, the performance of ext4-buf and ext4-no-del is close 
as the workload does not involve significant data allocations 
or file creations. 

Insights: 
XIP file system configurations (ext2 and ext3) perform 

close to PMFS and better than their default counterparts. 
Compared to the earlier workloads, for read-intensive 
workloads, the performance difference across various buffered 
configurations – both update-in-place and log-structured 
becomes small (10-16% only). Further, delayed allocation has 
no effect on such read-intensive workloads. 

D. OLTP Database: TPC-C on MySQL  
Fig. 5 shows the results of TPC-C when executed on 

MySQL using InnoDB storage engine. It shows the 
transactions per minute (tpmC) normalized with respect to 
PMFS. Compared to the workload results mentioned earlier, 
we observed two differences: (1) PMFS, ext2-xip and ext3-xip 
perform the best, but close to each other (less than 5% 
difference),  and  (2)  relative  performance  difference  across  
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best file systems (XIP-based) and other configurations 
reduced significantly – 13-22% across ext2, ext3, ext4 and 
XFS variants, 32% and 42% compared to ext3-data and 
NILFS2, respectively. 

To better understand the results, we tried to determine 
how MySQL transformed TPC-C workload to file system I/O 
requests. We analyzed the I/O and thread pattern of MySQL 
using strace and found that most read and write requests 
come to mainly three of the nine database files stock.ibd 
(size=14G), order_line.ibd (size=14G), customer.ibd 
(size=5G). Moreover, the read-write ratio as seen by the file 
system is 3:1. For every new client connection a MySQL 
server thread was created, which performed reads (SELECT) 
from database files in 16KB units and writes 
(INSERT/UPDATE) to common log file in 512 to 600KB I/O 
size. MySQL calls fsync after writing transactions to the log 
file. MySQL also performs regular checkpoint operation 
where it commits the data buffers from memory to database 
files in 16KB I/O size units. In summary, TPC-C on MySQL 
exercises data-intensive workload on the underlying file 
system and does not perform any allocations or metadata 
intensive operations. 

We emulated the workload pattern detected above using 
Filebench and compared the performance results with those of 
TPC-C. We found that there was a performance difference of 
around 15-20% across PMFS and ext2/3-xip. Although the 
overall performance pattern looked the same as TPC-C, the 
relative difference across the file systems increased. On 
further investigation we found that the latency measured by 
TPC-C client threads include the data transfer across network 
socket, which takes around 12-15us. This value is significant 
compared to the latency of reads and writes in various file 
systems on NVM, resulting in reduction in relative 
performance difference. 

As discussed in earlier workload sections, XIP-based file 
systems beat buffered, data journaled and log-structured file 
systems as in XIP the data is directly read or written from/to 
memory  bypassing  the  page  cache.    Moreover   fsync   is  



 

 

 

 

 
Fig. 6. File System performance for YCSB Workload A 

 

Fig. 7. File System performance for YCSB Workload B 

 
lightweight in XIP file systems as it involves only flushing of 
the CPU caches, while in other file system configurations the 
data is actually copied from buffer cache to ramdisk. The 
reasons for relative performance of NILFS2 and F2FS remain 
the same as discussed in earlier workloads. Varying active 
logs from 2 to 6 does not impact F2FS performance. It is 22-
25% worse compared to PMFS.  

 In case of XFS, when the AG count increases from 4 to 
464, its performance plummets by 10%. This is contrary to the 
earlier results. We tried to analyze the reason for this anomaly 
using xfs_db  - a tool that aids in debugging XFS. We found 
that to store a large file of size 5-14GB using 464 AGs, XFS 
split the file data to multiple extents in different allocation 
groups. As the size of a single allocation group was only 
128MB the size of an extent could not grow beyond 128MB. 
To address these extents from different allocation groups, XFS 
inode required more indirections and entries. On the contrary, 
in case of 4 allocation groups, each AG is big enough to 
accommodate the whole file in one extent, thereby reducing 

metadata overhead. Increased indirections impact the lookup 
latency of a data block, thereby degrading performance.  

Insights: 
For data-intensive workloads, enabling just the XIP 

feature on in-place update traditional file systems (ext2/3) 
bumps their performance and they perform at par with PMFS. 
Allocation group count should be set appropriately based on 
the workload – mainly the file sizes, parallelism in data 
allocations, and CPU cores. 

E. Key-Value Stores: YCSB on MongoDB 
We ran YCSB [4] on NoSQL database – MongoDB, 

which performs memory-mapped I/O on its database files and 
file-io (write system call) to its journal. Thus, READ and 
SCAN operation result in memory loads while UPDATE and 
INSERT result in memory stores to database files and writes 
to journal. MongoDB calls fsync on its journal every 120 ms 
and msync on its database files every 60 seconds. 



 
Fig. 8. File System performance for YCSB Workload C 

 
Figures 6 through 11 present normalized latencies of 

various YCSB transactions under different workloads (A-F) 
for the maximum sustainable input load (IOPS) across various 
file systems. Note that contrary to previous graphs, higher is 
worse. We take the maximum throughput possible for the 
lowest performing file system and measure the latencies 
across all file systems for that input load. For example, in 
workload A, B and C the output throughput starts dropping 
after an input load of 20K ops/sec for the lowest performing 
file system ext3-data and F2FS. Thus, we fix the input load for 
Workload A, B and C to be 20K ops/sec for all the file 
systems and compare their latencies under this fixed load. 
Note that we do not report the results for NILFS2. Due to the 
log-structured nature of this file system, ramdisk formatted 
with NILFS2 gets filled up completely much before the test 
finishes. Thus, we could not run YCSB on NILFS2. 

Workload A, B, C: Fig. 6 shows the results of Workload A, 
when READ-UPDATE ratio is 50:50 at an input load of 20K 
ops/sec. As shown in the figure, ext2-xip, ext3-xip and PMFS 
perform close to each other (having only 5% difference across 
them). All the XIP-based file systems perform the best for 
both READ and UPDATE. In case of READ all buffered file 
system configurations (ext2-buf, ext3-buf, ext4-buf, xfs-buf-4) 
experience 27-36% more latency compared to PMFS. F2FS 
and ext3-data experience an increase in latency by 41% and 
46%, respectively. In case of UPDATE buffered file systems 
perform 19-20% worse whereas F2FS variants and ext3-data 
perform 31-37% worse compared to PMFS. The performance 
difference across ext4 and ext4-no-del is insignificant (5% 
only), as the workload does not involve any allocations. 
Similarly, we see no difference across XFS and F2FS variants.  

These results are contrary to the results obtained in 
Filebench workloads (webserver), where there was atleast 15-
20% difference across PMFS and other XIP file systems and 
significant difference across other configurations. We 
investigated and found that the main reason for this difference 
was the way MongoDB accessed its data i.e., memory-mapped 
I/O, whereas the Filebench workloads involved file-io i.e., 
open, read-write calls. As memory-mapped I/O performs loads 
and stores and bypasses the kernel and file system during data 
path, ideally the performance of all the file systems should be 
the same. However, we observe performance difference if (a) 

there are substantial number of page faults resulting in file 
system page fault handler, or (b) there is a lot of dirty data due 
to writes/updates resulting in flush operation to the backing 
store.  

To corroborate this point, we ran two simple micro-
benchmarks using fio [26]. The first micro-benchmark 
involved 100% random loads, while the second performed 
100% random stores on a 2GB mmaped file. In both the cases, 
the I/O size was 1KB (same as I/O size in YCSB/MongoDB). 
We found that all the file systems performed similarly in case 
of 100% loads. This is because the cost of page faults 
amortizes across multiple load requests. In case of 100% 
stores, we observe no difference in performance across ext2-
xip, ext3-xip and PMFS. Buffered file system configurations, 
ext3-data and F2FS observe a performance degradation of 
2.4x-2.5x compared to XIP-based file system. These file 
system configurations experience such abysmal performance 
in case of 100% stores because of the flush daemon that tries 
to sync the dirty pages from buffer cache to ramdisk (block 
device).   Further, in case of ext3-data, extra copy of data in 
the journal results in more performance degradation compared 
to ordered mode. On the contrary, XIP-based file systems 
write directly to the media, bypassing the buffer cache and 
eliminating this overhead. 

Comparing the results of Workload A, B and C, in 
Figures 6 through 8, we observe that as the percentage of 
UPDATE decreases in YCSB workloads, the relative 
difference across file systems also decreases for READ 
transactions or they perform almost the same. Hence, in 
Workload C, which is a 100% READ workload we see a 
maximum of only 8% performance difference across few 
buffered configurations and PMFS (similar to the results 
obtained from our micro-benchmark involving 100% loads). 
However, as we increase the UPDATE percentage – 5% in 
case of Workload B to 50% in Workload A, we see a 
performance difference across XIP-based and other file 
system configurations. Thus, on low latency media such as 
NVM, UPDATE operation influences the performance of 
READ as well. Hence, we see a difference in performance in 
case of READ transactions for Workload A and B. We 
repeated these experiments on hard disk and found no such co-
relation across different types of transactions. Thus, we 
conclude that in case of low-latency media the slowest 
performing function or feature can come in the way of other 
better performing features. 

Workload D: Workload D exercises READ-INSERT ratio of 
95:5 and follows latest distribution. As seen in Fig. 9, all the 
XIP and the buffered file systems have similar latencies both 
for READ and INSERT at an input load of 15K ops/sec. Only 
ext3-data performed 34% worse compared to other file 
systems in case of INSERT. We performed two simple YCSB 
workload experiments – (a) 100% READ, (b) 100% INSERT, 
with latest distribution. We observed that all the file systems 
performed similarly for both READ and INSERT, except 
ext3-data; it performed 35-47% worse in case of 100% 
INSERT only. This is because MongoDB performs loads and 
stores, thereby diminishing the effect of various file systems, 
as discussed earlier. As data journaling introduces extra 
overhead, ext3-data performs the worst in case of INSERT.  
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 One thing to note is that although both YCSB UPDATE 
and INSERT operations involve stores, we observe some 
performance difference across file systems in case of 
UPDATE (Workload A, B), but absolutely no difference in 
case of INSERT (except ext3-data). We tried to analyze and 
found that INSERT on MongoDB results in file appends. But, 
UPDATE result in read-modify-write type of operation, which 
consequently increases the number of page faults, around 13x 
more than INSERT operation. Thus, we see performance 
difference across file system configurations for UPDATE but 
not INSERT. 

Workload E:  This workload consists of range SCAN and 
INSERT at 95:5 ratio. We exercise an input load of 5K 
ops/sec. The operation distribution is zifpian and the scan-
length distribution is uniform over a range of 0-100 scan 
length. Similar to other YCSB workloads, XIP-based file 
systems perform the best as shown in Fig. 10. To our surprise, 
all other file systems performed 2.27-2.42x worse in case of 
SCAN, although it involves loads. This is contrary to our 
results in Workloads A, B, C and, D, which were dominated 

by READ operation. In order to determine the difference 
between YCSB READ and SCAN operations, we reran 100% 
SCAN and 100% READ workload and measured the number 
of page faults introduced by each workload. We found that 
SCAN operation exercised 62x more page faults than READ 
operation. In XIP-based file systems page fault results in 
simply mapping the NVM area to the virtual address space, 
whereas, in other file systems it involves an extra copy of data 
from ramdisk to the memory-mapped area or buffer cache. 
Thus, increased number of page faults contributes to the 
latency difference across XIP and other non-XIP file system 
configurations in case of SCAN operation.  

Contrary to our observation from Workload D, we see 
significant difference across XIP and buffered file systems for 
INSERT transaction. This is because, the dominating 
operation (SCAN) influences performance of INSERT as well 
in NVM environment. Similar to Workload A and B, we 
observe the slowest operation influencing the performance of 
the other well-performing operation on NVM. 

 



 

Fig. 11. File System performance for YCSB Workload F 

. 

Workload F: Fig. 11 shows the results of Workload F. This 
workload incorporates a new type of operation i.e. READ-
MODIFY-WRITES (RMW), where it reads a key, modifies 
the same and write it back to the database. Note that RMW is 
similar to UPDATE. The ratio of READ to RMW is 50:50. 
Due to similarities in read-write ratio between Workload A 
and Workload F, we see a similarity in latency pattern across 
these two workloads. As the reasons for performance 
difference remain the same (as explained in Workload A), we 
do not discuss it here. 

Insights: 

It is evident from the six different workloads of YCSB 
that in case of applications/workloads involving memory-
mapped operation simply enabling XIP feature on traditional 
file systems such as ext2 and ext3 boosts their performance so 
much so that they perform at par with PMFS, which is solely 
designed for NVM. The extra copy of data in case of buffered-
mode of the file systems and data journaling turns out to be 
redundant and hence impact performance adversely in 
memory-mapped applications if they have a mix of loads and 
stores.  

V. RECOMMENDATIONS AND CONCLUSIONS 
Based on our study we found that traditional file systems 

can be tuned to perform better than their default setting on 
NVM.  In some cases these fine-tuned file systems perform at 
par with PMFS. Further, we found that features that help 
improve CPU and memory utilizations turn out to be better 
performing than others on NVM. PMFS, which is an NVM-
aware file system, has most of the features that leverage the 
byte-addressability and low latency characteristics of the 
media. But, if one wishes to use a traditional file system with 
minor modifications or reconfigurations, we recommend few 
file system features that can help improve its performance on 
NVM. Few of the features include: 

1. In-place update layout: In-place update layout is 
preferred for non-volatile memories as updating in the 
same place reduces extra copies of data and metadata, 
thereby obviating the need to garbage collect obsolete 
blocks of data and metadata (unlike log-structured file 

systems). Moreover, it also helps leverage the random 
access feature of NVM. Thus, in-place update layout of 
file systems result in better utilization of CPU and 
memory, thereby improving their performance. Although 
log-structured layout provides with features such as 
snapshots, it is not a preferred layout from performance 
perspective on NVM.  

2. Execute-in-place (XIP): In-place update along with XIP 
helps leverage the NVM media to its fullest extent. It helps 
bypass extra layers in the software stack, such as buffer 
cache, which is redundant in case of NVM. Moreover, as 
discussed in ext2 and ext3, adding XIP support only to 
data operations (i.e., read and write) is fairly simple and 
involves minimal changes in the file system code. One of 
the functions that need to be implemented is 
get_xip_mem. While accessing both data and metadata 
using XIP and atomic updates is optimal (PMFS), enabling 
XIP feature only for data also helps improve performance 
of traditional file systems and they perform close to PMFS. 
We have shown the benefits of XIP on ext2 and ext3 only, 
but it can be extended to other in-place update file systems 
as well.  

3. Simple and parallel allocation strategy: For workloads 
involving metadata and data mix, it is advisable to allow 
parallel allocations of both data and metadata (inodes). 
Having a simple linked list protected by a single lock for 
allocations is not efficient and does not scale beyond a few 
numbers of files and allocation requests. Instead, a feature 
such as Allocation Group is favorable to scale the 
performance of file system on memory. Moreover, the 
code path for allocation should be simple and short. 
Optimizations added for the disk world, such as co-
locating the data based on earlier data blocks or inodes or 
size of block (XFS), unnecessarily increase the code path 
length, thereby degrading performance. Delayed allocation 
can help improve performance even on NVM for 
workloads involving multiple parallel data and metadata 
allocations of large sized files, as it amortizes allocation 
cost.  

4. Fixed sized data blocks: Extent-based file systems are 
favored in disk world, but on NVM these turn out to be 
expensive; they take more memory and CPU resources for 



merging and balancing the extents if the workload involves 
a lot of writes or appends. The lookup operation  (directory 
search) also takes more time in case of large directories. 
On the other hand, using fixed size blocks, results in 
simple index based inodes that are cache friendly, and 
helps improve the performance of NVM file systems (e.g., 
PMFS, ext2, ext3).  
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