GreenCHT: A Power-Proportional Replication
Scheme for Consistent Hashing based Key Value
Storage Systems

Nannan Zhao'2*, Jiguang Wan'2t, Jun Wang?}, and Changsheng Xie

12§

'Wuhan National Laboratory for Optoelectronics, Wuhan, China
2Department of Computer science and technology, Huazhong University of Science and Technology, Wuhan, China
3Department of Electrical Engineering and Computer Science, University of Central Florida, USA
*nnzhaocs @hotmail.com, Tjgwan@mail.hust.edu.cn, ijwang@mail.ucf.edu, §cs_xie@mail.hust.edu.cn
Corresponding author: Jiguang Wan

Abstract—Distributed key value storage systems are widely
used by many popular networking corporations. Nevertheless,
server power consumption has become a growing concern for
key value storage system designers since the power consumption
of servers contributes substantially to a data center’s power
bills. In this paper, we propose GreenCHT, a power-proportional
replication scheme for consistent hashing based key value storage
systems. GreenCHT consists of a power-aware replication strat-
egy — multi-tier replication strategy and a centralized power
control service — predictive power-mode scheduler. The multi-
tier replication provides power-proportionality and ensures data
availability, reliability, consistency, as well as fault-tolerance of the
whole system. The predictive power-mode scheduler component
predicts workloads and exploits load fluctuation to schedule nodes
to be powered-up and powered-down. GreenCHT is implemented
based on Sheepdog, a distributed key value system that uses
consistent hashing as an underlying distributed hash table. By
replicating twelve real workload traces collected from Microsoft,
the evaluation results show that GreenCHT can provide signifi-
cant power savings while maintaining an acceptable performance.
We observed that GreenCHT can reduce power consumption by
up to 35%-61%.

Keywords—CHT; Replication; Power Management; Key Value
Storage System; Sheepdog

I. INTRODUCTION

Server power consumption is an important issue for dis-
tributed storage systems because it contributes substantially
to a data center’s power bills [9]. Furthermore, as the size of
data increases, massive amounts of storage are becoming more
necessary [8]. Sierra [9] and Rabbit [7] have been proposed
for power proportionality: the energy consumed should be
proportional to the system load. However, we find that a
surplus of power is being consumed by many storage systems,
especially during idle periods of system utilization [9].

Literature concerning data-center energy managemen-
t shows significant power saving potentials in distributed file
systems [9] [1] [15]. Sierra [9] [15] shows that I/O workloads
in data centers exhibit significant dynamism. Therefore, servers
in a distributed system (e.g., Google FS) can be powered down
to save power during idle periods of utilization. Sierra exploits
the redundancy of replicas in distributed storage systems. It
maintains a primary replica available for access, and powers

down the servers hosting inactive replicas to provide power
proportionally. GreenHDFS [1] focuses on data differentiation.
It separates a Hadoop cluster into Hot and Cold zones based
on the observation that the data stored in the cluster shows
significant variations in the access patterns. The cold zones
with low utilization can be powered down for energy savings.

Our focus is on key value storage systems. Key value
storage systems have been growing more attractive over the
past few decades [5], as they are being employed by many
modern popular networking corporations, such as Dynamo at
Amazon [6], Cassandra at Facebook [2], and Voldemort at
LinkedIn [3]. Key value storage systems use distributed hash
tables (DHT) to distribute data to storage nodes. A consistent
hash table (CHT) is often used by modern key value storage
systems [6] [13] [2] [3] as the underlying distributed hash table
because consistent hashing can adapt to a changing set of nodes
without creating a large overhead of data migration [11] [12].

We take a practical approach to provide power-
proportionality for consistent hashing based key value storage
systems. Instead of randomly placing replicas of each object on
a number of nodes on the consistent hash ring, we use a power-
aware multi-tier placement of replicas that assigns the replicas
of objects on non-overlapping tiers of nodes in the ring. It is
known that replication is widely used by distributed storage
systems to provide high availability and durability. Typically,
in an R-way replicated storage system, we can maintain a set
of % nodes that consist of only a single replica for each object,
and power down up to % of the nodes for power savings
during periods of light loads [9]. In our power-aware multi-tier
replication strategy, we can maintain a number tiers of nodes
that will be made available and power down the remaining
tiers of nodes without disrupting data availability by exploring
the load fluctuation.

Although recent research and development has suggested
that the most promising approach to saving power in enterprise
data centers is to power down entire server rather than saving
power in individual components [9], powering servers down
in distributed key value storage systems is challenging since
availability may be compromised. We make a tradeoff between
power savings and availability. Our power-aware multi-tier
replication ensures that at least one replica of each object is

978-1-4673-7619-8/15/$31.00 (© 2015 IEEE

kept available even when a significant fraction of the servers
are powered down.

Data consistency must be ensured, especially when a subset
of the servers is powered down. All of the writes to the
powered-down replicas are offloaded to the active servers to
maintain replica consistency. We use a small storage space
(called log-store) in each server to temporarily store offloaded
data. When the replicas are powered up, offloaded writes are
reclaimed.

This power-aware multi-tier replication strategy, coupled
with log-store, not only ensures data availability and consis-
tency but also maintains reliability as well as fault-tolerance
of the whole system even when a subset of the servers is
powered down. In the worst case, if a server fails while its
peer servers that store its replicas are powered down, these
objects are unavailable. A recovery process will be started to
maintain data availability: The failed server’s peer servers are
powered up and the offloaded data is reclaimed.

Most modern distributed key value storage systems such as
Dynamo [6], Cassandra [2], Voldemort [3], and Sheepdog [13]
have a decentralized structure. In decentralized overlay net-
works, a group of nodes must cooperate with each other since
there is no centralized coordinator. We implement a predictive
power-mode scheduler to schedule nodes to be powered-
down or powered-up. The predictive power mode scheduler
functions as a “centralized power control service”. It predicts
I/0 workloads and exploits load fluctuation to schedule nodes
to be powered-up and powered-down accordingly. Moreover, it
cooperates with the power-aware multi-tier replication strategy
to provide power-proportionality for distributed key value
storage systems. By powering down tiers of nodes, the system
can switch to a wide range of power-modes to meet different
performance, availability, reliability as well as power-saving
requirements.

In this paper, we present the GreenCHT technique to
provide power-proportionality for consistent hashing based key
value storage systems. GreenCHT consists of a power-aware
replication strategy — multi-tier replication strategy and a
centralized power control service — predictive power mode
scheduler. We have implemented GreenCHT on Sheepdog [13]
as a power-proportional key value storage system. Specifically,
we implemented our multi-tier replication scheme based on
sheepdog, with modifications to the consistent hash table and
replication strategy. The predictive power mode scheduler is
implemented as an centralized power controller for a storage
cluster.

The remainder of the paper is structured as follows. Sec-
tion II presents an overview of GreenCHT. Section III presents
the implementation of GreenCHT. Section IV presents experi-
ment results. Section V discusses related work and Section VI
concludes this paper.

II. GREENCHT OVERVIEW

A. Traditional Replication under Consistent Hashing

We first briefly describe the traditional replication under
consistent hashing before we present our power-aware multi-
tier replication. Modern key value storage systems such as
Dynamo [6], Chord [11], Cassandra [2], Voldemort [3] and

Sheepdog [13] often use consistent hash tables to assign
objects to nodes. Consistent hashing maps objects to nodes
by first hashing both the nodes and their addresses on to the
same ring. Then, each object is assigned to the first successor
node whose value is equal to or follows its own hash-value on
the ring. As shown in Figure 1(a), object x is mapped to node
A because it is the first node encountered in a clockwise walk
(see solid-arrow).

To achieve high availability and durability, modern key
value storage systems replicate data on R distinct nodes,
where R is a replica level parameter. As shown, object x is
replicated on 3 clockwise successor nodes (A, B and C) in
the ring. To achieve load balance, consistent hashing assigns
multiple virtual nodes to each physical node. In this case, each
node is responsible for multiple ranges distributed around the
ring. For example, figure 1(b) shows multiple virtual nodes of
each physical node. Each object is replicated at R distinct
nodes by skipping successor positions to ensure that each
replica of the object is stored at a distinct physical node.
Thus, object = is replicated on node A, B, and D. Since
the virtual nodes are permuted in a pseudo random order by
the consistent hashing function, the replicas of each object
are randomly distributed around the ring. Thus, the traditional
replication strategy prevents subsets of nodes from powering
down without violating data availability [7].

B. Multi-tier Replication under Consistent Hashing

1) Tiering and Power-Modes: To achieve power-
proportionality under consistent hashing for key value
storage systems, we first assign both servers and replicas to
non-overlapping tiers. Each tier contains only one replica of
each object. Thus, a multi-tier layout allows % of the
nodes to be powered down while keeping ¢ replicas of each
object available, where IV is the total number of nodes and
R is the replica level. By powering down different numbers
of tiers, key value storage systems can switch to different
power-modes to sustain different workload levels. When the
system switches to power mode ¢, the first R — ¢ tiers are
powered down. We can power down R — 1 tiers (¢! < R) while
keeping ¢ tiers available, which means that there are still ¢
replicas of each object available.

Figure 2 shows an example of three power modes and
three tiers with a replication level of 3. Each tier contains a
subset of servers. Within each tier, the replicas are unique,
meaning that the replicas of each object are not stored in
the same tier. When the system switches to power-mode 1,
the first two tiers, tier 0 and tier 1, are powered down. In
the lowest power-mode (power-mode 1) as shown in figure 2,
two tiers are powered down while there are still one tier (tier
2) available. Apparently, the lowest power-mode provides the
highest energy-savings. When the system switches to power-
mode 2 from power-mode 1, the servers in tier 1 are powered
up. In this case, power-mode 3 is the highest power mode with
three active tiers. By switching to different power-modes, the
system can meet different performance, availability, reliability
as well as power-saving requirements.

2) Multi-tier Consistent Hash Table and Multi-tier Repli-
cation: In multi-tier replication, the replicas of each object are
assigned to the first successors in different tiers to ensure that

® Ovject

e Object
@ Node

© Virtual node

(a) Without virtual nodes (b) With virtual nodes

Fig. 1. Traditional replication under consistent hashing
Replica 3 Replica 2 Replica 1
Servers
=1 =22 ==
Power modes Tier 2 Tier 1 Tier 0
1 o————o0

2

3 @ o

Fig. 2. Tiering and power modes with a replication factor of 3

each tier contains only one replica of each object. Figure 3
shows an example of multi-tier replication under consistent
hashing. Instead of randomly placing replicas of each object
on R distinct successors, GreenCHT assigns replicas of each
object to its first successors in different tiers on the ring. As
shown, the first replica of object x, rl, is associated with
virtual node Al which is its first successor in tier 0, and
mapped to node A. The second replica r2 is associated with
its first successor in tier 1: virtual node B1. In addition, the
third replica is associated with its first successor in tier 2,
virtual node C1, and mapped to node C. In this case, each tier
contains only one replica of each object. This approach not
only provides power-proportionality without disrupting data
availability but also maintains load balance, fault tolerance,
and scalability properties since multi-tier replication is based
on consistent hashing.

Table I shows the allocation of replicas of object x to the
three tiers. x has three replicas: r1, 72 and 3. We use the term
“successor i” to refer to the " distinct successor in a certain
tier. r1 is assigned to x’s first successor (i.e. successor_1) in
tier 0. 2 and r3 are assigned to the first successors in tier 1
and tier 2 respectively.

C. Log-store and The Allocation of Log-replicas

Writes should be stored persistently and consistently, even
when replicas are unavailable due to nodes being powered
down. Therefore, we use a log-store to temporarily store
offloaded data. All of the writes to standby (or inactive)
replicas are offloaded to the log-store, which exists in active
nodes to maintain replica consistency. We refer to these kind
of writes as log writes. When the nodes containing replicas
are powered up, log writes are reclaimed: logged data is read
from log-store and written to the power-up nodes, and then
deleted from the log-store.

We use a small space in each node to store log writes. The
log-store of each node holds the log writes that are offloaded
to this node. Each node has two regions: an object region and
a log-store region. The object region stores the replicas that

Object

n'era'\‘
Tier 1 Nodes / Virtual nodes
7er? = in different tiers

00

Tier 2 J

Fig. 3. Multi-tier consistent hash ring and Multi-tier replication
TABLE 1. MULTI-TIER REPLICATION
Object x Successor_1
Tier 0 rl
Tier 1 r2
Tier 2 r3

are assigned to this node while the log-store region holds the
log-replicas created by log writes.

To ensure the parallelism of writes (i.e., writes to replicas
and log writes) and replica availability, we assign log writes
to the active nodes located in the higher tiers. Table II shows
the allocation of the log-replicas of each object to different
tiers. We define the logged data created by log writes as
log-replicas. We first consider the allocation of log-replicas
with R = 3. Each object = has 3 replicas, r1, 2 and 73,
which are assigned to x’s first successors in three different
tiers. r1 has two log-replicas (log-r1s) which are stored in
z’s two successors located in two higher tiers, tier 1 and
tier 2 respectively. When tier 0 is powered down, the writes
to rl are forward to log-rl, which stored in z’s second
successor (successor_2) in tier 1. When both tier 0 and tier 1
are powered down, these writes are forward to log-r1, which
stored in z’s second successor located in tier 2. r2, has a
single log-replica, log-r2, which exists in «’s third successor
(successor_3) located in tier 2. When both tier O and tier 1 are
powered down, the writes to 72 are forwarded to log-r2 and
stored in z’s third successor located in tier 2.

We then consider the allocation of log-replicas with repli-
ca level R. Object z has R replicas, rl, 2, r3, ... , and 7 R.
2’s first successor in tier R —1 stores rR. 2’s remaining R —1
successors in tier R — 1 store the log-replicas of = as shown
in table II. When the first R — 1 tiers are powered down, the
writes to the first R — 1 replicas of x are forwarded to these
R — 1 successors located in tier R — 1. Since these successors
are different, the log-store can ensure that the writes to the
replicas or log-replicas of each object can be performed in
parallel.

The reads can be forwarded to available replicas when
some replicas are powered down. When the system switches
from a low power to a high power mode, a certain amount of
log writes are reclaimed.

TABLE II LOG-REPLICAS ALLOCATION
Object = Successor_1 Successor 2 Successor_3 Successor R
Tier 0 rl — — — —
Tier 1 r2 log-r1 — — | —
Tier 2 r3 log-r1 log-r2 — | —
Tier R-1 rR log-r1 log-r2 log-r(R — 1)

Node A Node B Node C
(Application]
\ — PMS

i [Workioad
monitor

Predictor

Power-mode
q scheduler

Workload Workload
monitor monitor

Predictor

Power-mode
scheduler

:

M-CHT
Multi-tier consistent | M| Multi-tier consistent | §
H hashing algorithm hashing algorithm
Multi-tier replication | & Multi-tier replication | : | 3 Multi-tier replication | ; |
| scheme By scheme & sl scheme ‘N

Multi-tier consistent |
hashing algorithm |

g H
| ‘ Log-store ‘ i ‘ Log-store ‘
i i

‘ Log-store ‘

L7 r Objectvstorage T~ N

Object
manager

Object
manager

Fig. 4. GreenCHT system architecture

D. Predictive Power Mode Scheduler (PMS)

To choose the power mode with enough active servers to
sustain a given load, we define three metrics, the node metric,
tier metric, and load metric. The node metric and tier metric
(Lt;er) are measured in MB/s by using the random-access 1/0
stream. The load metric is defined by using the aggregated
reads and writes over all of the servers. Note that the write
rate is weighted by a factor of R since writes are replicated R
times [9]. Thus, the load can be computed in units of servers.
We choose to compute the load in units of tiers rather than
servers since the power mode scheduler switches in units of
tiers.

To track the load, the load is measured in 1 second
intervals at each server and aggregated for each hour. Then, the
scheduler predicts the load L,,.cq;.+ for the next hour by using
a predictor based on an ARMAX model [17]. To compute the
power mode P in the next hour, we determine whether the
predicted load for the next hour exceeds P tier loads. Then,
we power down the remaining tiers, meaning that we choose
the power mode P that contains P tiers to sustain the load:

L redi
pP= [72:(1 <y (1)

Where L., denotes the tier metric, which is the per-
formance of a single tier of servers. P denotes the power-
mode we choose. The power mode we choose is proportional
to the system load. In this case, the power-mode scheduler
cooperated with multi-tier replication strategy provides power-
proportionality since the power consumed in GreenCHT sys-
tem is proportional to the system load.

III. GREENCHT IMPLEMENTATION

A. GreenCHT Prototype

GreenCHT was prototyped on Sheepdog [13], which was
chosen for its open source code and its consistent hashing

based data distribution and replication mechanism. Sheep-
dog is a distributed object-based storage that provides block
level storage volumes attached to QEMU/KVM virtual ma-
chines [10]. Sheepdog architecture is fully symmetric and
provides an object storage. It assigned a 64-bit unique id to
each object. In Sheepdog’s object storage, the location of an
object is calculated based on consistent hashing algorithm and
each object is replicated to multiple nodes to avoid data loss as
mentioned in Section II.A. Then, the object storage executes
I/O request operations to the local disks.

We implemented our data distribution and replication mod-
ule — M-CHT on Sheepdog by modifying its original data
distribution and replication algorithm. In addition, the power
mode scheduler (PMS) runs in the user space to schedule nodes
to be powered-down and powered-up. As shown in figure 4,
the power mode scheduler includes a workload monitor and
a predictor. The workload monitor captures the local load
information (such as the number of I/O requests or bandwidth)
within each hour. The predictor predicts the workload for next
hour as mentioned in Section I.D. As shown in figure 4, we
use QEMU [13] to create virtual disk images (VDIs). Each I/O
request accesses to the virtual disk image, which corresponds
to an object in an OSD (Object-based Storage Device). As
shown, the M-CHT component receives I/O requests and
calculates the target nodes. In addition, the M-CHT component
consists of a multi-tier consistent hashing algorithm, a multi-
tier replication scheme and a log-store.

B. Power Controlling in Key Value Storage Systems

GreenCHT is deployed in an Ethernet-based storage cluster.
The GreenCHT system consists of multiple OSDs (Object-
based Storage Devices). A manager is elected among the OSDs
by using Zookeeper [4], which is responsible for powering
down or up a subset of tiers of nodes. We also use Zookeeper
as our cluster engine to manage cluster membership and failure
detection. The metadata (M-CHT) is cached locally at each
OSD. Currently, GreenCHT is implemented on an Ethernet-
based storage cluster. Each OSD maintains the entire multi-
tier consistent hash table (M-CHT) and cluster membership.
Thus, the clients can connect to any OSD and their read/write
requests can be routed to any OSD in the cluster with at most
one-hop request routing. As shown in figure 5, all the OSDs
(including manager) consists of two major modules: the M-
CHT (multi-tier consistent hash table) and the PMS (power
mode scheduler). As mentioned in Section II.B, the M-CHT
module is used to distribute object replicas to OSDs while
the PMS is responsible for deciding which OSD need to be
powered down or powered up in the next epoch.

Figure 5 shows an example of power controlling process
when a system switches from power mode 2 to power mode
3 in GreenCHT system. As shown, the OSDs in tier 0 are
powered down in power mode 2. First, each active OSD sends
its load measurements periodically to the PMS running on
the manager, which is responsible for powering down or up
a subset of tiers of nodes based on the global knowledge of
server load. Second, the PMS running on manager predicts
the workload and computes the power mode for the next
epoch: power mode 3. Before powering up the OSDs in tier
0, the PMS first updates the power state of these OSDs in M-
CHT. Then, the manager propagates the table modifications

NodeState_get
request

Get node list

Query Manager

Return NodeState

2. Update table Power mode
scheduler (PMS)
1. Send the
load of each
active OSD to

e N ~ 7777) Manager
| —_0sb_ —osb_— _osb_—
M-CHT [MCHT | M-CHT
| PMS PMS | PMS

0SDs

Multi-tier Consistent
hash table (M-CHT)

3. Propagate table changes toOSDs
—

Fig. 5. Power controlling: The system switches from power mode 2 to power
mode 3.

(or power mode schedules) to all active OSDs. Eventually, all
active OSDs will update their metadata (M-CHT).

IV. EVALUATION

We evaluated GreenCHT with twelve real enterprise data
center workloads by using trace-driven evaluation. The twelve
traces we used in our evaluation were taken at block level and
collected from Microsoft Cambridge servers [14].

In our experiments, we evaluate GreenCHT by comparing
it with a baseline system based on sheepdog [13], which are
designed and deployed without any power management policy.
In the baseline system — sheepdog, a consistent hashing-
based data distribution policy is used to distribute objects
to OSDs, just as Section II.LA describes. As mentioned in
Section III, GreenCHT is implemented on Sheepdog storage
cluster by modifying Sheepdog’s original data distribution and
replication strategy. Hence, the unmodified Sheepdog system
can be treated as a baseline system which presents the lower
bound for average response time and upper bound for energy
consumption. Additionally, the consistent hash function we
used is FNV-1 hash function [13] which is used by both
Voldemort [3] and Sheepdog [13]. Initially, Sheepdog storage
cluster was formatted to use a default replication factor of 3.

A. Power savings

1) Power Mode Scheduler: Figure 6 shows the load metric
for each hour and the number of active tiers (i.e. power mode)
chosen by power mode scheduler for each hour of replaying
usr. The load metric used was the number of servers needed to
support a workload for each hour. The server metric is obtained
by benchmarking the server in the system as mentioned in
Section II.D. Power mode was defined as the number of tiers
chosen to support the workload for each hour. Since we use
the maximum load as the load for each hour, the load shown in
figure 6 is referred as peak load. We make two observations.
First, 90% of the time the power modes were correct. The
number of active tiers chosen matches the workload for each
hour. Second, the results show that 51 servers are sufficient to
meet the performance requirement. Only a few hours of load
are overhead. For example, the peak load during the period of
60t"-64*" hour cannot be sustained even with all tiers powered

up.
2) Power Savings: Figure 7 shows the power savings

of GreenCHT under twelve traces. The power savings are
computed over sheepdog — the baseline system. GreenCHT

x Peak load ——Power mode (#tiers)

3 tiers

Load level (#nodes)
B
o

X x ;
x ‘%"&‘“ [P‘x{x 2 omx % &

25 49 73 97 121 145
Time (hour)

Fig. 6. Power mode schedule for GreenCHT system: High power mode with
3 active tiers, median power mode with 2 active tiers, and low power mode
with 1 active tier.

80%

e 60%
=
H
o 40% -
[
3
o 20%
0%
usr proj hm rsrch prxy src stg ts web mds prn wedev
Fig. 7. Power savings for GreenCHT by using power mode scheduler’s
decisions.

200

@

o)

E] 150

<

S 100 B Read
% Write
c

©

o

50 —

Power mode 1 Power mode 2 Power mode 3

(1 active tier) (2 active tiers) (3 active tiers)

Fig. 8. Peak performance under different power modes (with different number
of active tier)

provides significantly power savings. For example, for prxy,
GreenCHT can save 35% energy over the baseline. This is
because GreenCHT uses multi-tier replication which provides
power-proportionality while sheepdog system do not use any
power management strategy.

B. Performance

1) Peak Performance: We evaluate the peak performance of
our system when clients are accessing objects under different
power modes (with different number of active tiers) by using
Sysbench [16]. 7 clients make random-access read and write
requests to the system. Note that we use random read and
write access performance as peak performance. Figure 8 shows
the peak performance in terms of aggregated active server
performance. Several observations can be made. First, in all
cases, reads are faster than writes (by about 3x) because the
replica level is 3 and the bandwidth of writes is reduced to %
Second, ideally, the performance of n tiers is as n times as the
performance of a single tier for reads, and a third of that for
writes. The actual performance of # tiers in those cases is close
to the idea for reads as shown in figure 8. Third, the highest
client performance we observed was about 35MB/s in power
mode 3 when 3 tiers are all active for reads, and about 10 MB/s
for writes. We also measure single-client streaming random
read and write bandwidth from a single server with 3 active
tiers by using Sysbench. The read performance was 104 MB/s

M GreenCHT = Sheepdog

Average response time (ms)

usr proj hm rsrch prxy src stg ts web mds prn wedev

Fig. 9. Average response time for the two schemes under twelve traces.

while the write performance was about 17 MB/s. We only
get about a third of the expected bandwidth of single-client
streaming for reads and half bandwidth for writes because
that the latency of disk seek time increases with concurrent
random-access streams.

2) Latency: Figure 9 shows the average response time
of GreenCHT system and sheepdog. Two observations can
be made. First, the performance penalty for GreenCHT is
small. The average response time of GreenCHT only increases
by 4-5ms due to background data reclaim traffic. Second,
compared with GreenCHT, sheepdog which has not power
management policy acts like a baseline system. It shows the
lower bound for average response time and upper bound for
energy consumption.

V. RELATED WORK

A number of recent works have attempted to reduce power
consumption in distributed systems. Sierra [9] exploits the
redundancy in distributed systems, and powered down the
servers hosting inactive replicas. Rabbit [7] uses equal-work
data-layout, which stores replicas to nodes in a fixing order:
Nodes are powered on by creating an expansion-chain, and
the number of blocks stored on a node that is inversely related
to where the node figures in the expansion-chain. Thus, the
performance and the number of nodes that can be powered
down would be scaled up at the fine granularity. Lightning
and GreenHDFS [8] [1] focus on a data-classification, and
separates cluster into hot and cold zones. Servers in cold zone
can be powered down to save energy.

VI. CONCLUSIONS

In this paper, we propose an efficient power-proportional
replication scheme for key value storage systems, called
GreenCHT. GreenCHT uses a novel power-aware replication
named multi-tier replication to provide power-proportionality.
To ensure data consistency, GreenCHT uses log-store to
temporarily store the writes to unavailable replicas. And
GreenCHT uses a centralized power control service named
predictive power mode scheduler to schedule nodes to be
powered up and powered down without violating performance
of the whole system. We implemented GreenCHT on Sheepdog
storage cluster by modifying Sheepdog’s original data distri-
bution algorithm and replication strategy. And we evaluated
GreenCHT by comparing it with the unmodified Sheepdog
system. The experiment results show that GreenCHT saves
significant energy while maintains an acceptable performance.

VII. ACKNOWLEDGMENT

We thankfully acknowledge the support of the Na-
tional Natural Science Foundation of China under Grant
No.61472152, the National Basic Research Program of China
(973 Program) under Grant No.2011CB302303, the Funda-
mental Research Funds for the Central Universities, HUS-
T:2015QN069, and the National Natural Science Foundation
of China under Grant No.61432007 and No.61300047. We are
thankful to Zhiyong Lu and Chenchang Tao for their helpful
comments.

REFERENCES

[1] R. T. Kaushik and M. Bhandarkar, “GreenHDFS: towards an energy-
conserving, storage-efficient, hybrid hadoop compute cluster,” In Pro-
ceedings of the 2010 international conference on Power aware comput-
ing and systems, HotPowerl0, pages 1-9, Berkeley, CA, USA, 2010.
USENIX Association.

[2] A. Lakshman and P. Malik, “Cassandra - A Decentralized Structured
Storage System,” In Proceedings of the 3rd ACM SIGOPS International
Workshop on Large Scale Distributed Systems and Middleware, 2009.

[3] Project Voldemort, A distributed Database. http://project-voldemort.
com/. 2014.

[4] P. Hunt, M. K. Flavio, P. Junqueira and B. Reed, “ZooKeeper: Wait-Free
Coordination for Internet-scale systems,” In Proceedings of USENIX
Annual Technical Conference, 2010.

[5] R. Bhagwan, D. Moore, S. Savage, and G. M. Voelker, “Replication
strategies for highly available peer-to-peer storage,” In Proceedings of
FuDiCo: Future directions in Distributed Computing, June 2002.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazons highly available key-value store,” In Proc. ACM Symposium
on Operating Systems Principles (SOSP), Oct. 2007.

[71 H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K.
Schwan, “Robust and flexible power-proportional storage,” In SoCC,
2010.

[8] R. T. Kaushik, L. Cherkasova, R. Campbell, and K. Nahrstedt, “Light-
ning: Self-adaptive, energy-conserving, multi-zoned, commodity green
cloud storage system,” HPDC, 2010.

[91 E. Thereska, A. Donnelly, and D. Narayanan, “Sierra: A Power-
Proportional, Distributed Storage System,” Technical report, Microsoft
Research, 2009.

[10] P. Maciel, R. Matos, G. Callou, B. Silva and S. Worth, “Performance
Evaluation of Sheepdog Distributed Storage System,” In Proceedings
of the 2014 IEEE International Conference on Systems, Man, and
Cybernetics October 5-8, 2014, San Diego, CA, USA.

[11] 1. Stoica, R. Morris, D. Karger, F. Kaashoek and H. Balakrishnan,
“Chord: A Scalable Peer-To-Peer Lookup Service for Internet Appli-
cations,” In Proceedings of ACM SIGCOMM (San Diego, California,
Aug. 2001), pp. 149-160.

[12] D. R. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R.
Panigrahy, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on theWorldWideWeb, In Proc. 29th
Annu. ACM Symp. Theory of Computing, El Paso, TX, May 1997, pp.
654-663.

[13] Sheepdog. https://github.com/sheepdog/sheepdog/wiki.

[14] MSR Cambridge Traces. http://iotta.snia.org/traces/388.

[15] D. Harnik, D. Naor, and I. Segal, “Low Power Mode in Cloud Storage
Systems,” In IEEE International Symposium on Parallel & Distributed
Processing, 2009, pp.1-8.

[16] sysbench. http://sysbench.sourceforge.net/.

[17] J. Wan, X. Qu, N. Zhao, J. Wang, and C. Xie, “ThinRAID: Thin-
ning down RAID array for energy conservation,” Parallel and Dis-

tributed Systems, IEEE Transactions on. Sept. 2014. DOI: 10.1109/T-
PDS.2014.2360696.

