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Abstract—Content Defined Chunking (CDC) is an important 
component in data deduplication, which affects both the 
deduplication ratio as well as deduplication performance. The 
sliding-window-based CDC algorithm and its variants have been 
the most popular CDC algorithms for the last 15 years. However, 
their performance is limited in certain application scenarios since 
they have to slide byte by byte. The authors present a leap-based 
CDC algorithm which provides significant improvement in 
deduplication performance without compromising the 
deduplication ratio. Compared to the sliding-window-based CDC 
algorithm, the new algorithm enables up to two-fold 
improvement in performance.  
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I. INTRODUCTION 
The Content Defined Chunking (CDC) algorithm is an 

important component in data deduplication which breaks the 
incoming data stream into chunks when the content window 
before the breakpoint satisfies a predetermined condition. 
Since chunk is the basic unit in finding duplications, the CDC 
algorithm has significant impact on the deduplication ratio. In 
addition, since the whole data stream needs to be chunked 
before other deduplication processes, the CDC algorithm also 
affects deduplication performance.  

The sliding-window-based CDC algorithm and its variants 
[1], [2] have been the dominating CDC algorithms in the field 
for the last 15 years. However, the sliding-window-based CDC 
algorithm is not optimal, especially in terms of deduplication 
performance, since it has to slide the content window byte by 
byte. At each byte a special judgment function is computed to 
judge whether the content window satisfies a predetermined 
condition. Although the sliding-window-based CDC algorithm 
can neglect some regions due to the constraint on the minimal 
chunk size, it still has to compute the judgment function at 
each byte for almost half of the whole data stream. Therefore, 
for a 10PB data stream, the CDC algorithm will compute the 
judgment function 5 Peta times. The Two Thresholds Two 
Divisors (TTTD) algorithm [3] introduces a secondary 
condition when judging whether a content window is satisfied 
to improve the algorithm. However, while it brings 
improvement to the deduplication ratio, it does not improve 
deduplication performance. The authors present a leap-based 
CDC algorithm with novel leap procedures, resulting in 
significant improvement to deduplication performance. For a 
10PB data stream, the new algorithm only needs to compute 

the judgment function 1 Peta times while still achieving the 
same deduplication ratio. However, the new algorithm adopts a 
more complicated judgment function. Overall, the new 
algorithm demonstrates up to two-fold improvement in 
performance compared to the sliding-window-based CDC 
algorithm.  

Generally speaking, there are four steps involved in data 
deduplication: (1) chunking which uses a CDC algorithm to 
divide the data stream into chunks; (2) chunk fingerprinting 
which computes the fingerprint (for example, SHA-1 value) for 
each of the chunks; (3) fingerprint indexing and querying 
which stores the fingerprints according to a certain data 
structure for indexing and queries the index to find chunks of 
identical fingerprints – these chunks are considered as the 
duplicated chunks; (4) data storing and management which 
stores new chunks and representative reference pointers for the 
duplicated chunks. There are two important measurements that 
evaluate a deduplication system: the deduplication ratio and 
performance. While other steps also play important roles, the 
chunking step has significant impact on the deduplication ratio 
and performance. 

In the four steps involved in data deduplication mentioned 
above, the chunking and the chunk fingerprinting step are CPU 
intensive, and in contrast the fingerprint indexing and querying 
step as well as the data storing and management step require a 
lot of memory and disk resources. While there is ongoing 
research [8], [9] in improving the performance of the 
fingerprint indexing and querying and the data storing and 
management steps to reduce the memory and disk resources 
consumption, there has been less research in improving the 
performance of the chunking step. Depending on the use cases, 
the CPU may or may not be the bottleneck, but decreasing the 
computational complexity of the chunking step will free up 
CPU resources for other tasks. It remains an open question of 
how far the chunking step can be optimized while maintaining 
the property of creating consistent chunks that deduplicate 
well.  

In addition to deduplication performance, the chunking 
algorithm also has significant impact on the deduplication 
ratio. An effective chunking algorithm has to satisfy two 
properties: chunks must be created in a content-defined manner, 
and all chunk sizes should have equal probability of being 
selected. The CDC algorithm only breaks the data stream when 
the content window before the breakpoint satisfies a 
predetermined condition to meet the content defined condition. 
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In this way, when two similar but different data streams show 
up, the number of duplicated chunks can be maximized. The 
equal probability condition requires all the content windows to 
have the equal probability to satisfy the predetermined 
condition. In this way, the chunking algorithm can 
accommodate all kinds of data streams. In addition, the average 
chunk size also affects the deduplication ratio. Mostly, the 
bigger the chunk size, the harder it is to duplicate the chunk 
and the lower the deduplication ratio. However, the chunk size 
cannot be too small, since we have to index the fingerprints of 
all the chunks. It is of particular importance to control the 
average chunk size and the distribution of chunk sizes in a 
deduplication system. When searching breakpoints, the sliding-
window-based CDC algorithm slides byte by byte to make sure 
that no breakpoints are missed. However, with a more 
delicately designed predetermined condition, the leap-based 
CDC algorithm is able to leap in the process of searching 
breakpoints without missing a single breakpoint. The sliding-
window-based CDC algorithm adopts the rolling hash as the 
judgment function to judge whether the content window 
satisfies the predetermined condition. However, rolling hash is 
not applicable in the new algorithm. Therefore, we introduce 
the pseudo-random transformation to replace its role.  

Our contributions are summarized as follows: 

• We introduce a new chunking algorithm with the leap 
technique in which the executing times of the 
judgment function are approximately 1/5 of those in 
the sliding-window-based CDC algorithm. The 
computation complexity of the judgment function of 
the new algorithm is less than 2.5 times that of the 
sliding-window-based CDC algorithm. Therefore, by 
combining the gain in leap technology and the loss in 
the judgment function, our leap-based CDC algorithm 
reduces the computational complexity by as much as 
50%. A secondary condition can also be applied to our 
algorithm. 

• We theoretically analyze the distribution of chunk 
sizes and the computation overhead, with the former 
one affecting the deduplication ratio and the latter one 
affecting deduplication performance. Our analysis 
agrees well with the experimental results.  

The rest of this paper is organized as follows. Section II 
reviews the background of the sliding-window-based CDC 
algorithm and the TTTD algorithm. Section III describes our 
proposed leap-based CDC algorithm and adds a secondary 
condition to it. We provide a theoretical analysis in Section IV. 
The algorithms are evaluated in Section V. Related work is 
given in Section VI, and the conclusion is made in Section VII. 

II. BACKGROUND 

A. Siding-Window-Based CDC  
Many previous papers have used CDC algorithms to form 

chunks. Examples include LBFS [2], TTTD [3] and Zhu’s 
paper [8]. Both LBFS [2] and Zhu’s paper [8] adopt an average 
chunk size of 8KB, and both LBFS [2] and TTTD [3] adopt the 
minimum and maximum chunk size. We use the sliding-
window-based CDC algorithm in a similar way and define the  

 
Fig. 1. Streamline of the sliding window-based CDC algorithm. w represents 
the content of the window, and x represents the end point of the window. 

minimum and maximum chunk size as 4KB and 12KB to get a 
similar average chunk size. The algorithm slides a fixed size 
window (e.g. 128B) byte by byte in the range [4KB, 12KB] 
(see Fig. 1). If the content of the window satisfies a 
predetermined condition, the end point of the window is 
defined as being satisfied and becomes a breakpoint candidate. 
In this way, each window uniquely corresponds to its end point 
and thus, a one-to-one mapping between the points and the 
windows is established. A point x is defined as satisfied if the 
equation “rolling-hash(w) % n = k” holds true, where rolling 
hash is the judgment function, x represents the end point of the 
window, w represents the content of the window, n and k are 
predetermined constants (e.g. n = 4K = 4×1024, k = 0). 
Sliding-window-based CDC only adopts one predetermined 
condition; we call it the first condition. In latter sections, we 
will show that there are algorithms adopting secondary 
condition, third condition, and so on. 

The sliding-window-based CDC algorithm starts from the 
position of the minimum chunk size and the first satisfied point 
in the range [4KB, 12KB] will be chosen as the breakpoint. If 
there is no satisfied point in this range, a breakpoint will be 
forced at the position of the maximum chunk size. Because of 
the restriction on the chunk size, not all the satisfied points may 
become breakpoints. For example, if both point d1 and point 
d2 satisfy the condition, but the distance between them is 2KB, 
only point d1 can possibly become a breakpoint. After 
choosing point d1 as a breakpoint, the next 4KB will be 
neglected to assure the minimum chunk size. 

It is clear that the sliding-window-based CDC algorithm 
satisfies the content defined condition and, due to the property 
of the rolling hash, it also satisfies the equal probability 
condition. However, it has to perform the rolling hash 
computation at each byte in the range [4KB, 12KB] until it 
finds the breakpoint. Although the complexity per computation 
of rolling hash is not high, large numbers of computations 
could make the sliding-window-base CDC algorithm a 
potential performance bottleneck in certain application 
scenarios. To help address this issue, we introduce a leap-based 
CDC algorithm that reduces the executing times of the 
judgment function.  

The sliding-window-based CDC algorithm only adopts one 
predetermined condition; however, this could result in a high 
proportion of forced breakpoints. This will cause an undesired 
affect on the deduplication ratio. Therefore, TTTD adds a 
secondary condition to the sliding-window-based CDC 
algorithm to solve this problem. RC [4] even adopts 
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secondary, …, fifth condition to further reduce the proportion 
of the forced breakpoints. 

B. Adding a Secondary Condition 
If some chunks are significantly bigger than others, they are 

unlikely to be duplicated. In which case, the deduplication ratio 
will be decreased. Therefore, when the sliding-window-based 
CDC algorithm cannot find a satisfied point in the given range, 
it will force a breakpoint at the position of the maximum chunk 
size. Since forced breakpoints are not content defined, they will 
also impact the deduplication ratio. A practical way to alleviate 
this problem is to introduce a secondary condition, which is the 
main contribution of TTTD [3]. If there is no point satisfying 
the first condition, TTTD choose the point that satisfies the 
secondary condition and is closest to the point of the maximum 
chunk size as the breakpoint. If there is no point satisfying the 
secondary condition, a breakpoint will be forced at the position 
of the maximum chunk size. 

The secondary condition uses the same sliding window and 
rolling hash as the first condition, but with a relaxed condition. 
Point x satisfies the secondary condition if it satisfies the 
condition “rolling-hash(w) % n’ =k’ ”. Usually, when the 
length of n is L bit, n’ and k’ will be chosen as the numbers of 
the low L-1 bit of n and k, respectively (e.g. n’=2K, k=0). In 
this way, one can mark the points satisfying the secondary 
condition when searching for the points satisfying the first 
condition, which avoids further searches if there is no point 
satisfying the first condition. 

TTTD is still content defined and all the points have the 
same probability of satisfying the first or the secondary 
condition. In Section IV we will show that the secondary 
condition can greatly reduce the proportion of forced 
breakpoints. Therefore, the deduplication ratio can be 
improved. However, it does nothing to reduce the executing 
times of rolling hash; it still has to perform the rolling hash 
computation at each byte in the range [4KB, 12KB] until it 
finds a breakpoint. 

III. THE LEAP-BASED CDC ALGORITHM 
In order to reduce the executing times of the judgment 

function, we present the leap-based CDC algorithm. The new 
algorithm also satisfies the content defined and the equal 
probability conditions. In Section IV we will show that the 
distribution of chunk sizes from this algorithm is almost 
exactly the same as that of the sliding-window-based CDC 
algorithm. Therefore, our proposed algorithm improves 
deduplication performance while guaranteeing the same 
deduplication ratio.  

A. Leap-based CDC 
First, we will introduce our algorithm without the 

secondary condition. In contrast to the sliding-window-based 
CDC algorithm in which every point corresponds to one 
window, every point corresponds to M (e.g. 24) windows in 
our algorithm. The point is said to be satisfied and thus 
becomes a breakpoint candidate only when all the M windows 
are qualified. Referring to Fig. 2, the target point ki 
corresponds to windows Wi1,…,WiM, where ki is the end point 
of the headmost window. If one window is unqualified, we can  

 

Fig. 2. The target point ki corresponds to windows Wi1,Wi2,…,Wi24. It is 
satisfied and becomes a breakpoint candidate when all the 24 windows behind 
it are qualified. 

skip judging the other M-1 windows. The distance between 
two adjacent windows is one byte, which means that two 
adjacent target points share the same M-1 windows. One 
unqualified window can disqualify up to M target points. In 
this way we can leap over some target points in the process of 
searching satisfied points when we encounter an unqualified 
window. Since rolling hash is not applicable in the new 
algorithm, we adopt the pseudo-random transformation as the 
judgment function to define whether a window is qualified. 
Refer to Section III.C for the details on the pseudo-random 
transformation. The number of qualified windows needed for a 
target point to become satisfied affects the length of each leap, 
and combined with the possibility of a single window being 
qualified, this number affects the distribution of chunk sizes. 
We will explain how we choose these parameters in Section IV. 

Here we give an example for a detailed description of the 
leap technique. Referring again to Fig. 2 and supposing that ki 
is the target point, we first judge whether window Wi1 is 
qualified. If it is qualified, we then judge window Wi2, and so 
forth. If we find that window Wi5 is unqualified, it then 
becomes unnecessary to judge windows Wi6,…,WiM, and we 
can leap from the end point of window Wi5. If we leap less than 
M bytes and get another target point kj’, the M windows 
corresponding to point kj’ will include window Wi5. Therefore, 
point kj’ cannot be satisfied. Thus, leaping M bytes and 
arriving at target point kj is more efficient. Since we know 
nothing about the M windows corresponding to this point, we 
have to judge these windows one by one. As before, we judge 
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them in a reverse order starting from window Wj1. If we find M 
consecutive qualified windows in this process, the 
corresponding target point will be taken as a breakpoint. If a 
leap is out of the range of the maximum chunk size, a forced 
breakpoint will be set at the position of the maximum chunk 
size.  

Generally speaking, leap-based CDC algorithm starts from 
the position of the minimum chunk size, regards it as a target 
point, and then moves backward to judge the M corresponding 
windows one by one. If M consecutive qualified windows are 
found in this process, the corresponding target point becomes a 
breakpoint. Otherwise, it will leap from the end point of the 
first unqualified window it encounters. Then, it gets another 
target point and starts to judge the windows corresponding to 
this point. When there is no satisfied point in the predetermined 
range, a forced breakpoint will be set at the position of the 
maximum chunk size. In fact, there would be three possible 
actions after window Wix is judged: 

• If window Wix is unqualified, we leap M bytes forward 
from the end point of window Wix to get another target 
point and start to judge the M windows corresponding 
to this point, where 1≤x≤M. 

• If window Wix is qualified but x is less than M, we 
slide one byte backward to judge window Wix+1, where 
1≤x≤M-1. 

• If window Wix is qualified and x is equal to M, the 
corresponding target point becomes a breakpoint, 
where x=M. 

Our leap-based algorithm satisfies the content defined and 
the equal probability condition as all the windows are tested 
with the same predetermined condition. It is clear that the new 
algorithm can greatly reduce the executing times of the 
judgment function with the leap technique we introduce. 
However, the leap procedure has a significant impact on the 
distribution of chunk sizes. How can we control the 
distribution? Is the distribution of chunk size in our algorithm 
the same as that of the sliding-window-based CDC algorithm? 
And how much complexity in computing does our algorithm 
alleviate? We provide the answers to these and other questions 
in Section IV. 

B. Adding a Secondary Condition 
We also introduce a secondary condition to the leap-based 

CDC algorithm to reduce the proportion of the forced 
breakpoints. As a result, the distribution of chunk sizes 
becomes smoother and the deduplication ratio improves.  

In the sliding-window-based CDC algorithm, the secondary 
condition uses the same judgment function as the first 
condition but replaces n’ and k’ with n and k in the equation. 
However, the relation between the first condition and the 
secondary condition in the leap-based CDC algorithm is 
different from that of the sliding window-based CDC algorithm. 
In the new algorithm, when the first condition requires M 
qualified windows, the secondary condition only requires M-T 
qualified windows (e.g. M=24 ， T=2). Additionally, the 
relative positions of the target point and the corresponding 
windows also change. Referring to Fig. 3, if windows  

 

Fig. 3. The target point ki corresponds to windows Wi1,…, Wi24. If windows 
Wi1, … ,WiM are qualified, it satisfies the first condition. If windows 
Wi3,…,WiM are qualified, it satisfies the secondary condition. 

Wi1,…,WiM are all qualified, the target point ki satisfies the first 
condition and becomes a breakpoint candidate. If windows 
Wi3,…,WiM are all qualified, the target point ki satisfies the 
secondary condition and also becomes a breakpoint candidate. 
The windows Wi3,…,WiM are behind the target point ki, and the 
windows Wi1 and Wi2 are before the target point ki. The 
distance between two adjacent windows is still one byte. For 
the secondary condition, one unqualified window can only 
disqualify up to M-T points. Thus, when we look for points 
satisfying the secondary condition, we can only leap M-T bytes. 
We still use the pseudo-random transformation to define 
whether a window is qualified. Again, we will explain how we 
choose the parameters in Section IV.  

Similarly, not all the points satisfying the secondary 
condition become breakpoints. When there is no point 
satisfying the first condition, we choose the point that satisfies 
the secondary condition and is closest to the position of the 
maximum chunk size as a breakpoint. If there is no point 
satisfying the secondary condition in the predetermined range, 
we then force a breakpoint at the position of the maximum 
chunk size. The secondary condition of leap-based CDC 
algorithm can also be seen as a relaxed mode of the first 
condition. In the process of searching the points satisfying the 
first condition, we must simultaneously mark the points 
satisfying the secondary condition to avoid another search 
round in case there is no point satisfying the first condition. In 
the implementation of our algorithm, the secondary condition 
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is actually checked first. If the secondary condition fails to be 
met, a leap is taken. If the secondary condition is satisfied, the 
first condition will be checked further and a breakpoint will be 
set accordingly.  

Here we give a detailed example of the leap procedure after 
adding the secondary condition. Referring again to Fig. 3 and 
supposing ki is the target point, we first judge whether window 
Wi3 is qualified. If it is qualified, we then judge window Wi4, 
and so on. If we find that window Wi5 is unqualified, since for 
the secondary condition one unqualified window can disqualify 
up to M-T points, we can leap up to M-T bytes from the end 
point of window Wi5. After leaping, we can get a new target 
point kj and the M new windows corresponding to kj can be 
identified. The procedure then continues to repeat. On the 
opposite case, if windows Wi3,…,WiM are all qualified, we then 
judge windows Wi1 and Wi2. If one of them is unqualified, we 
only find one or two points satisfying the secondary condition. 
They will be marked and we will leap M-T bytes from the end 
point of the unqualified window. Then, the new target point 
can be determined and the process continues. If Wi1 and Wi2 
are both qualified, then ki satisfies the first condition and we 
choose it as a breakpoint. If a leap reaches a point outside the 
range of the maximum chunk size, either the point satisfying 
the secondary condition and is closest to the point of the 
maximum chunk size is set as the breakpoint or the point of the 
maximum chunk size is set as the breakpoint providing that 
there is no point satisfying the secondary condition. 

Generally speaking, there are five possible actions after the 
algorithm judges window Wix: 

• If window Wix is unqualified, we leap M-T bytes 
forward from the end point of window Wix to get 
another target point and start to judge the M windows 
corresponding to this point, where T+1≤x≤M. 

• If window Wix is qualified but x is bigger than T and 
less than M, we slide one byte backward to judge 
window Wix+1, where T+1≤x≤M -1. 

• If window Wix is qualified and x equals to M, we then 
judge windows Wi1,…,WiT, where x=M. 

• If one of the windows Wi1,…,WiT is unqualified, we 
only find one or more points satisfying the secondary 
condition. They will be marked and we will leap M-T 
bytes from the end point of the unqualified window to 
get another target point and start to judge the M 
windows corresponding to this point, where 1≤x≤T. 

• If windows Wi1, … ,WiT are qualified, the 
corresponding target point becomes a breakpoint, 
where 1≤x≤T. 

Adding the secondary condition to the leap-based CDC 
algorithm is much more complicated than adding it to the 
sliding window-based CDC algorithm. It is difficult to control 
the distribution of chunk sizes in the leap-based CDC 
algorithm with a secondary condition. Although rather 
complicated, the math behind the new algorithm is 
demonstrated in Section IV.  

C. Pseudo-random Transformation 
In the new leap-based CDC algorithm, the rolling hash is 

not applicable. Thus, we need to find a proper replacement 
featuring a light weight computation with the hashing property. 
We use pseudo-random transformation as the replacement in 
our algorithm. The following several paragraphs explain the 
principles behind this replacement. 

The idea of pseudo-random transformation came from 
Locality-sensitive hashing (LSH) [20] and the theorem  that the 
sum or the difference of normal distributions is still a normal 
distribution. We take advantage of this special property of 
normal distribution to randomize input data. However, it 
should be noticed that this transformation is not suitable for 
encryption. We predetermine two 255 × 8 matrices 

1,1 1,8

255,1 255,8

h h
H

h h

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 and 
1,1 1,8

255,1 255,8

g g
G

g g

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, where each 

element of these matrices is a generated random number of the 
normal distribution N(0,1). Then, we let the content window 
determines how to combine – add to or subtract from – these 
random numbers. Referring to Fig. 4, for every window we 
choose 5 bytes out of an interval of 42 bytes. The shape  
belongs to window Wi1, the shape  belongs to window Wi2, 
and so on. We can obtain the 5 bytes of window Wi2 by sliding 
the 5 bytes of window Wi1 one byte backward. We repeat the 5 
bytes chosen from a single window 51 times and get 255 bytes. 
These 255 bytes is the input of the pseudo-random 
transformation. Each byte has 8 bits, so we get a 255×8 matrix

1,1 1,8

255,1 255,8

a a
A

a a

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. We define vai,n= 1 or = -1, depending on 

whether ai,n=1 or = 0. Therefore, accordingly, we get the matrix 
1,1 1,8

255,1 255,8

a a

a

a a

v v
V

v v

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. We then compute Eai=vai,1×hi,1+…+ vai,8

×hi,8. After that, we get 255 values: Ea1,…,Ea255. The number 
of positive values in these 255 values is counted and denoted as 
Ea. Similarly, we compute Fai=vai,1×gi,1+…+ vai,8×gi,8 and get 
Fa. If both Ea and Fa are even, we define the window as 
disqualified. Otherwise, the window is qualified. 

In the above design, we have utilized the special property 
of normal distribution: the sum or difference of normal 
distributions is still a normal distribution. Similar designs and 
ideas are promoted in other research, like LSH [20]. The 
pseudo-random transformation aims to get randomized output 
values for different input data sets. Due to the special 
symmetry of the normal distribution, Eai is symmetrically 
distributed in positive and negative values.  Therefore, the 
probability of Ea being even is 1/2 and the probability of a 
window being qualified is 3/4.  

Although the theory behind the pseudo-random 
transformation is complicated, it reduces the number of needed 
computations. Here, we analyze its computation complexity. In 
the transformation, there are 5 bytes for each window, and 
there are 256 possible values for each byte. Therefore, we build 
a 5×256 table to record all the possible values that might 
occur in the calculation of the pseudo-random transformation 
and thus,  accelerate  the  calculation  process.  For  a  specified 
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Fig. 4. We choose 5 bytes at intervals of 42 bytes for each window.  

byte in a specified place of the window, since this byte has 
been used 51 times, we can get the 51 corresponding lines of 
Va. Thus, 51 out of the 255 values (Ea1, …, Ea255) can be 
computed, and we can count the number of positive values in 
these 51 values and denote it as Ei. We can compute the values 
for Fi in the same manner. Since we only care about the parity 
of Ei and Fi, only one bit is needed where 0 represents even 
numbers and 1 represents odd numbers. Moreover, we can 
catenate Ei and Fi. Therefore, the 5×256 table is built which 
takes EiFi as its elements. For each window with the specified 5 
bytes, we look up the table 5 times and get the 5 outputs E1,
…,E5. Then, Ea= E1+…+E5. The computation for Fa is similar. 
Actually, the sum operation can be replaced by Xor operation 
and the computation of Ea and Fa can be completed 
simultaneously. After the 5 table lookup operations are 
completed, we can compute EF= E1F1^…^E5F5. EF=0 means 
that both E and F are even and the window is disqualified. 
EF=1,2,3 means that either or both E and F are odd and the 
window is qualified. Therefore, one pseudo-random 
transformation can be done by 5 table lookup operations (the 
size of the table is 1.25KB) and 4 Xor operations. In contrast, 
one BUZ hash computation can be done by 2 table lookup 
operations (the size of the table is 4KB), 2 Xor operations, 2 
subtract operations, 2 OR operations and 4 shift operations. 
Therefore, it is safe to assume the computational complexity of 
each judgment in our algorithm with the pseudo-random 
transformation is at most 2.5 times that of the sliding-window-
based CDC algorithm with the help of rolling hash. However, 
the executing times of the judgment function in our algorithm 
is much less than that in the sliding window-based CDC 
algorithm. The overall reduction to the computational 
complexity will be analyzed tin Section IV. 

IV. THEORETICAL ANALYSIS 

A. Analysis of sliding-window-based CDC 
In this section, we will analyze the distribution of chunk 

sizes and the average chunk size of sliding-window-based 
CDC algorithm without the secondary condition. Our idea of 
analyzing the distribution of chunk sizes originates from RC 
[4]. However, RC only gives a experimental result. We provide 
a both mathematical analysis and experimental result in this 
and latter sections. 

For a large number of unknown windows, the output values 
of rolling-hash(w) will subject to the uniform distribution. As a 
result, the probability that rolling-hash(w)%n=k is 1/n. In the 
sliding-window-based CDC algorithm, every point corresponds 
to one window. So the probability of a point being satisfied is 
1/n. Thus, the sliding-window-based CDC algorithm satisfies 
the equal probability condition. We denote x as the point at the  

 
Fig. 5. Distributions of chunk sizes of the four algorithms. The interval is 
divided into 9 subintervals. The PDF is cumulated inside each subinterval. 

position between x byte and x+1 byte, where x∈[4K, 12K]. If 
point x is a breakpoint, none of the points behind point x 
should be satisfied as point x is satisfied. Thus, the probability 
of point x being a breakpoint is qa1(x)=1/n×(1-1/n)x-4K. Since 
we search for the breakpoint from the minimum chunk size, we 
will first encounter a satisfied point that is closest to the 
minimum chunk size. Therefore, although the probability of a 
point being satisfied is equal, there are more small chunks than 
large chunks. If we cannot find a satisfied point before 
reaching the maximum chunk size, we will force a breakpoint 
at the position of the maximum chunk size. The probability of 
forced breakpoint partition is qa=(1-1/n)12K-4K. Thus, we can get 
the probability density function (PDF) of the distribution of 
chunk sizes for this algorithm, referring to the curve titled 
“Sliding” in Fig. 5 (e.g. n = 4K). We divide the interval [4KB, 
12KB] into 9 subintervals [4KB, 5KB),…, [11KB, 12KB), and 
[12KB, 12KB]. The probability density is cumulated inside 
these subintervals. It can be seen that the curve is not smooth. 
It rises suddenly at [12KB, 12KB]. The proportion of forced 
breakpoints is as high as 13.53%. 

The computation of the average chunk size of this 
algorithm could be divided into two cases: Sa1=∑ xqa1(x) 
represents the chunk size in case a satisfied point is taken as the 
breakpoint; Sa2=qa×12K represents the chunk size in case of 
forced partition. Therefore, the average chunk size of this 
algorithm is Sa=Sa1+Sa2=7.46KB. 

B. Adding a secondary condition  
In this section, we will analyze the distribution of chunk 

sizes and the average chunk size of the sliding-window-based 
CDC algorithm with a secondary condition.  

In the sliding-window-based CDC algorithm, the secondary 
condition does not affect how the first condition determines the 
breakpoint. Therefore, qb1(x) and Sb1 are the same as qa1(x) and 
Sa1 in the previous section. We define qb2(x) and Sb2 as the 
probability and chunk size when the secondary condition is 
used to determine a point as being a breakpoint and define qb 
and Sb3 as the probability and chunk size when a forced break 
is to be executed.  
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The probability of the secondary condition determining a 
breakpoint is a conditional probability – the first condition 
must first fail to determine a breakpoint. Under the condition 
hash(w)%n!=k, the probability of hash(w)%n’=k’ is 1/(n-1). 
When we can’t find a point satisfying the first condition, we 
choose the point that satisfies the secondary condition and is 
closest to the maximum chunk size as a breakpoint. Thus, for 
the secondary condition, we actually search backwards starting 
from the point of the maximum chunk size to the point of the 
minimal chunk size. The probability that point x only satisfies 
the secondary condition and becomes a breakpoint is qb2(x)=(1-
1/n)12K-4K×1/(n-1)×(1-1/(n-1))12K-x, where x∈[4K, 12K]. The 
probability that we can’t find a point satisfying the secondary 
condition is qb=(1-1/n)12K-4K× (1-1/(n-1))12K-4K=(1-2/n) 12K-4K. 
Thus, we can get the PDF of the distribution of chunk sizes for 
this algorithm, refer to the curve titled “Sliding + TTTD” in 
Fig. 5 (e.g. n = 4K). The curve is much smoother than that of 
sliding-window-based CDC algorithm without the secondary 
condition. Since the subinterval [12KB, 12KB] only contains 
one point and represents a forced partition, it is best to keep the 
proportion down to around 1.92% 

Sb1 is the same as Sa1. Sb2= ∑ xqb2(x). Sb3=qb × 12K. 
Therefore, the average chunk size is Sb=Sb1+Sb2+Sb3=7.14KB. 
After introducing the secondary condition, the probability of 
forced partition decreases from 13.53% to 1.92% and the 
average chunk size decreases from 7.46KB to 7.14KB. Both of 
these properties will improve the deduplication ratio. 

C. Analysis of pseudo-random transformation 
The empirical results from testing the pseudo-random 

transformation are presented in this section followed by a brief 
discussion on the idea for adopting pseudo-random 
transformation and how it originates from LSH [20] and 
Simhash [21].  

Observably, the larger the N, the more stable the pseudo-
random transformation, where N represents the number of the 
lines of N×8 matrices H or G. For example, we must not use a 
1×Z matrix, even when Z is much larger than 8. Continuing, 
suppose we define H=(h1,1 …h1,Z), compute Ea=va1,1×h1,1+…+ 
van,8×h 1,Z, output 0 when Ea<0 and output 1 when Ea≥0. There 
is a probability that {h1,1 …h1,Z} contains one or two big 
numbers, then the output will be greatly influenced by these 
numbers. However, for a N×8 matrix, when one or two lines 
of the matrix contain big numbers, only one or two Eai are 
affected; there remains an equal probability that Ea will be even 
or odd. The larger the N, the more likely Ea will be symmetric 
in terms of even and odd occurrences.  

In another observation, the bigger the r, the more stable the 
pseudo-random transformation, but the worse the performance, 
where r represents the number of bytes we chosen from each 
window. We repeat these r bytes c times, where r×c=N. To be 
effective, however, r cannot be too small. For example, when 
r=1, a specific byte will occur too frequently in a data stream, 
the output of the pseudo-random transformation will become 
skewed. It is also necessary to choose the r bytes in intervals to 
make the pseudo-random transformation more resistant to 
frequent long phrases. The opposite is also true: r cannot be too  

big because there are r table lookup operations and r-1 Xor 
operations required in one calculation of the pseudo-random 
transformation. If the value for r is too big, performance may 
significantly deteriorate. Therefore, the value for r must be 
carefully chosen to balance stability with performance in the 
pseudo-random transformation. 

Our experiments show that, when both N and r are of the 
appropriate size (for example, set N=755, r=755, c=1) for 60 
predetermined matrix pairs {(Hi, Gi)| i=1,… ,60} which are 
randomly generated by Matlab, almost every pair demonstrates 
good adaptability in the leap-based CDC algorithm. However, 
when both N and r are set to an overly small value (for 
example, N=255, r=5, c=51), only 1/10 of the 60 
predetermined matrix pairs {(H’i, G’i)| i=1,…,60} demonstrate 
good adaptability, indicating that the matrix pair must be 
carefully chosen. We use an optimum pair in the following 
experiments. It can be seen that the pseudo-random 
transformation acts poorly when both N and r are small, and it 
acts well when both N and r are appropriately large. This is 
consistent with our analysis results. 

It should be noted that the technique of adopting numbers 
generated by normal distribution has been used in LSH [20]. 
Both LSH and Simhash [21] aim to get similar output values 
from similar input data sets. However, our pseudo-random 
transformation works in the opposite direction; that is, it 
attempts to get random output values for different input data 
sets. LSH and Simhash also use a factor resembling the Ea, but 
there is a small difference: LSH and Simhash care whether two 
counters Ea and E’a are close to each other, but pseudo-random 
transformation pays attention to the parity of Ea. It is 
interesting that such a small change can result in such a big 
difference. 

D. The analysis of leap-based CDC  
Different from the sliding-window-base CDC algorithm, 

the distribution of chunk sizes of the leap-based CDC 
algorithm is determined by parameters M and Pw, where M 
represents the number of qualified windows needed for a point 
to become satisfied and Pw represents the possibility that a 
window is qualified. The former affects the length of each leap 
and the latter affects the frequency of the leap. These two 
parameters determine both the distribution of chunk sizes and 
the performance of the leap-based CDC algorithm. After some 
theoretical analysis and a large amount of experiments, we 
were able to choose the optimal parameter values: M=24; 
Pw=3/4. 

How M and Pw determine the distribution of chunk sizes is 
very similar to a multi-step Fibonacci sequence. We define F(x) 
as the probability that there is no satisfied point at or before 
point x. The leap-based CDC algorithm starts from point 4096, 
and the probability that all the M windows corresponding to 
this point are qualified is (3/4)24. Thus, F(4096)=1-(3/4)24. 
There is no breakpoint before point 4096, so F(4095)= 
1, …,F(4073)=1. 

In the following, when we say a window is corresponding 
to a point, it means the point is the end point of the window. 
For example, the window corresponding to point x is a window 
that ends at point x. This concept should not be confused with 
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the windows-point corresponding relation in the definition of 
our leap-based CDC algorithm. 

Referring to Fig. 6, at point x, the computation of F(x) can 
be divided into 24 cases:  

Case 1: the window corresponding to point x is unqualified, 
and there is no satisfied point at or before point x-1. The 
probability of this case is 1/4×F(x-1). F(x) includes this case. 
The case that “the window corresponding to point x is 
unqualified” and “there is at least one satisfied point at or 
before point x-1” has no affect on F(x). 

Case 2: the window corresponding to x point is qualified, 
the window corresponding to point x-1 is unqualified, and 
there is no satisfied point at or before point x-2. The probability 
of this case is 3/4×1/4×F(x-2). F(x) includes this case. The case 
that “the window corresponding to point x is qualified”, “the 
window corresponding to point x-1 is unqualified” and “there 
is at least one satisfied point at or before point x-2” has no 
affect on F(x). 

…… 

Case 24: the window corresponding to point x is 
qualified, … , the window corresponding to point x-22 is 
qualified, the window corresponding to point x-23 is 
unqualified, and there is no satisfied point at or before point x-
24. The probability of this case is (3/4)23×1/4×F(x-24). F(x) 
includes this case. The case that “the window corresponding to 
point x is qualified,…, the window corresponding to point x-22 
is qualified, the window corresponding to point x-23 is 
unqualified” and “there is at least one satisfied point at or 
before point x-24” has no affect on F(x). The case that “the 
window corresponding to point x is qualified,…, the window 
corresponding to point x-23 is qualified” has no affect on F(x). 

Putting all the results from the above cases together, F(x) 
=1/4×F(x-1)+1/4×(3/4)×F(x-2)+…… +1/4× (3/4)23 ×F(x-24). 
And, 1-F(x) is the probability that we find at least one satisfied 
point at or before point x. Thus, qd1(x)=(1-F(x))-(1-F(x-
1))=F(x-1)-F(x) is the probability that the point x is a satisfied 
point and there is no satisfied point at or before point x-1 (thus, 
point x is a breakpoint). If we can’t find a satisfied point before 
reaching the maximum chunk size, we will force a breakpoint 
at the position of the maximum chunk size. The probability of 
this case is qd=F(12K) =12.64%. Thus, we can get the PDF of 
the distribution of chunk sizes for this algorithm (refer to the 
curve titled “Leap” in Fig.5). The curve is quite similar to that 
of the sliding-window-based CDC algorithm without a 
secondary condition.  

Consequently, the computation of the average chunk size of 
the leap-based CDC algorithm can be calculated below: 
Sd=Sd1+Sd2, where Sd1=∑xqd1(x) and Sd2=qd×12K, 
corresponding to non-forced breakpoint case and forced 
breakpoint case, respectively. The average chunk size is 
S=7.38KB, which is a little smaller than that of the sliding-
window-based CDC algorithm without a secondary condition. 

For the leap-based CDC algorithm with a secondary 
condition, the computation of the distribution of chunk sizes 
and the average chunk size is similar to the above calculation, 
but a bit more complicated. The result is shown in Fig. 5; refer 

 
Fig. 6. F(x) only contains 24 cases. Other cases have no affect on it. 

to the curve titled “Leap + TTD”. The PDF of the distribution 
of chunk sizes is similar to that of the sliding-window-based 
CDC algorithm with a secondary condition. The average chunk 
size is 7.08KB. Therefore, our leap-based CDC algorithm with 
a secondary condition acts almost exactly the same as the 
sliding-window-based CDC algorithm with a secondary 
condition. Therefore, the deduplication ratios of the two 
algorithms are also nearly exactly the same.  

E. Executing times of the judgment function 
The rolling hash and the pseudo-random transformation are 

used as the judgment functions for the sliding-window-based 
CDC algorithm and the leap-based CDC algorithm, 
respectively. In this section, we will analyze the computational 
complexity for executing these judgment functions in the 
corresponding algorithms.  

In the sliding-window-based CDC algorithm without a 
secondary condition, the judgment function has to be executed 
once at each byte in the interval [4KB, 12KB] until a 
breakpoint is reached. Since the average chunk size is 7.46KB, 
the judgment function has to be executed 3.46K times on 
average during chunking of an average size chunk. In the 
sliding-window-based CDC algorithm with a secondary 
condition, because the first and the secondary condition use the 
same rolling hash, the judgment function is also executed once 
at each byte in the interval [4KB, 12KB] until a breakpoint is 
reached. Because the average chunk size is 7.14KB, the 
judgment function is executed 3.14K times on average during 
chunking an average sized chunk. 

Now, we turn to consider the case of the leap-based CDC 
algorithm without a secondary condition. After each leap, we 
have to judge window Wi1 first. According to our parameter 
selection, we know that the probability that this window is 
unqualified and that the calculation will leap forward is 1/4;  
the probability that this window is qualified and that the 
calculation slides one byte backward and continues to judge the 
next window is 3/4. Based on these probabilities, the judgment 
function is executed 1+3/4+(3/4)2+ … +(3/4)24=4 times on 
average after a  leap.  In  the  meantime,  the  calculation  slides 
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Fig. 7. For the leap-based CDC algorithm without a secondary condition, the 
average leap length is 24 bytes with a backward slide of 3 bytes; 4 windows 
are judged then another 24 bytes are leaped, and so on. 

back 3 bytes on average (refer to Fig. 7). Because the average 
leap distance is 24 bytes, the calculation procedure follows the 
following pattern: leaps 24 bytes, slides back 3 bytes, executes 
4 judgment functions on average, and so on. Therefore, the 
judgment function is executed 4 times for every 21 bytes in the 
interval [4KB, 12KB] until the breakpoint is set. Since the 
average chunk size is 7.38KB, the judgment function is 
executed 4/21×3.38K times on average for every 7.38KB. 
Therefore, the number of times the judgment function is 
executed in the leap-based CDC algorithm without a secondary 
condition is about 1/5 that of the sliding-window-based CDC 
algorithm with or without a secondary condition. Since the 
computational complexity of the pseudo-random 
transformation at most 2.5 times that of the rolling hash, the 
leap-based CDC algorithm without a secondary condition 
reduces the computational complexity by half when compared 
to the sliding-window-based CDC algorithm .  

For the leap-based CDC algorithm with a secondary 
condition, the conclusion is the same. Considering the length of 
the more complex analysis required with the leap-based 
algorithm, we have decided to skip presentation of such 
information herein and maintain the conclusion that the leap-
based CDC algorithm with a secondary condition reduces the 
computation overhead by half when compared to the sliding-
window-based CDC algorithm. 

V. EXPERIMENT 
In this section, we show the experimental results from our 

algorithm and compare them with those from the sliding-
window-based CDC algorithm. Additionally, to improve the 
deduplication ratio, we only compare the results when both 
algorithms use a secondary condition. Although Rabin hash [18] 
is widely used in academia papers, it can be replaced by faster 
functions in industry. We decided to use BUZ hash [19] as the 
rolling hash for the sliding-window-based CDC algorithm in 
the experiments because of its lighter CPU overhead than the 
Rabin hash [18]. Some experiments show that a sliding-
window-based CDC algorithm with BUZ hash is much faster 
than a sliding-window-based CDC algorithm with Rabin hash, 
while the deduplication ratios provided by the two algorithms 
are almost the same.  

A. Environment 
The sliding-window-based CDC algorithm processes the 

data in a streamlined manner, but the leap-based CDC 
algorithm determines whether or not to leap depending on the 
judgment result. The probability that the sliding-window-based 
CDC algorithm continues to slide forward is as high as 1-1/4K, 
but there are much more branches when judging the windows 
in the leap-based CDC algorithm and all these branches have 

reasonable probabilities. Thus, the sliding-window-based CDC 
algorithm performs well if the CPU is specially optimized for 
streamline input. However, the leap-based CDC algorithm can 
significantly improve the performance if the CPU is powerful 
when dealing with branches. These two algorithms will behave 
differently under different CPU architectures.  

We use the Westmere CPU architecture and Sandy Bridge 
CPU architecture in our experiment, where Sandy Bridge CPU 
architecture represents the newer generation architecture and is 
more powerful when dealing with branches while Westmere 
CPU architecture represents the older generation architecture 
and is less powerful when dealing with branches. We choose 
Intel E5520 as the representative of Westmere CPU 
architecture and Intel E5-2450 as the representative of Sandy 
Bridge CPU architecture. It should be noted that although 
Sandy Bridge CPU E5-2450 has a newer architecture, its 
frequency is lower.  Detailed  environments  are shown in 
Table 1.  

Only the performance of chunking step is measured. When 
the data stream is too big, we run the experiment in multiple 
rounds. In each round, we read 256MB of data into the 
memory, start the timer, chunk the data, stop the timer, 
compute the fingerprints and then find duplicated chunks. The 
performance of all rounds is accumulated. In this way, we 
shield other uncertain factors. But the deduplication ratio, the 
distribution of chunk sizes and the average chunk size are 
measured through the whole data stream. 

B. Datasets 
We tested the two algorithms on 10 datasets (see Table 2). 

All datasets were collected from real production environments. 
The VMware dataset is collected from 10 Windows7 VMs 
using Symantec NetBackup software. The Oracle-Rman 
dataset is collected from a real database using the Rman 
interface. The Oracle-Dmp and Oracle-dbf datasets are the 
original forms of the database. The ISO dataset is collected 
from 20 Windows system installation files. The Sys dataset is 
collected from the C disk of 20 users. The Office, PDF, Music 
and Video datasets are also collected from real environments. 

C. Distributions of chunk sizes and average chunk size 
The distribution of chunk sizes has no relation to the CPU 

architecture, and the results would presumably be exactly the 
same for the two CPU architectures. Referring to Fig. 8, the 
distributions of chunk sizes for the sliding-window-based CDC 
algorithm with a secondary condition and the leap-based CDC 
algorithm with a secondary condition are similar, which are 
also similar to the curves of the theoretical analysis. Referring 
to Fig. 9, the Music and Video datasets are essentially random 
data sets, so the average chunk sizes of the two algorithms 
agree with our analysis. But for other datasets, the average 
chunk sizes of both algorithms fluctuate between [6.4KB, 
7.6KB]. However, the relation is maintained that the average 
chunk size of the leap-based CDC algorithm with the 
secondary condition is a little smaller than that of the sliding-
window-based CDC algorithm with the secondary condition. In 
any case, the two algorithms have similar distributions of 
chunk sizes and average chunk sizes, which then implies they 
will have almost exactly the same deduplication ratios. 
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TABLE I.  TESTING ENVIRONMENT. 

 

TABLE II.  TESTING DATASETS 

 

 
Fig. 8. Distributions of chunk sizes of the two algorithms with a secondary 
condition (They behave similarly). 

D. Deduplication ratio 
The deduplication ratio also has no relation to the CPU 

architecture, and the results would presumably be exactly the 
same for the two CPU architectures. Referring to Table III, the 
deduplication ratio of the two algorithms are almost exactly the 
same (there are no duplicated chunks in Oracle dmp and Oracle 
dbf datasets in either of the two algorithms). As long as two 
chunking algorithms are content defined and have similar 
distributions  of  chunk  sizes,  their  deduplication  ration  will 

 

Fig. 9. Average chunk sizes of of the two algorithms with a secondary 
condition. 

TABLE III.  DEDUPLICATION RATIO 

 
likely be similar. To have a flat distribution of chunk sizes, the 
chunking algorithm must satisfy the equal probability condition. 
Therefore, as we mentioned before, the chunking algorithm 
must satisfy the content defined and the equal probability 
condition to achieve a good deduplication ratio. As such, the 
conclusion that the leap-based CDC algorithm with a 
secondary condition has a similar deduplication ratio as that of 
the sliding-window-based CDC algorithm with a secondary 
condition is proven to be valid by the experiments. 

E. Performance 
The performance of the two algorithms is measured when 

the CPU is free from other tasks. Although in a real system 
such a condition cannot hold and CPU should provide all kinds 
of services simultaneously including computing fingerprints, 
we only use the relative experimental results to accurately 
compare the two algorithms. Referring to Fig. 10 and Fig. 11, 
the two algorithms behave differently under Westmere and 
Sandy Bridge CPU architectures. Under the newer Sandy 
Bridge CPU architecture, the leap-based CDC algorithm with a 
secondary condition improves performance by 50%~100% 
compared to the sliding-window-based CDC algorithm with a 
secondary condition. But under the older Westmere CPU 
architecture, the leap-based CDC algorithm only improves 
performance by 10%~30%. We believe that this distinction in 
performance based on different CPUs is due to the fact that 
Sandy Bridge CPU architecture is more powerful when dealing 
with branches and the leap-based CDC algorithm with a 
secondary condition involves lots of branches in its  calculation.  
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Fig. 10. Performance of the two algorithms under Sandy Bridge CPU. For 
small datasets, the experiment is run several times to obtain an average value. 
Our algorithm improves performance by 50~100%. 

 
Figure 11: Performances of the two algorithms under Westmere CPU. For 
small datasets, the experiment is run several times to obtain an average 
value.Our algorithm improves performance by 10~30%. 

Therefore, the leap-based CDC algorithm runs faster under the 
newer Sandy Bridge CPU architecture. It should also be noted 
that although Sandy Bridge CPU is the newer CPU architecture, 
the sliding-window-based CDC algorithm runs slower under it.  

VI. RELATED WORK 
The chunking algorithm is one of most the important 

modules in the deduplication system. The sliding-window-
based CDC algorithm [1] and its variants have been the most 
popular CDC algorithms for the last 15 years. These algorithms 
satisfy the content defined condition and equal probability 
condition, so the deduplication ratio can be guaranteed. 
However, their performance is limited in certain application 
scenarios since they have to compute the judgment function 
once at each byte. LBFS [2] proposed limiting the minimum 
chunk size and the maximum chunk size to help eliminate 

chunks that are too small or too large. The LBFS approach is 
appealing because it helps make the deduplication ratio more 
stable and improves deduplication performance with skipping 
of the minimum chunk size when searching for breakpoints. 
Our algorithm followed this limitation. The secondary 
condition of breakpoint first appeared in TTTD [3]. It reduces 
the proportion of the forced breakpoints and improves the 
deduplication ratio. RC [4] adopted secondary, third, fourth, 
and fifth conditions to further reduce the proportion of forced 
breakpoints. They also compared the distribution of chunk 
sizes of the RC algorithm and the sliding-window-based CDC 
algorithm. Our idea of analyzing the distribution of chunk sizes 
and average chunk size originates from this paper. However, 
LBFS, TTTD, and RC are all based on the sliding window 
CDC algorithm, so they all have to compute the judgment 
function once at each byte for almost half of the whole data 
stream. 

Bimodal CDC [5] also used the same sliding-window-
based CDC algorithm, but it mixes chunks of different average 
sizes together. This algorithm first chunks the data stream into 
large chunks and then splits part of them into small chunks. 
The reverse is also true as it can first chunk the data stream into 
small chunks and then combine part of them into large chunks. 
This algorithm can significantly reduce the amount of metadata 
that needs to be indexed but at the cost of a slight loss in the 
deduplication ratio. However, they have to check the 
fingerprint index to determine whether to split large chunks or 
merge small chunks. Similarly, Lu [6] also mixed chunks of 
different average size together, but determined whether to 
chunk the data stream into large chunks or small chunks 
according to the reference count. Meyer and Bolosky [7] 
compared the deduplication ratio of chunking algorithms 
adopting different average chunk sizes. 

Zhu et al [8] proposed the locality keeping technique which 
stores the fingerprints sequentially in containers to avoid disk 
bottlenecks. Sparse indexing [9], extreme bin [10], SILO [11] 
sampled the fingerprints of chunks to index them. These 
techniques can greatly reduce the consumption of memory in 
the querying step. DBLK [12], BloomStore [13], chunkstash 
[14], and delta index [15] discussed some methods for memory 
organization of the sampled fingerprints. These algorithms can 
further reduce memory consumption. Idup [16] only 
deduplicated sequences of duplicated chunks. Lillibridge et al 
[17] limited the number of containers that a group of chunks 
can refer to. These two techniques can reduce fragments and 
keep the locality for a long time. The above algorithms can 
greatly alleviate the load on disks and memory, but in certain 
application scenarios, the chunking step and the chunk 
fingerprinting step which cost a lot of CPU resources could 
become new bottlenecks. 

The rolling hash helps increase the calculation speed in the 
sliding-window-based CDC algorithm. Both Rabin hash [18] 
and BUZ hash [19] are the popular rolling hash functions. We 
adopted BUZ hash [19] in the sliding--window-based CDC 
algorithm due to its lighter CPU overhead than the than Rabin 
hash [18]. As the complexity of one computation of BUZ hash 
is too small to be further compressed, the only way to alleviate 
possible bottlenecks in the chunking step is to reduce the 
executing times of judgment function.  
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The technique of adopting numbers from normal 
distribution has been used in LSH [20]. LSH used a more 
generalized distribution called p-stable distribution instead of 
normal distribution. Research from Manku et al [21] and Datar 
et al [20] shows that Simhash and LSH are similar. We built 
the pseudo-random transformation based on these two 
algorithms. 

VII. CONCLUSION 
The chunking algorithm affects not only the deduplication 

ratio but also deduplication performance. Since the sliding-
window-based CDC algorithm executes the judgment function 
once at each byte for almost half of the whole data stream, its 
heavy computing overhead provides an area for further 
optimization. In this paper, we presented the leap-based CDC 
algorithm and added a secondary condition to it in order to 
reduce the computing overhead and maintain the same 
deduplication ratio. Our algorithm satisfies both the content 
defined condition and the equal probability condition. As we 
illustrated and verified through experiments, the leap-based 
CDC algorithm with or without a secondary condition can 
significantly reduce the computing overhead while maintaining 
the same deduplication ratio. To resolve the technique issue of 
not being able to use the rolling hash in the new algorithm, we 
introduced the pseudo-random transformation to replace the 
role of rolling hash. The analysis and the experiments have 
shown that the pseudo-random transformation is an appropriate 
replacement.  

We then analyzed the distribution of chunk sizes, the 
average chunk size, and the computational complexity of these 
algorithms. The theoretical analysis shows that the distribution 
of chunk sizes among all analyzed algorithms are fairly similar; 
the average chunk sizes from all analyzed algorithms are very 
close; and the computational complexity of the leap-based 
CDC algorithm is approximately half that of the sliding-
window-based CDC algorithm.  

The experimental results substantiate our theoretical 
analysis. 
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