
978-1-4673-7619-8/15/$31.00 ©2015 IEEE

Leap-based Content Defined Chunking --- Theory and
Implementation

Chuanshuai Yu, Chengwei Zhang, Yiping Mao, Fulu Li
Huawei Technologies Co., Ltd.

{yuchuanshuai, zhangchengwei, tony.mao, lifulu}@huawei.com

Abstract—Content Defined Chunking (CDC) is an important
component in data deduplication, which affects both the
deduplication ratio as well as deduplication performance. The
sliding-window-based CDC algorithm and its variants have been
the most popular CDC algorithms for the last 15 years. However,
their performance is limited in certain application scenarios since
they have to slide byte by byte. The authors present a leap-based
CDC algorithm which provides significant improvement in
deduplication performance without compromising the
deduplication ratio. Compared to the sliding-window-based CDC
algorithm, the new algorithm enables up to two-fold
improvement in performance.

Keywords—deduplication; content defined chunking; judgment
function; secondary condition

I. INTRODUCTION
The Content Defined Chunking (CDC) algorithm is an

important component in data deduplication which breaks the
incoming data stream into chunks when the content window
before the breakpoint satisfies a predetermined condition.
Since chunk is the basic unit in finding duplications, the CDC
algorithm has significant impact on the deduplication ratio. In
addition, since the whole data stream needs to be chunked
before other deduplication processes, the CDC algorithm also
affects deduplication performance.

The sliding-window-based CDC algorithm and its variants
[1], [2] have been the dominating CDC algorithms in the field
for the last 15 years. However, the sliding-window-based CDC
algorithm is not optimal, especially in terms of deduplication
performance, since it has to slide the content window byte by
byte. At each byte a special judgment function is computed to
judge whether the content window satisfies a predetermined
condition. Although the sliding-window-based CDC algorithm
can neglect some regions due to the constraint on the minimal
chunk size, it still has to compute the judgment function at
each byte for almost half of the whole data stream. Therefore,
for a 10PB data stream, the CDC algorithm will compute the
judgment function 5 Peta times. The Two Thresholds Two
Divisors (TTTD) algorithm [3] introduces a secondary
condition when judging whether a content window is satisfied
to improve the algorithm. However, while it brings
improvement to the deduplication ratio, it does not improve
deduplication performance. The authors present a leap-based
CDC algorithm with novel leap procedures, resulting in
significant improvement to deduplication performance. For a
10PB data stream, the new algorithm only needs to compute

the judgment function 1 Peta times while still achieving the
same deduplication ratio. However, the new algorithm adopts a
more complicated judgment function. Overall, the new
algorithm demonstrates up to two-fold improvement in
performance compared to the sliding-window-based CDC
algorithm.

Generally speaking, there are four steps involved in data
deduplication: (1) chunking which uses a CDC algorithm to
divide the data stream into chunks; (2) chunk fingerprinting
which computes the fingerprint (for example, SHA-1 value) for
each of the chunks; (3) fingerprint indexing and querying
which stores the fingerprints according to a certain data
structure for indexing and queries the index to find chunks of
identical fingerprints – these chunks are considered as the
duplicated chunks; (4) data storing and management which
stores new chunks and representative reference pointers for the
duplicated chunks. There are two important measurements that
evaluate a deduplication system: the deduplication ratio and
performance. While other steps also play important roles, the
chunking step has significant impact on the deduplication ratio
and performance.

In the four steps involved in data deduplication mentioned
above, the chunking and the chunk fingerprinting step are CPU
intensive, and in contrast the fingerprint indexing and querying
step as well as the data storing and management step require a
lot of memory and disk resources. While there is ongoing
research [8], [9] in improving the performance of the
fingerprint indexing and querying and the data storing and
management steps to reduce the memory and disk resources
consumption, there has been less research in improving the
performance of the chunking step. Depending on the use cases,
the CPU may or may not be the bottleneck, but decreasing the
computational complexity of the chunking step will free up
CPU resources for other tasks. It remains an open question of
how far the chunking step can be optimized while maintaining
the property of creating consistent chunks that deduplicate
well.

In addition to deduplication performance, the chunking
algorithm also has significant impact on the deduplication
ratio. An effective chunking algorithm has to satisfy two
properties: chunks must be created in a content-defined manner,
and all chunk sizes should have equal probability of being
selected. The CDC algorithm only breaks the data stream when
the content window before the breakpoint satisfies a
predetermined condition to meet the content defined condition.

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

In this way, when two similar but different data streams show
up, the number of duplicated chunks can be maximized. The
equal probability condition requires all the content windows to
have the equal probability to satisfy the predetermined
condition. In this way, the chunking algorithm can
accommodate all kinds of data streams. In addition, the average
chunk size also affects the deduplication ratio. Mostly, the
bigger the chunk size, the harder it is to duplicate the chunk
and the lower the deduplication ratio. However, the chunk size
cannot be too small, since we have to index the fingerprints of
all the chunks. It is of particular importance to control the
average chunk size and the distribution of chunk sizes in a
deduplication system. When searching breakpoints, the sliding-
window-based CDC algorithm slides byte by byte to make sure
that no breakpoints are missed. However, with a more
delicately designed predetermined condition, the leap-based
CDC algorithm is able to leap in the process of searching
breakpoints without missing a single breakpoint. The sliding-
window-based CDC algorithm adopts the rolling hash as the
judgment function to judge whether the content window
satisfies the predetermined condition. However, rolling hash is
not applicable in the new algorithm. Therefore, we introduce
the pseudo-random transformation to replace its role.

Our contributions are summarized as follows:

• We introduce a new chunking algorithm with the leap
technique in which the executing times of the
judgment function are approximately 1/5 of those in
the sliding-window-based CDC algorithm. The
computation complexity of the judgment function of
the new algorithm is less than 2.5 times that of the
sliding-window-based CDC algorithm. Therefore, by
combining the gain in leap technology and the loss in
the judgment function, our leap-based CDC algorithm
reduces the computational complexity by as much as
50%. A secondary condition can also be applied to our
algorithm.

• We theoretically analyze the distribution of chunk
sizes and the computation overhead, with the former
one affecting the deduplication ratio and the latter one
affecting deduplication performance. Our analysis
agrees well with the experimental results.

The rest of this paper is organized as follows. Section II
reviews the background of the sliding-window-based CDC
algorithm and the TTTD algorithm. Section III describes our
proposed leap-based CDC algorithm and adds a secondary
condition to it. We provide a theoretical analysis in Section IV.
The algorithms are evaluated in Section V. Related work is
given in Section VI, and the conclusion is made in Section VII.

II. BACKGROUND

A. Siding-Window-Based CDC
Many previous papers have used CDC algorithms to form

chunks. Examples include LBFS [2], TTTD [3] and Zhu’s
paper [8]. Both LBFS [2] and Zhu’s paper [8] adopt an average
chunk size of 8KB, and both LBFS [2] and TTTD [3] adopt the
minimum and maximum chunk size. We use the sliding-
window-based CDC algorithm in a similar way and define the

Fig. 1. Streamline of the sliding window-based CDC algorithm. w represents
the content of the window, and x represents the end point of the window.

minimum and maximum chunk size as 4KB and 12KB to get a
similar average chunk size. The algorithm slides a fixed size
window (e.g. 128B) byte by byte in the range [4KB, 12KB]
(see Fig. 1). If the content of the window satisfies a
predetermined condition, the end point of the window is
defined as being satisfied and becomes a breakpoint candidate.
In this way, each window uniquely corresponds to its end point
and thus, a one-to-one mapping between the points and the
windows is established. A point x is defined as satisfied if the
equation “rolling-hash(w) % n = k” holds true, where rolling
hash is the judgment function, x represents the end point of the
window, w represents the content of the window, n and k are
predetermined constants (e.g. n = 4K = 4×1024, k = 0).
Sliding-window-based CDC only adopts one predetermined
condition; we call it the first condition. In latter sections, we
will show that there are algorithms adopting secondary
condition, third condition, and so on.

The sliding-window-based CDC algorithm starts from the
position of the minimum chunk size and the first satisfied point
in the range [4KB, 12KB] will be chosen as the breakpoint. If
there is no satisfied point in this range, a breakpoint will be
forced at the position of the maximum chunk size. Because of
the restriction on the chunk size, not all the satisfied points may
become breakpoints. For example, if both point d1 and point
d2 satisfy the condition, but the distance between them is 2KB,
only point d1 can possibly become a breakpoint. After
choosing point d1 as a breakpoint, the next 4KB will be
neglected to assure the minimum chunk size.

It is clear that the sliding-window-based CDC algorithm
satisfies the content defined condition and, due to the property
of the rolling hash, it also satisfies the equal probability
condition. However, it has to perform the rolling hash
computation at each byte in the range [4KB, 12KB] until it
finds the breakpoint. Although the complexity per computation
of rolling hash is not high, large numbers of computations
could make the sliding-window-base CDC algorithm a
potential performance bottleneck in certain application
scenarios. To help address this issue, we introduce a leap-based
CDC algorithm that reduces the executing times of the
judgment function.

The sliding-window-based CDC algorithm only adopts one
predetermined condition; however, this could result in a high
proportion of forced breakpoints. This will cause an undesired
affect on the deduplication ratio. Therefore, TTTD adds a
secondary condition to the sliding-window-based CDC
algorithm to solve this problem. RC [4] even adopts

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

secondary, …, fifth condition to further reduce the proportion
of the forced breakpoints.

B. Adding a Secondary Condition
If some chunks are significantly bigger than others, they are

unlikely to be duplicated. In which case, the deduplication ratio
will be decreased. Therefore, when the sliding-window-based
CDC algorithm cannot find a satisfied point in the given range,
it will force a breakpoint at the position of the maximum chunk
size. Since forced breakpoints are not content defined, they will
also impact the deduplication ratio. A practical way to alleviate
this problem is to introduce a secondary condition, which is the
main contribution of TTTD [3]. If there is no point satisfying
the first condition, TTTD choose the point that satisfies the
secondary condition and is closest to the point of the maximum
chunk size as the breakpoint. If there is no point satisfying the
secondary condition, a breakpoint will be forced at the position
of the maximum chunk size.

The secondary condition uses the same sliding window and
rolling hash as the first condition, but with a relaxed condition.
Point x satisfies the secondary condition if it satisfies the
condition “rolling-hash(w) % n’ =k’ ”. Usually, when the
length of n is L bit, n’ and k’ will be chosen as the numbers of
the low L-1 bit of n and k, respectively (e.g. n’=2K, k=0). In
this way, one can mark the points satisfying the secondary
condition when searching for the points satisfying the first
condition, which avoids further searches if there is no point
satisfying the first condition.

TTTD is still content defined and all the points have the
same probability of satisfying the first or the secondary
condition. In Section IV we will show that the secondary
condition can greatly reduce the proportion of forced
breakpoints. Therefore, the deduplication ratio can be
improved. However, it does nothing to reduce the executing
times of rolling hash; it still has to perform the rolling hash
computation at each byte in the range [4KB, 12KB] until it
finds a breakpoint.

III. THE LEAP-BASED CDC ALGORITHM
In order to reduce the executing times of the judgment

function, we present the leap-based CDC algorithm. The new
algorithm also satisfies the content defined and the equal
probability conditions. In Section IV we will show that the
distribution of chunk sizes from this algorithm is almost
exactly the same as that of the sliding-window-based CDC
algorithm. Therefore, our proposed algorithm improves
deduplication performance while guaranteeing the same
deduplication ratio.

A. Leap-based CDC
First, we will introduce our algorithm without the

secondary condition. In contrast to the sliding-window-based
CDC algorithm in which every point corresponds to one
window, every point corresponds to M (e.g. 24) windows in
our algorithm. The point is said to be satisfied and thus
becomes a breakpoint candidate only when all the M windows
are qualified. Referring to Fig. 2, the target point ki
corresponds to windows Wi1,…,WiM, where ki is the end point
of the headmost window. If one window is unqualified, we can

Fig. 2. The target point ki corresponds to windows Wi1,Wi2,…,Wi24. It is
satisfied and becomes a breakpoint candidate when all the 24 windows behind
it are qualified.

skip judging the other M-1 windows. The distance between
two adjacent windows is one byte, which means that two
adjacent target points share the same M-1 windows. One
unqualified window can disqualify up to M target points. In
this way we can leap over some target points in the process of
searching satisfied points when we encounter an unqualified
window. Since rolling hash is not applicable in the new
algorithm, we adopt the pseudo-random transformation as the
judgment function to define whether a window is qualified.
Refer to Section III.C for the details on the pseudo-random
transformation. The number of qualified windows needed for a
target point to become satisfied affects the length of each leap,
and combined with the possibility of a single window being
qualified, this number affects the distribution of chunk sizes.
We will explain how we choose these parameters in Section IV.

Here we give an example for a detailed description of the
leap technique. Referring again to Fig. 2 and supposing that ki
is the target point, we first judge whether window Wi1 is
qualified. If it is qualified, we then judge window Wi2, and so
forth. If we find that window Wi5 is unqualified, it then
becomes unnecessary to judge windows Wi6,…,WiM, and we
can leap from the end point of window Wi5. If we leap less than
M bytes and get another target point kj’, the M windows
corresponding to point kj’ will include window Wi5. Therefore,
point kj’ cannot be satisfied. Thus, leaping M bytes and
arriving at target point kj is more efficient. Since we know
nothing about the M windows corresponding to this point, we
have to judge these windows one by one. As before, we judge

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

them in a reverse order starting from window Wj1. If we find M
consecutive qualified windows in this process, the
corresponding target point will be taken as a breakpoint. If a
leap is out of the range of the maximum chunk size, a forced
breakpoint will be set at the position of the maximum chunk
size.

Generally speaking, leap-based CDC algorithm starts from
the position of the minimum chunk size, regards it as a target
point, and then moves backward to judge the M corresponding
windows one by one. If M consecutive qualified windows are
found in this process, the corresponding target point becomes a
breakpoint. Otherwise, it will leap from the end point of the
first unqualified window it encounters. Then, it gets another
target point and starts to judge the windows corresponding to
this point. When there is no satisfied point in the predetermined
range, a forced breakpoint will be set at the position of the
maximum chunk size. In fact, there would be three possible
actions after window Wix is judged:

• If window Wix is unqualified, we leap M bytes forward
from the end point of window Wix to get another target
point and start to judge the M windows corresponding
to this point, where 1≤x≤M.

• If window Wix is qualified but x is less than M, we
slide one byte backward to judge window Wix+1, where
1≤x≤M-1.

• If window Wix is qualified and x is equal to M, the
corresponding target point becomes a breakpoint,
where x=M.

Our leap-based algorithm satisfies the content defined and
the equal probability condition as all the windows are tested
with the same predetermined condition. It is clear that the new
algorithm can greatly reduce the executing times of the
judgment function with the leap technique we introduce.
However, the leap procedure has a significant impact on the
distribution of chunk sizes. How can we control the
distribution? Is the distribution of chunk size in our algorithm
the same as that of the sliding-window-based CDC algorithm?
And how much complexity in computing does our algorithm
alleviate? We provide the answers to these and other questions
in Section IV.

B. Adding a Secondary Condition
We also introduce a secondary condition to the leap-based

CDC algorithm to reduce the proportion of the forced
breakpoints. As a result, the distribution of chunk sizes
becomes smoother and the deduplication ratio improves.

In the sliding-window-based CDC algorithm, the secondary
condition uses the same judgment function as the first
condition but replaces n’ and k’ with n and k in the equation.
However, the relation between the first condition and the
secondary condition in the leap-based CDC algorithm is
different from that of the sliding window-based CDC algorithm.
In the new algorithm, when the first condition requires M
qualified windows, the secondary condition only requires M-T
qualified windows (e.g. M=24 ， T=2). Additionally, the
relative positions of the target point and the corresponding
windows also change. Referring to Fig. 3, if windows

Fig. 3. The target point ki corresponds to windows Wi1,…, Wi24. If windows
Wi1, … ,WiM are qualified, it satisfies the first condition. If windows
Wi3,…,WiM are qualified, it satisfies the secondary condition.

Wi1,…,WiM are all qualified, the target point ki satisfies the first
condition and becomes a breakpoint candidate. If windows
Wi3,…,WiM are all qualified, the target point ki satisfies the
secondary condition and also becomes a breakpoint candidate.
The windows Wi3,…,WiM are behind the target point ki, and the
windows Wi1 and Wi2 are before the target point ki. The
distance between two adjacent windows is still one byte. For
the secondary condition, one unqualified window can only
disqualify up to M-T points. Thus, when we look for points
satisfying the secondary condition, we can only leap M-T bytes.
We still use the pseudo-random transformation to define
whether a window is qualified. Again, we will explain how we
choose the parameters in Section IV.

Similarly, not all the points satisfying the secondary
condition become breakpoints. When there is no point
satisfying the first condition, we choose the point that satisfies
the secondary condition and is closest to the position of the
maximum chunk size as a breakpoint. If there is no point
satisfying the secondary condition in the predetermined range,
we then force a breakpoint at the position of the maximum
chunk size. The secondary condition of leap-based CDC
algorithm can also be seen as a relaxed mode of the first
condition. In the process of searching the points satisfying the
first condition, we must simultaneously mark the points
satisfying the secondary condition to avoid another search
round in case there is no point satisfying the first condition. In
the implementation of our algorithm, the secondary condition

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

is actually checked first. If the secondary condition fails to be
met, a leap is taken. If the secondary condition is satisfied, the
first condition will be checked further and a breakpoint will be
set accordingly.

Here we give a detailed example of the leap procedure after
adding the secondary condition. Referring again to Fig. 3 and
supposing ki is the target point, we first judge whether window
Wi3 is qualified. If it is qualified, we then judge window Wi4,
and so on. If we find that window Wi5 is unqualified, since for
the secondary condition one unqualified window can disqualify
up to M-T points, we can leap up to M-T bytes from the end
point of window Wi5. After leaping, we can get a new target
point kj and the M new windows corresponding to kj can be
identified. The procedure then continues to repeat. On the
opposite case, if windows Wi3,…,WiM are all qualified, we then
judge windows Wi1 and Wi2. If one of them is unqualified, we
only find one or two points satisfying the secondary condition.
They will be marked and we will leap M-T bytes from the end
point of the unqualified window. Then, the new target point
can be determined and the process continues. If Wi1 and Wi2
are both qualified, then ki satisfies the first condition and we
choose it as a breakpoint. If a leap reaches a point outside the
range of the maximum chunk size, either the point satisfying
the secondary condition and is closest to the point of the
maximum chunk size is set as the breakpoint or the point of the
maximum chunk size is set as the breakpoint providing that
there is no point satisfying the secondary condition.

Generally speaking, there are five possible actions after the
algorithm judges window Wix:

• If window Wix is unqualified, we leap M-T bytes
forward from the end point of window Wix to get
another target point and start to judge the M windows
corresponding to this point, where T+1≤x≤M.

• If window Wix is qualified but x is bigger than T and
less than M, we slide one byte backward to judge
window Wix+1, where T+1≤x≤M -1.

• If window Wix is qualified and x equals to M, we then
judge windows Wi1,…,WiT, where x=M.

• If one of the windows Wi1,…,WiT is unqualified, we
only find one or more points satisfying the secondary
condition. They will be marked and we will leap M-T
bytes from the end point of the unqualified window to
get another target point and start to judge the M
windows corresponding to this point, where 1≤x≤T.

• If windows Wi1, … ,WiT are qualified, the
corresponding target point becomes a breakpoint,
where 1≤x≤T.

Adding the secondary condition to the leap-based CDC
algorithm is much more complicated than adding it to the
sliding window-based CDC algorithm. It is difficult to control
the distribution of chunk sizes in the leap-based CDC
algorithm with a secondary condition. Although rather
complicated, the math behind the new algorithm is
demonstrated in Section IV.

C. Pseudo-random Transformation
In the new leap-based CDC algorithm, the rolling hash is

not applicable. Thus, we need to find a proper replacement
featuring a light weight computation with the hashing property.
We use pseudo-random transformation as the replacement in
our algorithm. The following several paragraphs explain the
principles behind this replacement.

The idea of pseudo-random transformation came from
Locality-sensitive hashing (LSH) [20] and the theorem that the
sum or the difference of normal distributions is still a normal
distribution. We take advantage of this special property of
normal distribution to randomize input data. However, it
should be noticed that this transformation is not suitable for
encryption. We predetermine two 255 × 8 matrices

1,1 1,8

255,1 255,8

h h
H

h h

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 and
1,1 1,8

255,1 255,8

g g
G

g g

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

, where each

element of these matrices is a generated random number of the
normal distribution N(0,1). Then, we let the content window
determines how to combine – add to or subtract from – these
random numbers. Referring to Fig. 4, for every window we
choose 5 bytes out of an interval of 42 bytes. The shape
belongs to window Wi1, the shape belongs to window Wi2,
and so on. We can obtain the 5 bytes of window Wi2 by sliding
the 5 bytes of window Wi1 one byte backward. We repeat the 5
bytes chosen from a single window 51 times and get 255 bytes.
These 255 bytes is the input of the pseudo-random
transformation. Each byte has 8 bits, so we get a 255×8 matrix

1,1 1,8

255,1 255,8

a a
A

a a

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. We define vai,n= 1 or = -1, depending on

whether ai,n=1 or = 0. Therefore, accordingly, we get the matrix
1,1 1,8

255,1 255,8

a a

a

a a

v v
V

v v

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

. We then compute Eai=vai,1×hi,1+…+ vai,8

×hi,8. After that, we get 255 values: Ea1,…,Ea255. The number
of positive values in these 255 values is counted and denoted as
Ea. Similarly, we compute Fai=vai,1×gi,1+…+ vai,8×gi,8 and get
Fa. If both Ea and Fa are even, we define the window as
disqualified. Otherwise, the window is qualified.

In the above design, we have utilized the special property
of normal distribution: the sum or difference of normal
distributions is still a normal distribution. Similar designs and
ideas are promoted in other research, like LSH [20]. The
pseudo-random transformation aims to get randomized output
values for different input data sets. Due to the special
symmetry of the normal distribution, Eai is symmetrically
distributed in positive and negative values. Therefore, the
probability of Ea being even is 1/2 and the probability of a
window being qualified is 3/4.

Although the theory behind the pseudo-random
transformation is complicated, it reduces the number of needed
computations. Here, we analyze its computation complexity. In
the transformation, there are 5 bytes for each window, and
there are 256 possible values for each byte. Therefore, we build
a 5×256 table to record all the possible values that might
occur in the calculation of the pseudo-random transformation
and thus, accelerate the calculation process. For a specified

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

Fig. 4. We choose 5 bytes at intervals of 42 bytes for each window.

byte in a specified place of the window, since this byte has
been used 51 times, we can get the 51 corresponding lines of
Va. Thus, 51 out of the 255 values (Ea1, …, Ea255) can be
computed, and we can count the number of positive values in
these 51 values and denote it as Ei. We can compute the values
for Fi in the same manner. Since we only care about the parity
of Ei and Fi, only one bit is needed where 0 represents even
numbers and 1 represents odd numbers. Moreover, we can
catenate Ei and Fi. Therefore, the 5×256 table is built which
takes EiFi as its elements. For each window with the specified 5
bytes, we look up the table 5 times and get the 5 outputs E1,
…,E5. Then, Ea= E1+…+E5. The computation for Fa is similar.
Actually, the sum operation can be replaced by Xor operation
and the computation of Ea and Fa can be completed
simultaneously. After the 5 table lookup operations are
completed, we can compute EF= E1F1^…^E5F5. EF=0 means
that both E and F are even and the window is disqualified.
EF=1,2,3 means that either or both E and F are odd and the
window is qualified. Therefore, one pseudo-random
transformation can be done by 5 table lookup operations (the
size of the table is 1.25KB) and 4 Xor operations. In contrast,
one BUZ hash computation can be done by 2 table lookup
operations (the size of the table is 4KB), 2 Xor operations, 2
subtract operations, 2 OR operations and 4 shift operations.
Therefore, it is safe to assume the computational complexity of
each judgment in our algorithm with the pseudo-random
transformation is at most 2.5 times that of the sliding-window-
based CDC algorithm with the help of rolling hash. However,
the executing times of the judgment function in our algorithm
is much less than that in the sliding window-based CDC
algorithm. The overall reduction to the computational
complexity will be analyzed tin Section IV.

IV. THEORETICAL ANALYSIS

A. Analysis of sliding-window-based CDC
In this section, we will analyze the distribution of chunk

sizes and the average chunk size of sliding-window-based
CDC algorithm without the secondary condition. Our idea of
analyzing the distribution of chunk sizes originates from RC
[4]. However, RC only gives a experimental result. We provide
a both mathematical analysis and experimental result in this
and latter sections.

For a large number of unknown windows, the output values
of rolling-hash(w) will subject to the uniform distribution. As a
result, the probability that rolling-hash(w)%n=k is 1/n. In the
sliding-window-based CDC algorithm, every point corresponds
to one window. So the probability of a point being satisfied is
1/n. Thus, the sliding-window-based CDC algorithm satisfies
the equal probability condition. We denote x as the point at the

Fig. 5. Distributions of chunk sizes of the four algorithms. The interval is
divided into 9 subintervals. The PDF is cumulated inside each subinterval.

position between x byte and x+1 byte, where x∈[4K, 12K]. If
point x is a breakpoint, none of the points behind point x
should be satisfied as point x is satisfied. Thus, the probability
of point x being a breakpoint is qa1(x)=1/n×(1-1/n)x-4K. Since
we search for the breakpoint from the minimum chunk size, we
will first encounter a satisfied point that is closest to the
minimum chunk size. Therefore, although the probability of a
point being satisfied is equal, there are more small chunks than
large chunks. If we cannot find a satisfied point before
reaching the maximum chunk size, we will force a breakpoint
at the position of the maximum chunk size. The probability of
forced breakpoint partition is qa=(1-1/n)12K-4K. Thus, we can get
the probability density function (PDF) of the distribution of
chunk sizes for this algorithm, referring to the curve titled
“Sliding” in Fig. 5 (e.g. n = 4K). We divide the interval [4KB,
12KB] into 9 subintervals [4KB, 5KB),…, [11KB, 12KB), and
[12KB, 12KB]. The probability density is cumulated inside
these subintervals. It can be seen that the curve is not smooth.
It rises suddenly at [12KB, 12KB]. The proportion of forced
breakpoints is as high as 13.53%.

The computation of the average chunk size of this
algorithm could be divided into two cases: Sa1=∑ xqa1(x)
represents the chunk size in case a satisfied point is taken as the
breakpoint; Sa2=qa×12K represents the chunk size in case of
forced partition. Therefore, the average chunk size of this
algorithm is Sa=Sa1+Sa2=7.46KB.

B. Adding a secondary condition
In this section, we will analyze the distribution of chunk

sizes and the average chunk size of the sliding-window-based
CDC algorithm with a secondary condition.

In the sliding-window-based CDC algorithm, the secondary
condition does not affect how the first condition determines the
breakpoint. Therefore, qb1(x) and Sb1 are the same as qa1(x) and
Sa1 in the previous section. We define qb2(x) and Sb2 as the
probability and chunk size when the secondary condition is
used to determine a point as being a breakpoint and define qb
and Sb3 as the probability and chunk size when a forced break
is to be executed.

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

The probability of the secondary condition determining a
breakpoint is a conditional probability – the first condition
must first fail to determine a breakpoint. Under the condition
hash(w)%n!=k, the probability of hash(w)%n’=k’ is 1/(n-1).
When we can’t find a point satisfying the first condition, we
choose the point that satisfies the secondary condition and is
closest to the maximum chunk size as a breakpoint. Thus, for
the secondary condition, we actually search backwards starting
from the point of the maximum chunk size to the point of the
minimal chunk size. The probability that point x only satisfies
the secondary condition and becomes a breakpoint is qb2(x)=(1-
1/n)12K-4K×1/(n-1)×(1-1/(n-1))12K-x, where x∈[4K, 12K]. The
probability that we can’t find a point satisfying the secondary
condition is qb=(1-1/n)12K-4K× (1-1/(n-1))12K-4K=(1-2/n) 12K-4K.
Thus, we can get the PDF of the distribution of chunk sizes for
this algorithm, refer to the curve titled “Sliding + TTTD” in
Fig. 5 (e.g. n = 4K). The curve is much smoother than that of
sliding-window-based CDC algorithm without the secondary
condition. Since the subinterval [12KB, 12KB] only contains
one point and represents a forced partition, it is best to keep the
proportion down to around 1.92%

Sb1 is the same as Sa1. Sb2= ∑ xqb2(x). Sb3=qb × 12K.
Therefore, the average chunk size is Sb=Sb1+Sb2+Sb3=7.14KB.
After introducing the secondary condition, the probability of
forced partition decreases from 13.53% to 1.92% and the
average chunk size decreases from 7.46KB to 7.14KB. Both of
these properties will improve the deduplication ratio.

C. Analysis of pseudo-random transformation
The empirical results from testing the pseudo-random

transformation are presented in this section followed by a brief
discussion on the idea for adopting pseudo-random
transformation and how it originates from LSH [20] and
Simhash [21].

Observably, the larger the N, the more stable the pseudo-
random transformation, where N represents the number of the
lines of N×8 matrices H or G. For example, we must not use a
1×Z matrix, even when Z is much larger than 8. Continuing,
suppose we define H=(h1,1 …h1,Z), compute Ea=va1,1×h1,1+…+
van,8×h 1,Z, output 0 when Ea<0 and output 1 when Ea≥0. There
is a probability that {h1,1 …h1,Z} contains one or two big
numbers, then the output will be greatly influenced by these
numbers. However, for a N×8 matrix, when one or two lines
of the matrix contain big numbers, only one or two Eai are
affected; there remains an equal probability that Ea will be even
or odd. The larger the N, the more likely Ea will be symmetric
in terms of even and odd occurrences.

In another observation, the bigger the r, the more stable the
pseudo-random transformation, but the worse the performance,
where r represents the number of bytes we chosen from each
window. We repeat these r bytes c times, where r×c=N. To be
effective, however, r cannot be too small. For example, when
r=1, a specific byte will occur too frequently in a data stream,
the output of the pseudo-random transformation will become
skewed. It is also necessary to choose the r bytes in intervals to
make the pseudo-random transformation more resistant to
frequent long phrases. The opposite is also true: r cannot be too

big because there are r table lookup operations and r-1 Xor
operations required in one calculation of the pseudo-random
transformation. If the value for r is too big, performance may
significantly deteriorate. Therefore, the value for r must be
carefully chosen to balance stability with performance in the
pseudo-random transformation.

Our experiments show that, when both N and r are of the
appropriate size (for example, set N=755, r=755, c=1) for 60
predetermined matrix pairs {(Hi, Gi)| i=1,… ,60} which are
randomly generated by Matlab, almost every pair demonstrates
good adaptability in the leap-based CDC algorithm. However,
when both N and r are set to an overly small value (for
example, N=255, r=5, c=51), only 1/10 of the 60
predetermined matrix pairs {(H’i, G’i)| i=1,…,60} demonstrate
good adaptability, indicating that the matrix pair must be
carefully chosen. We use an optimum pair in the following
experiments. It can be seen that the pseudo-random
transformation acts poorly when both N and r are small, and it
acts well when both N and r are appropriately large. This is
consistent with our analysis results.

It should be noted that the technique of adopting numbers
generated by normal distribution has been used in LSH [20].
Both LSH and Simhash [21] aim to get similar output values
from similar input data sets. However, our pseudo-random
transformation works in the opposite direction; that is, it
attempts to get random output values for different input data
sets. LSH and Simhash also use a factor resembling the Ea, but
there is a small difference: LSH and Simhash care whether two
counters Ea and E’a are close to each other, but pseudo-random
transformation pays attention to the parity of Ea. It is
interesting that such a small change can result in such a big
difference.

D. The analysis of leap-based CDC
Different from the sliding-window-base CDC algorithm,

the distribution of chunk sizes of the leap-based CDC
algorithm is determined by parameters M and Pw, where M
represents the number of qualified windows needed for a point
to become satisfied and Pw represents the possibility that a
window is qualified. The former affects the length of each leap
and the latter affects the frequency of the leap. These two
parameters determine both the distribution of chunk sizes and
the performance of the leap-based CDC algorithm. After some
theoretical analysis and a large amount of experiments, we
were able to choose the optimal parameter values: M=24;
Pw=3/4.

How M and Pw determine the distribution of chunk sizes is
very similar to a multi-step Fibonacci sequence. We define F(x)
as the probability that there is no satisfied point at or before
point x. The leap-based CDC algorithm starts from point 4096,
and the probability that all the M windows corresponding to
this point are qualified is (3/4)24. Thus, F(4096)=1-(3/4)24.
There is no breakpoint before point 4096, so F(4095)=
1, …,F(4073)=1.

In the following, when we say a window is corresponding
to a point, it means the point is the end point of the window.
For example, the window corresponding to point x is a window
that ends at point x. This concept should not be confused with

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

the windows-point corresponding relation in the definition of
our leap-based CDC algorithm.

Referring to Fig. 6, at point x, the computation of F(x) can
be divided into 24 cases:

Case 1: the window corresponding to point x is unqualified,
and there is no satisfied point at or before point x-1. The
probability of this case is 1/4×F(x-1). F(x) includes this case.
The case that “the window corresponding to point x is
unqualified” and “there is at least one satisfied point at or
before point x-1” has no affect on F(x).

Case 2: the window corresponding to x point is qualified,
the window corresponding to point x-1 is unqualified, and
there is no satisfied point at or before point x-2. The probability
of this case is 3/4×1/4×F(x-2). F(x) includes this case. The case
that “the window corresponding to point x is qualified”, “the
window corresponding to point x-1 is unqualified” and “there
is at least one satisfied point at or before point x-2” has no
affect on F(x).

……

Case 24: the window corresponding to point x is
qualified, … , the window corresponding to point x-22 is
qualified, the window corresponding to point x-23 is
unqualified, and there is no satisfied point at or before point x-
24. The probability of this case is (3/4)23×1/4×F(x-24). F(x)
includes this case. The case that “the window corresponding to
point x is qualified,…, the window corresponding to point x-22
is qualified, the window corresponding to point x-23 is
unqualified” and “there is at least one satisfied point at or
before point x-24” has no affect on F(x). The case that “the
window corresponding to point x is qualified,…, the window
corresponding to point x-23 is qualified” has no affect on F(x).

Putting all the results from the above cases together, F(x)
=1/4×F(x-1)+1/4×(3/4)×F(x-2)+…… +1/4× (3/4)23 ×F(x-24).
And, 1-F(x) is the probability that we find at least one satisfied
point at or before point x. Thus, qd1(x)=(1-F(x))-(1-F(x-
1))=F(x-1)-F(x) is the probability that the point x is a satisfied
point and there is no satisfied point at or before point x-1 (thus,
point x is a breakpoint). If we can’t find a satisfied point before
reaching the maximum chunk size, we will force a breakpoint
at the position of the maximum chunk size. The probability of
this case is qd=F(12K) =12.64%. Thus, we can get the PDF of
the distribution of chunk sizes for this algorithm (refer to the
curve titled “Leap” in Fig.5). The curve is quite similar to that
of the sliding-window-based CDC algorithm without a
secondary condition.

Consequently, the computation of the average chunk size of
the leap-based CDC algorithm can be calculated below:
Sd=Sd1+Sd2, where Sd1=∑xqd1(x) and Sd2=qd×12K,
corresponding to non-forced breakpoint case and forced
breakpoint case, respectively. The average chunk size is
S=7.38KB, which is a little smaller than that of the sliding-
window-based CDC algorithm without a secondary condition.

For the leap-based CDC algorithm with a secondary
condition, the computation of the distribution of chunk sizes
and the average chunk size is similar to the above calculation,
but a bit more complicated. The result is shown in Fig. 5; refer

Fig. 6. F(x) only contains 24 cases. Other cases have no affect on it.

to the curve titled “Leap + TTD”. The PDF of the distribution
of chunk sizes is similar to that of the sliding-window-based
CDC algorithm with a secondary condition. The average chunk
size is 7.08KB. Therefore, our leap-based CDC algorithm with
a secondary condition acts almost exactly the same as the
sliding-window-based CDC algorithm with a secondary
condition. Therefore, the deduplication ratios of the two
algorithms are also nearly exactly the same.

E. Executing times of the judgment function
The rolling hash and the pseudo-random transformation are

used as the judgment functions for the sliding-window-based
CDC algorithm and the leap-based CDC algorithm,
respectively. In this section, we will analyze the computational
complexity for executing these judgment functions in the
corresponding algorithms.

In the sliding-window-based CDC algorithm without a
secondary condition, the judgment function has to be executed
once at each byte in the interval [4KB, 12KB] until a
breakpoint is reached. Since the average chunk size is 7.46KB,
the judgment function has to be executed 3.46K times on
average during chunking of an average size chunk. In the
sliding-window-based CDC algorithm with a secondary
condition, because the first and the secondary condition use the
same rolling hash, the judgment function is also executed once
at each byte in the interval [4KB, 12KB] until a breakpoint is
reached. Because the average chunk size is 7.14KB, the
judgment function is executed 3.14K times on average during
chunking an average sized chunk.

Now, we turn to consider the case of the leap-based CDC
algorithm without a secondary condition. After each leap, we
have to judge window Wi1 first. According to our parameter
selection, we know that the probability that this window is
unqualified and that the calculation will leap forward is 1/4;
the probability that this window is qualified and that the
calculation slides one byte backward and continues to judge the
next window is 3/4. Based on these probabilities, the judgment
function is executed 1+3/4+(3/4)2+ … +(3/4)24=4 times on
average after a leap. In the meantime, the calculation slides

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

Fig. 7. For the leap-based CDC algorithm without a secondary condition, the
average leap length is 24 bytes with a backward slide of 3 bytes; 4 windows
are judged then another 24 bytes are leaped, and so on.

back 3 bytes on average (refer to Fig. 7). Because the average
leap distance is 24 bytes, the calculation procedure follows the
following pattern: leaps 24 bytes, slides back 3 bytes, executes
4 judgment functions on average, and so on. Therefore, the
judgment function is executed 4 times for every 21 bytes in the
interval [4KB, 12KB] until the breakpoint is set. Since the
average chunk size is 7.38KB, the judgment function is
executed 4/21×3.38K times on average for every 7.38KB.
Therefore, the number of times the judgment function is
executed in the leap-based CDC algorithm without a secondary
condition is about 1/5 that of the sliding-window-based CDC
algorithm with or without a secondary condition. Since the
computational complexity of the pseudo-random
transformation at most 2.5 times that of the rolling hash, the
leap-based CDC algorithm without a secondary condition
reduces the computational complexity by half when compared
to the sliding-window-based CDC algorithm .

For the leap-based CDC algorithm with a secondary
condition, the conclusion is the same. Considering the length of
the more complex analysis required with the leap-based
algorithm, we have decided to skip presentation of such
information herein and maintain the conclusion that the leap-
based CDC algorithm with a secondary condition reduces the
computation overhead by half when compared to the sliding-
window-based CDC algorithm.

V. EXPERIMENT
In this section, we show the experimental results from our

algorithm and compare them with those from the sliding-
window-based CDC algorithm. Additionally, to improve the
deduplication ratio, we only compare the results when both
algorithms use a secondary condition. Although Rabin hash [18]
is widely used in academia papers, it can be replaced by faster
functions in industry. We decided to use BUZ hash [19] as the
rolling hash for the sliding-window-based CDC algorithm in
the experiments because of its lighter CPU overhead than the
Rabin hash [18]. Some experiments show that a sliding-
window-based CDC algorithm with BUZ hash is much faster
than a sliding-window-based CDC algorithm with Rabin hash,
while the deduplication ratios provided by the two algorithms
are almost the same.

A. Environment
The sliding-window-based CDC algorithm processes the

data in a streamlined manner, but the leap-based CDC
algorithm determines whether or not to leap depending on the
judgment result. The probability that the sliding-window-based
CDC algorithm continues to slide forward is as high as 1-1/4K,
but there are much more branches when judging the windows
in the leap-based CDC algorithm and all these branches have

reasonable probabilities. Thus, the sliding-window-based CDC
algorithm performs well if the CPU is specially optimized for
streamline input. However, the leap-based CDC algorithm can
significantly improve the performance if the CPU is powerful
when dealing with branches. These two algorithms will behave
differently under different CPU architectures.

We use the Westmere CPU architecture and Sandy Bridge
CPU architecture in our experiment, where Sandy Bridge CPU
architecture represents the newer generation architecture and is
more powerful when dealing with branches while Westmere
CPU architecture represents the older generation architecture
and is less powerful when dealing with branches. We choose
Intel E5520 as the representative of Westmere CPU
architecture and Intel E5-2450 as the representative of Sandy
Bridge CPU architecture. It should be noted that although
Sandy Bridge CPU E5-2450 has a newer architecture, its
frequency is lower. Detailed environments are shown in
Table 1.

Only the performance of chunking step is measured. When
the data stream is too big, we run the experiment in multiple
rounds. In each round, we read 256MB of data into the
memory, start the timer, chunk the data, stop the timer,
compute the fingerprints and then find duplicated chunks. The
performance of all rounds is accumulated. In this way, we
shield other uncertain factors. But the deduplication ratio, the
distribution of chunk sizes and the average chunk size are
measured through the whole data stream.

B. Datasets
We tested the two algorithms on 10 datasets (see Table 2).

All datasets were collected from real production environments.
The VMware dataset is collected from 10 Windows7 VMs
using Symantec NetBackup software. The Oracle-Rman
dataset is collected from a real database using the Rman
interface. The Oracle-Dmp and Oracle-dbf datasets are the
original forms of the database. The ISO dataset is collected
from 20 Windows system installation files. The Sys dataset is
collected from the C disk of 20 users. The Office, PDF, Music
and Video datasets are also collected from real environments.

C. Distributions of chunk sizes and average chunk size
The distribution of chunk sizes has no relation to the CPU

architecture, and the results would presumably be exactly the
same for the two CPU architectures. Referring to Fig. 8, the
distributions of chunk sizes for the sliding-window-based CDC
algorithm with a secondary condition and the leap-based CDC
algorithm with a secondary condition are similar, which are
also similar to the curves of the theoretical analysis. Referring
to Fig. 9, the Music and Video datasets are essentially random
data sets, so the average chunk sizes of the two algorithms
agree with our analysis. But for other datasets, the average
chunk sizes of both algorithms fluctuate between [6.4KB,
7.6KB]. However, the relation is maintained that the average
chunk size of the leap-based CDC algorithm with the
secondary condition is a little smaller than that of the sliding-
window-based CDC algorithm with the secondary condition. In
any case, the two algorithms have similar distributions of
chunk sizes and average chunk sizes, which then implies they
will have almost exactly the same deduplication ratios.

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

TABLE I. TESTING ENVIRONMENT.

TABLE II. TESTING DATASETS

Fig. 8. Distributions of chunk sizes of the two algorithms with a secondary
condition (They behave similarly).

D. Deduplication ratio
The deduplication ratio also has no relation to the CPU

architecture, and the results would presumably be exactly the
same for the two CPU architectures. Referring to Table III, the
deduplication ratio of the two algorithms are almost exactly the
same (there are no duplicated chunks in Oracle dmp and Oracle
dbf datasets in either of the two algorithms). As long as two
chunking algorithms are content defined and have similar
distributions of chunk sizes, their deduplication ration will

Fig. 9. Average chunk sizes of of the two algorithms with a secondary
condition.

TABLE III. DEDUPLICATION RATIO

likely be similar. To have a flat distribution of chunk sizes, the
chunking algorithm must satisfy the equal probability condition.
Therefore, as we mentioned before, the chunking algorithm
must satisfy the content defined and the equal probability
condition to achieve a good deduplication ratio. As such, the
conclusion that the leap-based CDC algorithm with a
secondary condition has a similar deduplication ratio as that of
the sliding-window-based CDC algorithm with a secondary
condition is proven to be valid by the experiments.

E. Performance
The performance of the two algorithms is measured when

the CPU is free from other tasks. Although in a real system
such a condition cannot hold and CPU should provide all kinds
of services simultaneously including computing fingerprints,
we only use the relative experimental results to accurately
compare the two algorithms. Referring to Fig. 10 and Fig. 11,
the two algorithms behave differently under Westmere and
Sandy Bridge CPU architectures. Under the newer Sandy
Bridge CPU architecture, the leap-based CDC algorithm with a
secondary condition improves performance by 50%~100%
compared to the sliding-window-based CDC algorithm with a
secondary condition. But under the older Westmere CPU
architecture, the leap-based CDC algorithm only improves
performance by 10%~30%. We believe that this distinction in
performance based on different CPUs is due to the fact that
Sandy Bridge CPU architecture is more powerful when dealing
with branches and the leap-based CDC algorithm with a
secondary condition involves lots of branches in its calculation.

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

Fig. 10. Performance of the two algorithms under Sandy Bridge CPU. For
small datasets, the experiment is run several times to obtain an average value.
Our algorithm improves performance by 50~100%.

Figure 11: Performances of the two algorithms under Westmere CPU. For
small datasets, the experiment is run several times to obtain an average
value.Our algorithm improves performance by 10~30%.

Therefore, the leap-based CDC algorithm runs faster under the
newer Sandy Bridge CPU architecture. It should also be noted
that although Sandy Bridge CPU is the newer CPU architecture,
the sliding-window-based CDC algorithm runs slower under it.

VI. RELATED WORK
The chunking algorithm is one of most the important

modules in the deduplication system. The sliding-window-
based CDC algorithm [1] and its variants have been the most
popular CDC algorithms for the last 15 years. These algorithms
satisfy the content defined condition and equal probability
condition, so the deduplication ratio can be guaranteed.
However, their performance is limited in certain application
scenarios since they have to compute the judgment function
once at each byte. LBFS [2] proposed limiting the minimum
chunk size and the maximum chunk size to help eliminate

chunks that are too small or too large. The LBFS approach is
appealing because it helps make the deduplication ratio more
stable and improves deduplication performance with skipping
of the minimum chunk size when searching for breakpoints.
Our algorithm followed this limitation. The secondary
condition of breakpoint first appeared in TTTD [3]. It reduces
the proportion of the forced breakpoints and improves the
deduplication ratio. RC [4] adopted secondary, third, fourth,
and fifth conditions to further reduce the proportion of forced
breakpoints. They also compared the distribution of chunk
sizes of the RC algorithm and the sliding-window-based CDC
algorithm. Our idea of analyzing the distribution of chunk sizes
and average chunk size originates from this paper. However,
LBFS, TTTD, and RC are all based on the sliding window
CDC algorithm, so they all have to compute the judgment
function once at each byte for almost half of the whole data
stream.

Bimodal CDC [5] also used the same sliding-window-
based CDC algorithm, but it mixes chunks of different average
sizes together. This algorithm first chunks the data stream into
large chunks and then splits part of them into small chunks.
The reverse is also true as it can first chunk the data stream into
small chunks and then combine part of them into large chunks.
This algorithm can significantly reduce the amount of metadata
that needs to be indexed but at the cost of a slight loss in the
deduplication ratio. However, they have to check the
fingerprint index to determine whether to split large chunks or
merge small chunks. Similarly, Lu [6] also mixed chunks of
different average size together, but determined whether to
chunk the data stream into large chunks or small chunks
according to the reference count. Meyer and Bolosky [7]
compared the deduplication ratio of chunking algorithms
adopting different average chunk sizes.

Zhu et al [8] proposed the locality keeping technique which
stores the fingerprints sequentially in containers to avoid disk
bottlenecks. Sparse indexing [9], extreme bin [10], SILO [11]
sampled the fingerprints of chunks to index them. These
techniques can greatly reduce the consumption of memory in
the querying step. DBLK [12], BloomStore [13], chunkstash
[14], and delta index [15] discussed some methods for memory
organization of the sampled fingerprints. These algorithms can
further reduce memory consumption. Idup [16] only
deduplicated sequences of duplicated chunks. Lillibridge et al
[17] limited the number of containers that a group of chunks
can refer to. These two techniques can reduce fragments and
keep the locality for a long time. The above algorithms can
greatly alleviate the load on disks and memory, but in certain
application scenarios, the chunking step and the chunk
fingerprinting step which cost a lot of CPU resources could
become new bottlenecks.

The rolling hash helps increase the calculation speed in the
sliding-window-based CDC algorithm. Both Rabin hash [18]
and BUZ hash [19] are the popular rolling hash functions. We
adopted BUZ hash [19] in the sliding--window-based CDC
algorithm due to its lighter CPU overhead than the than Rabin
hash [18]. As the complexity of one computation of BUZ hash
is too small to be further compressed, the only way to alleviate
possible bottlenecks in the chunking step is to reduce the
executing times of judgment function.

978-1-4673-7619-8/15/$31.00 ©2015 IEEE

The technique of adopting numbers from normal
distribution has been used in LSH [20]. LSH used a more
generalized distribution called p-stable distribution instead of
normal distribution. Research from Manku et al [21] and Datar
et al [20] shows that Simhash and LSH are similar. We built
the pseudo-random transformation based on these two
algorithms.

VII. CONCLUSION
The chunking algorithm affects not only the deduplication

ratio but also deduplication performance. Since the sliding-
window-based CDC algorithm executes the judgment function
once at each byte for almost half of the whole data stream, its
heavy computing overhead provides an area for further
optimization. In this paper, we presented the leap-based CDC
algorithm and added a secondary condition to it in order to
reduce the computing overhead and maintain the same
deduplication ratio. Our algorithm satisfies both the content
defined condition and the equal probability condition. As we
illustrated and verified through experiments, the leap-based
CDC algorithm with or without a secondary condition can
significantly reduce the computing overhead while maintaining
the same deduplication ratio. To resolve the technique issue of
not being able to use the rolling hash in the new algorithm, we
introduced the pseudo-random transformation to replace the
role of rolling hash. The analysis and the experiments have
shown that the pseudo-random transformation is an appropriate
replacement.

We then analyzed the distribution of chunk sizes, the
average chunk size, and the computational complexity of these
algorithms. The theoretical analysis shows that the distribution
of chunk sizes among all analyzed algorithms are fairly similar;
the average chunk sizes from all analyzed algorithms are very
close; and the computational complexity of the leap-based
CDC algorithm is approximately half that of the sliding-
window-based CDC algorithm.

The experimental results substantiate our theoretical
analysis.

ACKNOWLEDGMENTS
We are grateful to our shepherd Philip Shilane and the

anonymous reviewers of this paper. We thank Guangbin Yan,
Jianghai Gao, Mingshun Liu and Feng Li for their support. Our
test team includes Peixue Liu, Yong Liu, Zhiyong Liu, and
Qilong He. Our deduplication team includes Zhang Zongquan,
Yanghuadi, Qiang Liu, Linbo Xu, You Jun, Xiaobo Liu,
Quancheng Sun, Yanhui Zhong, Xudong Fu, and Zhenwen
Xue. We thank those named above and the many others who
have remained unnamed.

REFERENCES
[1] R N. Williams, “Method for partitioning a block of data into subblocks

and for storing and communcating such subblocks”, U.S. Patent
5,990,810. 1999-11-23.

[2] A. Muthitacharoen, B. Chen, D. Mazieres, “A low-bandwidth network
file system”, ACM SIGOPS Operating Systems Review, ACM, 2001,
35(5): 174-187.

[3] K. Eshghi, H. K. Tang, “A framework for analyzing and improving
content-based chunking algorithms”, Hewlett-Packard Labs Technical
Report TR, 2005, 30: 2005.

[4] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, & S. Sengupta,
“Primary data deduplication-large scale study and system design”,
USENIX annual technical conference, USENIX Association, 2012: 285-
296.

[5] E. Kruus, C. Ungureanu, C.Dubnicki, “Bimodal Content Defined
Chunking for Backup Streams”, Conference on File and Storage
Technologies, USENIX Association, 2010: 239-252.

[6] Lu Guanlin, “An Efficient Data Deduplication Design with Flash
Memory Based SSD”, A Dissertation Submitted to th Faculty of the
Graduate School of the University of Minnesota.

[7] D. T. Meyer, W. J. Bolosky, “A study of practical deduplication”, ACM
Transactions on Storage, 2012, 7(4): 14.

[8] B. Zhu, K. Li, R. H. Patterson, “Avoiding the Disk Bottleneck in the
Data Domain Deduplication File System”, Conference on File and
Storage Technologies, USENIX Association, 2008,8:1-14.

[9] M. Lillibridge, K. Eshghi, D. Bhagwat, V Deolalikar, G.Trezis&
P.Camble. “Sparse Indexing: Large Scale, Inline Deduplication Using
Sampling and Locality”, File and Storage Technologies, USENIX
Association,2009, 9: 111-123.

[10] D. Bhagwat, K. Eshghi, D. D. Long, & M. Lillibridge, “Extreme
binning: Scalable, parallel deduplication for chunk-based file backup”,
Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, 2009: 1-9.

[11] W. Xia, H. Jiang, D. Feng, Y.Hua, “Silo: a similarity-locality based
near-exact deduplication scheme with low ram overhead and high
throughput”, USENIX annual technical conference, USENIX
Association, 2011: 26-28.

[12] Y. Tsuchiya, T.Watanabe, “Dblk: Deduplication for primary block
storage”, Mass Storage Systems and Technologies, IEEE, 2011: 1-5.

[13] G. Lu, Y. J. Nam, D. H. C. Du, “BloomStore: Bloom-filter based
memory-efficient key-value store for indexing of data deduplication on
flash”, Mass Storage Systems and Technologies, IEEE, 2012: 1-11.

[14] B. Debnath, S. Sengupta, J.Li, “ChunkStash: speeding up inline storage
deduplication using flash memory”, USENIX annual technical
conference, USENIX Association, 2010: 16-16.

[15] N. H. Margolus, E. Olson, M. Sclafani, C. J. Coburn & M. Fortson,
“Storage system for randomly named blocks of data”, U.S. Patent
RE45,350, 2015-1-20..

[16] K.Srinivasan, T.Bisson, G. R.Goodson & K.Voruganti, “iDedup:
Latency-aware, inline data deduplication for primary storage”, File and
Storage Technologies, USENIX Association, 2012: 24-24.

[17] M. Lillibridge, K. Eshghi, D. Bhagwat, “Improving restore speed for
backup systems that use inline chunk-based deduplication”, File and
Storage Technologies, USENIX Association, 2013.

[18] M. O. Rabin, “Fingerprinting by random polynomials”, Center for
Research in Computing Techn., Aiken Computation Laboratory, 1981.

[19] http://www.serve.net/buz/hash.adt/java.000.html
[20] M. Datar, N. Immorlica, P. Indyk & V. S.Mirrokni, “Locality-sensitive

hashing scheme based on p-stable distributions”, Computational
geometry, ACM, 2004: 253-262.

[21] G. S. Manku, A. Jain, A. D. Sarma, “Detecting near-duplicates for web
crawling”, World Wide Web, ACM, 2007: 141-150.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomDGR-Bold
 /NimbusRomDGR-BoldItal
 /NimbusRomDGR-Regu
 /NimbusRomDGR-ReguItal
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

